
can lead to a change in the magnitude and establishment 
time of an equilibrium charge in an oriented crystal  
target. The kinetic equations of the equilibrium-charge 
theory should take correc t  account of the elementary 
processes of ionization and recombination of ions in the 
channeling regime. 

')A generalization of the results to the case of several nearest 
chains will be presented in Sec. 4. 

''We neglect small shifts of the levels due to their interaction 
with the states of the continuous spectrum. 
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The Kramem-Wannier transfonnation is constructed for spin systems on a plane lattice. Systems with 
discrete nonabelian groups are considered, including generalized Potts models. The existence of three 
different phases in these models is predicted. 

PACS numbers: 61.50.Em 

1. INTRODUCTION 

In 1941 Kramers and Wannierl discovered a special 
symmetry which relates low-temperature and high- 
temperature expansions in the plane Ising model. The 
corresponding transformation, the Kramers-Wannier 
(KW) transformation, i s  a definite nonlocal substitution 
on the variables in the sum over states (partition func- 
tion). After this substitution the statistical sum in- 
volves not the original "spin" variables o =* 1, defined 
on the nodes of the lattice, but new "spin" variables 
p =* 1 defined on the faces of the lattice, or, equiva- 
lently, on the nodes of the "dual" lattice. Furthermore 
the new Hamiltonian, expressed in terms of p ,  differ 
from the original one by the replacement a- p and a lso  
a transformation of the temperature parameter: 

restricted, and conversely. For the "dual" variables 
p we therefore use the name "disorder parameter."' 

The existence of this sor t  of transformations i s  evi- 
dently a very general property of lattice statistical 
systems that possess a symmetry group. KW trans- 
formations have been constructed explicitly for a num- 
ber of systems on a plane lattice. These include the 
N-position models of Potts (see Ref. 3) and generalized 
Ising models, systems with spins taking values in 
groups 2, (2, Ising m o d e l ~ ) , 4 . ~  and in the group U(1) 
(XY models). For  2, systems the disorder parameter 
a lso  takes a value in the group 2,. Therefore the KW 
transformation reduces to a transformation of numeri-. 
ca l  parameters of the Hamiltonian, just a s  in the ordi- 
nary Ising model. In the case of the XY model the dis- 
order parameter i s  an element of the group 2, and the 

p+T=arth e-'O. (1.1) KW transformation relates to each other statistical 
sums of different spin systems. 

The transformation (1.1) establishes a connection be- 
tween values of the statistical sum in high-temperature KW transformations can a lso  be carried out for some 
and low-temperature phases and, in particular, enables systems on many-dimensional lattices. Here new pos- 
one to find the exact value of the critical temperature sibilities arise.  For  example, a KW transformation 

P,-'. In the phase in which the fluctuation of the order connects the three-dimensional Ising model with the 
parameter o are large, those of the variables p are gauge Ising model. and the four-dimensional gauge 
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Ising model is ~elf-dual.~"' There is an analogous 
situation for many-dimensional systems with other 
commutative symmetry groups (cf., e.g., Refs. 9-11). 

The example of the plane Ising model12 shows that the 
KW transformation can serve a s  a powerful instrument 
for exact study of statistical  system^.^ The KW trans- 
formation is of particular interest for four-dimensional 
lattice gauge theories.'= There a re  arguments favoring 
the idea that the introduction of a disorder parameter 
would make possible a natural way to describe the 
phase of nonemerging quarks.'*-l7 

Whereas the KW transformation for systems with 
commutative symmetry groups can be carried out by 
general methods, the corresponding problem for non- 
Abelian systems remains an open one. 

In the present paper we consider some special ex- 
amples of plane lattice systems with nonabelian sym- 
metries. These include generalized Potts models, as- 
sociated with homogeneous spaces of symmetric groups, 
a spin system running through the group S ,  (the group 
of transformations of a triangle), and two systems as- 
sociated with homogeneous spaces of discrete sub- 
groups of the group O(3) (regular polyhedra). In all of 
these cases the KW transformation can be carried out 
owing to a special reduction to the commutative case. 

We hope that these examples will help to elucidate the 
general situation with noncommutative groups. 

