
I n  the genera l  case it is not clear whether  the sym- 
met ry  relat ive t o  the t ransformation (6.4) can  s e r v e  as 
a source  of exact data  on the positions of the singulari- 
ties of the statistical s u m  in the  space  of the pa- 
r a m e t e r s  y,, y,, and y,. We note only the special  case 
of the cube, in which these p a r a m e t e r s  are connected 
by  the relat ions 

It corresponds to one of the d i sc re te  approximations 
f o r  the classical Heisenberg model; the s u m  of states 
can be  wri t ten i n  the f o r m  

where the three-dimensional vec tors  n, r u n  through 
the ver t i ces  of a cube inscr ibed in the unit sphere.  The  
connection (6.6) between the p a r a m e t e r s  is preserved  
a f t e r  the t ransformation (6.4), and the t ransi t ion tem-  
pera ture  f o r  the model (6.7) c a n  be  calculated exactly. 
T h i s  case is tr ivial ,  however, s ince  t h e  statistical 
s u m  (6.7) reduces to  th ree  noninteracting Is ing models. 

"We omit the factor p= (&T)- in the exponent in Eq. (2.6), in- 
cluding it in the definition of H. 

2'~f we regard g,,, a s  connectivities in a G-stratification over 
the lattice, the mnstraints Q-,=Z are  the condition for zero 
curvature. 

3'It can easily be seen that the relation between the groups G 
and 6 is of the nature of a duality; i. e . ,  if & is the group of 
characters of G, then 6 = G is the group of characters of the 

group 6 .  
4'In the model PN the existence of two different phases is pos- 

sible. The KW symmetry enables u s  to d e t e r p e  the criti- 
cal value p,, which satisfies the equation PC = 8 (&). This 
gives &=ln (I+ N"'). Some rigorous results of the exis- 
tence of two phase in P, have been obtained recently." 
'It is easily seen that the spin system on the tetrahedron is 
equivalent to the model P4 (see Sec. 4). 
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ferroelectric phase transition point in narrow-gap A,B, 
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The magnetic susceptibility in a system that is unstable against singlet electron-hole pairing or a 
structural phase transition is computed. The magnetic susceptibility has a fluctuation-induced singularity 
near the transition temperature: it undergoes a finite jump in the region of applicability of the Landau- 
Ginzburg theory and obeys a power law with an exponent equal to d v  - 1, where v is the exponent of 
the correlation length, in the scaling region. The diamagnetism is found in the mean-field approximation 
to decrease smoothly below the transition temperature. The results qualitatively explain the experiments 
that have been performed on SnTe samples in the vicinity of the ferroelectric transition point. 

PACS numbers: 75.30.Cr, 75.40.Bw, 64.60.Fr, 77.80.Bh 

1. INTRODUCTION phase-transition-induced anomaly h a s  been observeds 
in the magnetic susceptibility (MS) of SnTe a t  T = T,. 

The  occur rence  of a fe r roe lec t r ic  phase transition 
i n  A,B, c r y s t a l s  and solid solutions based on them h a s  The  exis tence of such  a n  anomaly is not a prwri 
been well established. In  part icular ,  the dependence apparent  within the f ramework  of the conventional no- 
of the transition temperature,  T,, f o r  SnTe on the c a r -  tions about a s t ruc tura l  transition, which does not af- 
r i e r  concentration is well known. I*z A structural-  fect  the magnetic p roper t i es  of the system. Since i t  
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has been observed, the question ar ises  whether i t  has 
received a more o r  less  adequate theoretical inter- 
pretation. 

The problem consists in the computation of the MS in 
narrow-gap crystals that undergo a structured transi- 
tion in a weak magnetic field and the determination of 
the conditions under which the indicated anomaly mani- 
fests itself sufficiently distinctly for i t  to be experi- 
mentally observable. This is the object of the present 
paper. 

It is a priori clear that a structural transition ocur- 
ring in highly degenerate narrow-gap crystals, and 
leading to the distortion of the electronic spectrum, 
should alter  the characteristics of the electrons at the 
Fermi level (mass, density of states), and this will 
have an effect on the MS of the electron gas. In this 
paper we compute the magnitude of such a correction 
in the mean-field approximation; it depends on the pa- 
rameters of the electron spectrum, and cannot explain 
the characteristic shape of the observed jump. We 
also compute the fluctuation correction to the MS in the 
vicinity of T,. It i s  precisely the fluctuation correction 
to the MS in the region of applicability of the Ginzburg- 
Landau theory and in the scaling region that can account 
for the magnitude and shape of the anomaly observed by 
Baginskii et a1. 

Let us note that the order parameter associated with 
the structural phase transition is not the conjugate of 
the susceptibility computed in the presented paper. The 
determination of the effect of the fluctuations on such a 
susceptibility is, apparently, of general interest. 