2. SPlN SYSTEMS ON A PLANE LATTICE 

Let us consider a plane square lattice with unit edge. 
Let x ={x,) ={x,, x2) (where x, and x2 a re  integers) be 
the coordinates of the nodes, and e: ={e), e;) = 6 be 
the basis vectors of the lattice. We will often use the 
notation x + & ={x,, + e;). A double index x, a is con- 
venient for denoting the edge in the lattice which con- 
nects the nodes x and x + &. In what follows we shall 
also need the dual lattice, whose nodes a re  a t  the ten- 

ters  of the faces of the original lattice (see Fig. 1). 
We denote the coordinates of a node of the dual lattice 
by X :  

2= (2"-tl/,e:+'/,e,'). 

We define at the nodes of the original lattice also the 
spin variables s,; these take values in some manifold 
M, which we will call the spin space. We mainly con- 
fine ourselves to the case of a finite set  M. 

The simplest Hamiltonian of such a spin system in- 
volves only interactions of nearest neighbors; that is, 
i t  is of the form 

FIG. 1. 

where the binary Hamiltonian H(s, s ' )  is a real  function 
of a pair of points from M, with the properties 

H ( S ,  s t )  =H(s' ,  s ) ,  (2.2a) 
H ( s ,  s') 2 0  for arbitrary s ,  s'EM, (2.2b) 

H ( s ,  s)=O. 

Accordingly, the binary Hamiltonian prescribes on M 
a structure similar to a metric structure (which in the 
general case is not a metric, since we nowhere require 
that the triangle inequality hold), which we shall call 
the H structure. 

Of particular interest a r e  examples in which the 
manifold M is a homogeneous space, i.e., there exists 
a group G of transformations of M which preserves the 
H structure: H(GS,GS') =H(s, s') for arbitrary s, s'E M. 
In this case the spin system has global symmetry with 
the group G. 

Important special cases a re  systems on groups. For  
these the spin manifold coincides with a group G : 
si =gic G ,  and the binary Hamiltonian is invariant un- 
der left and right translations: 

H ( h g ,  hg') = H ( g h ,  g'h) = H ( g ,  g') 
for arbitrary h=G.  

The general H function of the system on the group can 
therefore be put in the form 

~ ( g , ,  g?)=  ~ ( g , g , - ' ) =  z h ( p ) x P ( g , g z - ' ) ,  (2.4) 
P 

where x,(g) are  the characters of the irreducible rep- 
resentations of the group G, and the constants h ( p )  
are  chosen s o  that H has the properties (2.2) and a re  
otherwise arbitrary. 

The statistical sum of the general spin system with 
the Hamiltonian (2.1) is 

where1) 

W ( s ,  s f )  =exp{-H(s. s ' ) ) .  

According to  Eq. (2.2) the function W has the proper- 
ties 

W ( s ,  s')=W7(s', s ) ,  O < W ( s ,  s l ) < l ,  W ( s ,  s ) = l .  (2.7) 

For  the system on a group we have also 

3. SPlN SYSTEMS ON COMMUTATIVE GROUPS 

For a spin system on a group G the sum over states 
(2.5) can be put in the following equivalent form: 

where the summation variables g,,, a r e  defined on the 
edges of the lattice2' 

Q; = g ~ ,  I ~ ~ + T .  ,g;:;,, by,, (3.2) 

and the 6-function is defined by the formula 

1 ,  if g  = I, 
0  otherwise. 
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In fact, the general solution of the connection equation 
Qp =I  is 

and this brings us back to  Eq. (2.5). 

Systems on commutative groups a r e  a special case, 
in which the 6-function in Eq. (3.1) can be factorized 
in the following way: 

This sort  of factorization is of decisive importance and 
enables us to ca r ry  through the KW transformation for 
commutative groups in general form. 

We note that for a commutative group G all irreduci- 
ble representations a re  one-dimensional and their 
characters X, themselves form a commutative group 6 
(the character group) with a group multiplication de- 
fined in accordance with the tensor product of repre- 
sentations.~' By definition 

X P * P ~ ( ~ )  =xpa (g) xp,(g), xp-'(g) =xp-' (g) ,  

and the unit element of G corresponds to the identical 
representation of G. Accordingly, the summation in Eq. 
(3.3) can be regarded a s  a summation over the elements 
of the dual group G. 

Substituting the expansion (3.3) in Eq. (3.1), we get 
after an obvious regrouping of factors 

The Pxpression (3.4) defines a new, dual, spin sys- 
tem on the dual group 6 with a new binary Hamiltonian 
I?, which is defined by the formula 

The result can be formulated in the following way. 