2. THE SPECTRUM OF THE SYSTEM AND THE 
THERMODYNAMIC POTENTIAL 

Let us consider the Hamiltonian of a two-band nar- 
row-gap semiconductor (semimetal) with an interband 
electron-phonon interaction in a magnetic field: 

Here a numbers the electron states in the magnetic 
field, u is the spin, t is the phonon polarization, and i, 
j = 1,2  a re  the band numbers. 

The electron-phonon coupling constant for q = 0 pos- 
sesses  the property B,,, (0)" 6, , , .  Below we assume 
that B(0) does not depend on a.  

The spectrum of a narrow-gap semiconductor in zero 
magnetic field is described by the Cohen-Blount model: 

where A is the gap in the electronic spectrum, k is the 
three-dimensional momentum, and s is the interband 
hybridization parameter. 

Since, below, we consider a degenerate semicon- 
ductor (or semi-metal) located in a weak magnetic 
field, the spectrum in the magnetic field can be con- 
structed in the quasiclassical approximation. The ap- 
plicability of this approximation is guaranteed by the 

smallness of the Landau-level spacing in comparison 
with the magnitude of the chemical potential p, a s  mea- 
sured from the allowed-band edge (for definiteness, 
from the lower edge of the c band). 

In the quasiclassical approximation the electronic 
spectrum is determined by the equation 

where H is the field, g is the gyromagnetic ratio, m is 
the Landau band number, and 5' is the cross  section of 
the region enclosed by the constant-energy surface at th 
the place where it is cut by a plane perpendicular to the 
field. 

The spectrum E,,, in (1) is determined by the cross  
section 

where p is the component of the momentum in the di- 
rection of the field. 

It i s  known that the active TO mode with q = 0 softens 
in &B, at  T = T,, s o  that i t  is sufficient to take the 
condensation of only the phonon mode with q = 0 into 
consideration a t  the f i rs t  stage of the calculations in the 
self-consistent field approximation. In this case the 
distortion of the electronic spectrum at  T < T, leads to 
the replacement E l , ,  ,q,, =f(sZkZ + 1/4a2 + x ~ ) " ~ ,  and 
the spectrum in the magnetic field is determined by 
Eq. (3) with the cross  section 

where x= 2 1 B 1 (bo) is the order parameter, which is 
proportional to the sublattice displacement I3 = ~ " ( 0 ) .  

Knowing the spectrum, we can easily write down an 
expression for the thermodynamic potential of the crys- 
tal in the approximation in question: 

The second term in (6) corresponds to the elastic en- 
ergy due to the lattice distortion and V is the volume of 
the base region of the crystal. 

In (6) we perform the summation over the magnetic 
quantum number with the aid of the well-known formula 

and, further, integrating in (7) by parts, we obtain 

Q 1 
-=-- (2%). C S dP {+*I. [I + PI* (W)] Y 

Here f k )  is the Fermi  function; the E! a r e  the solutions 
of the equation ~=*negH/2c, the mass being connected 
with S by the well-known relation: 
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3. THE MAGNETIC SUSCEPTIBILITY 

Using (8), we can easily calculate the MS in a weak 
field. Differentiating (8) twice with respect to the field, 
we obtain for H = 0 the equation 

,i 

f (e,') as a 'dx2 
+2% f $ f ( e ) d e + ?  - 

hi (3x2)  
si 

ax2 " ass fizz 
-2&)  S W f ( e ) ~ ) + 4 * m .  (10) 

Fa' 

The summation over i in (10) includes only the band 
numbers. 

Let  us  note a t  once that, when x=O, the formuja (10) 
coincides yith the result obtained by Beneslavskii and 
~al'kovskii.' 

Entering into (9) a r e  the derivatives of the equilibrium 
order parameter x(H), which satisfies the equation 
an/a H. = 0: 

Regarding (11) as a given implicit function of x 2 ( ~ ) ,  we 
can easily compute the derivative and verify that dn2/ 
dH = 0 fo r  H = 0. As to the coefficient attached to d2 n2/ 
d ~ '  in (101, i t  vanishes on account of Eq. (11). 

Thus, 

where the E; a r e  the solutions of the equation S=O. It  
follows from (12) that the SM will feel the phase transi- 
tion through a change in the electronic spectrum. 

Taking (5) and (9) into account, we obtain 

(13) 

and, with the aid of (13), we can rewrite (12) in the fol- 
lowing form: 

where the plus and minus signs correspond to the c and 
v bands respectively. 

If g-2,  then in (14) X <  0 (diamagnetism). This result 
agrees with the well-known fact that SnTe is diamag- 
netic. In order to obtain a quantitative agreement be- 
tween X, a s  given by (14), and experiment, we should, 
apparently, use the Dimmock, instead of the Cohen- 
Blount, spectrum, but the computation of the MS from 
the formula (14) is not the object of the presentpaper, 
since we a r e  interested in only the correction to the 
MS due to the lattice distortion. 

We should take into account in (14) the fact that, when 
RT,,  we have p = p o + A p ,  where po is the chemical 
potential in the undistorted phase. The correction Ap 
can be found from (8) by constructing the neutrality 
equation -aSl/ap = N,: 

N,/v= n is the electron concentration. 

Using (15), we can compute dp/dx2: 
^Q 

In the degenerate (i. e.,  p o  >>TI case being considered 
by us, (16) is easy to compute: 

df l ldxz= l /2p  or flZ=pnZ+nZ. (17) 

The behavior of x a t  T s T, follows from the expan- 
sion of (14) in powers of n2: 

X / X ~ = I - A X ~ .  (18) 
where 

A-l=Zpa2[l+ ( l - y 2 ) ' b ]  In [ N p o ( l + ( l - y z ) ' " ] .  (19) 

In (18) and (19), xo is the MS in the undistorted phase 
and A, the cutoff energy for the integral in (14), is of 
the order of the width, =&/2po, of the allowed band. 

If the phase transition that occurs is of second order, 
then 

The MS is continuous at  T = T,, and the diamagnetism 
decreases linearly below T,: 

The linear decrease of the diamagnetism below T, 
agrees with a result obtainedearlier by us. In Ref. 7 
i t  is shown that this variation can be critical when the 
parameters of the system a r e  realistic, but the shape 
of the singularity is, a s  noted above, not reproduced. 
The experimental data indicates an MS jump at  T,; i t  
may be due to either of two causes: either the fluctu- 
ations, o r  the n jump that occurs in a first-order tran- 
sition. 

4. EFFECT OF THE FLUCTUATIONS ON THE MS 
NEAR T, 

Near To the correction, due to the lattice distortion, 
to the thermodynamic potential has the form 

where q, is the Fourier transform of the nonhomoge- 
neous order parameter; He,, is the Ginzburg-Landau 
Hamiltonian: 

b 
t J ~ v  [ z ~ ~ t ~ ~ ~ + - ~ ~ + g ( v ~ ) ~ ] ,  2  t c o .  

where t = T - T,, x =  ~g +q(r), q(r) is the fluctuation a t  
the point r, and no is the homogeneous order param- 
eter. 
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We obtain from (22) and (23) in the Gaussian approxi- 
mation the relations 

8-Po -- 
(at)' + T~ La 

V ( 2 a l t l + B z )  , t c o  
nT 

To compute X, let us differentiate (24) with respect 
to the field, bearing in mind that we should make the 
substitution at- alt + ( Y ~ H ~  in going over to a nonzero 
field. We obtain the MS: 

Here we have introduced the cutoff momentum ko 
= (cyi~&)1'2 (Refs. 8 and 91, the use of which makes 
sense in the region of applicability of the Ginzburg- 
Landau theory (the Gaussian approximation), i. e., a t  
temperatures not too close to T,. Evaluating the inte- 
grals in (251, we obtain (below we have set  r = (a i  It 1 / 
g)llZ 

The temperature behavior of the MS, as given by 
(26), is depicted in Figs. l a  and l b  by the solid curves. 
We obtain the jump A X  at  t=O in the Gaussian approxi- 
mation from (26): 

Without allowance for the fluctuations, the jump is de- 
termined by the second term in the lower line of formula 
(26), and is equal to zero a t  To, which agrees with the 
result of the preceding section. 

The result (26), (27) makes sense in the region of 
Gaussian fluctuations, i. e., at temperatures not too 
close to T,. The behavior of x in the vicinity of T, can 
be estimated qualitatively from the following arguments. 
In scaling theory the free energy is proportional to the 
number of "clusters" formed by the volume 5' :Fee", 
where [ is the correlation length and d is the dimen- 
sionality of the space. The classical value of the cor- 
relation length, 5 = ( a  It l/g)"/2, near T, should be re- 
placed by (a ( t  [/g)'", where v is the critical exponent. 

Thus, F- (a! 1 t l/Z)"', and MS has the form 

i. e. , a power-law dependence of x on t obtains in the 
vicinity of Tc (in the three-dimensional case dv> 1). 

The power-law behavior (28) is depicted in Figs. l a  
and l b  by the dashed curves within the scaling region, 
which is marked off by the vertical broken lines. This 
solution should join smoothly onto the 1 t 1 'I2 dependences 

FIG. 1. 

in the region of applicability of the Ginzburg-Landau 
theory. 