A spin system on a commutative group G with a 
binary Hamiltonian ~ ( g ) ( g  E G) is equivalent to a spin 
system on the character group d (and on the dual lat- 
tice) with the binary Hamiltonian f i  (p)(p E 6 )  given by 
the Fourier transformation 

exp(-B(p)I = ~ e x p { - ~ ( g ) } x ~ ( g ) .  (3.7) 
I E C  

This is a Kramers-Wannier transformation. In con- 
tradistinction to the "order variables" g,, the name 
"disorder variables" can be given to  the dual spins fix.' 

We indicate the character groups for some locally 
compact commutative groups : 

Here Z is the group of integers under addition, ZN is 
the group of integers modulo N, and U(1) is the group 
of rotations of a plane. The character group of a direct 
product of simple groups is the direct product of the 
character groups of the simple groups. 

4. THE GENERALIZED POTTS MODEL 

Another spin system for which the KW transformation 
is known is the Potts model. The spin space of the N- 
position Potts model, which we call P,, contains N 
points s,, s,, . . . , s, and has an H structure of maximal 
symmetry: 

In this case the spin space is isomorphic to  the factor 
space S,/S,-,, where S, is  the group of permutations 
of N objects. 

The simplest way to carry  out the KW transformation 
of a statistical sum is a s  follows. We consider an arbi- 
trary commutative group of order N, for example 2,. 
The Potts model is obtained if we choose the function 
W of the spin model on G in the form 

Carrying out the transformation of the statistical sum 
by the regular procedure, explained in Sec. 2, we get 
a spin system on the dual group d with the function 

where p E 6 and 

Accordingly, the dual system is also a model of P,, 
but characterized by a new parameter P from Eq. 
(4.4); that is, the model P, is self-dual"': 

KW 
P,  * PN. 

This transformation of the model P, is related to the 
KW transformation of a system on a commutative 
group. For a commutative group G of order N it  is 
possible to make a special choice of W functions s o  that 
the symmetry of the H structure is increased to S, and 
we get the model P,. Such a situation is rather typical 
for spin systems with nonabelian symmetry groups. In 
this and the following sections we shall present several 
more examples of this type. 

The simplest generalization of the model is a spin 
system on the factor space S,,XS,~/S,~~, x SN2_l, 
which we call the generalized Potts model P N I N z .  The 
spin space P,,,, contains N,N, points Sq,i  =1,2, .  . . ,N,; 
a = 1 , 2  ,..., N,, andthe Hfunction is 

0, if i=j anda=b, 
pi, if i=j ,  but a+b, 
$=, if i+j. 

It is easy t o  understand that PNINz can be regarded a s  
a special case of a model on a group GI W G,, where the 
groups G, and G, a re  commutative and of orders N, 
and N,, respectively. The following form of the W 
function is chosen ( g ~  G,@G,,g=g,g,,g, E G,,g, E G,): 

where p, =e-Bl,p, = e-Bz. The Fourier transformation 
on the group GI@ G, gives 
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Equation (4.7) means that 
KW 

PN,N. ++ PN,N* 

with the transformation of parameters of Eq. (4.8). In 
particular, P,, models a r e  self-dual. 

In the model PNlN2, depending on the values of the 
parameters Y, and y,, we can expect that there will be 
three phases, characterized by different behaviors of 
the distribution function of an individual spin s,: 

I. A phase with fully broken SNl x SN, symmetry: 

where s q ~  is some chosen position of the spin. 

II. A phase with broken S,, symmetry: 

III. A "high-temperature" completely symmetrical 
phase. 

Let us consider the self-dual models P,, in more 
detail. Strictly speaking, the presence of two connect- 
ing parameters, Y, and Y,, in this model does not allow 
us to  find exact critical values of yl and Y, bhich would 
have to be distributed along certain critical lines in the 
(y,, y,) planel, since the KW symmetry transformation 
can connect different critical points. We note, how- 
ever, that: a)  in the case N, =N2 =N the transformation 
(4.8) of the parameters has a line of fixed points de- 
termined by the equation 

b) for y, = Y, = y the model P,, coincides with P, and 
has one phase-transition point y, = (N + l)-l; c )  for 
y2 =O we a re  dealing with N noninteracting models P,, 
and consequently yl ,, = (f12 +I)-'; d) for yl =l the model 
P,, reduces to models P, with y = y,, and therefore 
Y , . ~ = @ *  

On the basis of these remarks we suppose that the 
phase diagram of the model P,, in the (y,, y,) plane 
is of the form shown in Fig. 2; the segments bc and bd 
of the phase-separation line a r e  only qualitatively cor- 
rect  [they transform into each other under the formulas 
(4.8)], and at  is the self-duality line (4.11). The co- 
ordinates of the points a, b, c ,d marked on Fig. 2 a r e  

In the general case N, +N2 the KW translation in itself 
gives no nontrivial quantitative information about the 
phase picture for the model. 