5. DISCUSSION OF THE RESULTS 

The MS behavior obtained for  the temperature region 
T <  T, in 63 without allowance for the fluctuations am- 
ounts to the smooth variation of -X from -xo at T > T, 
to -x(O) a t  T = 0. This change is of the order of - n2/ 
pi, and the maximum value is attained a t  T=O: c/ 
p:<<l. For this reason, the magnitude of the x jump 
can hardly be accounted for by the second cause noted 
after formula (21), i. e . ,  by the n jump that occurs a t  
T, in a first-order phase transition. 

Allowance for the fluctuations in the Gaussian ap- 
proximation allows us  to find the fluctuation-induced 
jump, AX, shown in Figs. l a  and lb. In the scaling 
region x varies according to a power law - It 1"". The 
magnitude of AX, (27), and the dimension of the fluctu- 
ation region depend on the parameters of the Hamil- 
tonian (23). I t  is well-known that, for phase transitions 
connected with the.electronsubsystem, these param- 
e ters  depend on the level of doping. This dependence 
is such that decreases with increasing level of doping, 
and the situation in which g -C 0 for p 3 p, is possible. 
The vanishing of g corresponds to the advantageousness 
of the nonhomogeneous ordered state. The nonhomo- 
geneous state arises,  a s  the level of doping is raised, 
in transitions of the ~ e i e r l s ~ ~ * ' ~ ~ ' ~  and exciton types, 
and this is generally a common situation for systems 
with any type of pairing. " 

The considered system with the singlet order param- 
e ter  is analogous to the exciton dielectric, and the pos- 
sible smallness t~ g a s  a result of doping can ensure - 

the necessary fluctuation-region size and AX value. 

As Figs. l a  and l b  show, the behavior of x depends 
on the sign of a2. To the real  situation corresponds, 
apparently, cu2 < 0, the curve shown in Fig. l a  being 
then close in shape to the experimental curve. 

On the other hand, az < 0 implies the possibility of Tc 
being raised by a magnetic field. This conclusion is, 
on the whole, confirmed by the calculations for SnTe in 
a weak field,' a s  well a s  by experiments performed on 
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SnGeTe samples in a strong magnetic field. ' In fact, 
the increase of T, with increasing field intensity does 
occur in the case of the excition transition. l3 

In  conclusion, let  us  note that the behavior of a sys- 
tem's responses not associated with the order  param- 
e ter  is not universal for  all phase transitions: the re-  
sponses have to be calculated in  each specific case. 
For  example, in Ref. 14 the magnetic-phase- transi- 
tion-induced electrical-resistance anomalies a r e  studied. 
In the present paper we have considered another exam- 
ple of the computation of a system's response to an 
order-parameter-unrelated perturbation; to wit, we 
have elucidated the magnetic properties of a crystal in 
the vicinity of a structural phase transition. 

The authors a r e  grateful to S. D. ~ e n e s l a v s k i r  for 
useful discussions of the paper. 
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Measurements were made of the temperatures of the magnetic phase transitions and of the paramagnetic 
Curie point in single-crystal rare-earth terbium-yttrium and terbium-gadolinium alloys. Concentration 
intervals with different coeficients of proportionality of the paramagnetic Curie point to the mean square 
of the spin projection on the total mechanical angular momentum G were observed in these alloys. It is 
established that the difference between the indirect-exchange integrals in the ferromagnetic and 
antiferromagnetic states in the rare-earth alloys is a universal function of the spin parameter G. The 
contributions of the magnetocrystalline interaction and of the indirect exchange interaction to the 
magnetic ordering temperatures and to the paramagnetic Curie points in terbium-yttrium and 
terbium-gadolinium alloys are determined. 

PACS numbers: 75.30.Kz, 75.30.Et, 75.50.C~ 

INTRODUCTION conclusions of the theory with experiment, which was 
indeed made in a number of ~ t u d i e s . ~ "  The compari- 

An investigation of the dependences of the magnetic- son, however, was made by analyzing the experimental ordering temperatures of rare-earth metal (REM) 
data for polycrystalline samples, and the accuracy of 

alloys on the atomic number and on the concentration the determination of the magnetic phase-transition tem- 
of the is needed to On the peratures was not high enough in a number of cases. 
theory of the nature of exchange interactions in REM. 
According to the indirect-exchange t h e ~ r ~ , ' * ~ * ~  the mag- The aim of the present study was to obtain more exact 
netic ordering temperature and the paramagnetic Curie values for  the magnetic phase transition temperatures 
point a r e  relatively simply connected with the indirect- and the paramagnetic Curie point from measurements 
exchange integral. This permits a comparison of the on single crystals of REM alloys, t o  determine the 
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