5. SPIN SYSTEM ON THE GROUPS, 

Let us now consider the KW transformation for a spin 
system on the noncommutative group S,, the permuta- 
tion group of three objects. It is isomorphic with the 
symmetry group of an equilateral triangle. I t  has six 
elements; an arbitrary element can be represented in 
the form 

where r is a rotation of the triangle through the angle 
2r/3, r3 =I, and o is a reflection, u2 =l. 

There a r e  three irreducible unitary representations 
of the group S,; two of them a r e  one-dimensional, 

and one is two-dimensional: 

Here S2 and C a re  matrices: 

It is easy t o  show, using Eqs. (4.6), (5.3), and (5.4), 
that the general form of the W function for a spin sys- 
tem on the group S ,  is 

1 ,  n=m=O 

(5.5) 
y,, m-I, n=0,1,2  

where Y, and y, a r e  positive constants not larger than 
one. The spin manifold of this system is represented 
schematically in Fig. 3. 

It is  easy to  note that owing to the structure (5.5) of 
the W function the model on S 3  is  identical with the 
generslized Potts model P,,, (see Sec. 4). This ob- 
servation spares  us the need to ca r ry  out separately 
the KW transformation on the group S,. According to 
Eq. (4.9), the result of the process will be the model 
P,,,, for which the spin manifold can be parametrized 

FIG. 2. 
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with two integers: p = O , 1  and q =0,1,2. Then the W 
function is 

where the dual parameters 7, and 7, a r e  connected 
with the original parameters a s  follows [cf. Eq. (4.9)~: 

It is also interesting to note that the dual model P,,, 
can be regarded a s  a spin system in which the in- 
dividual spins take values a t  the vertices of a regular 
octahedron. In fact, the elements of the spin manifold 
can be identified with the vertices of the octahedron in 
such a way that elements with the same value of the 
index p correspond to opposite vertices of the octahed- 
ron, a s  shown in Fig. 4. 

Accordingly, we arrive a t  the following result: The 
spin system on the group S, is connected by a KW 
transformation with the spin system on an octahedron: 

KW 
S, * ocatahedron. (5.8) 

Furthermore, the formulas (5.7) connect the parameters 
of the two systems. 

We note that the group S, is a special case of the di- 
hedral group D, of the symmetry of a regular polygon 
of N sides. The KW transformation for the spin sys- 
tem on D,  with arbitrary N can be performed analogous- 
ly to  the case of S,. Namely, if we consider the system 
on the direct product Z,@Z,, it is  possible by a special 
choice of the W function to obtain the H structure of the 
system on D,. The structure of the spin spaces of the 
corresponding dual systems i s  rather cumbersome, and 
we do not present it. 

6. THE SPIN SYSTEM ON A THREE-DIMENSIONAL 
CUBE 

In the preceding section a regular polyhedron, the 
octahedron, appeared a s  the spin manifold of a system 
dual to that on the group S,. Other regular polydedra 
can also be regarded a s  spin manifolds. The spin sys- 
tems s o  obtained and be interesting, for example, a s  
"discrete approximations" t o  a continuous model (the 
Heisenberg ferromagnet) whose spin space is the 
sphere S2. 

The KW transformation for the spin system on the 
simplest regular polyhedron, the tetrahedron, was 
considered in Ref. 4. The system on the tetrahedron 

FIG. 5. 

turns out to be self-dual:' which makes i t  possible to 
find the exact temperature for the phase transition. 
The KW transformation of the system on the octahedron 
does not give this kind of information; as we saw in the 
preceding section, the transformtion connects it with a 
different spin system. 

The next polyhedron, a s  to number of vertices, is 
the cube. We can parametrize the points of the spin 
space of the system on the cube with integers: n = O , l ,  
m = O , 1 ,  and b = O , 1  (see Fig. 5). The general form of 
the W function for this system is: 

I y,, n+m+l=l 
W (n, m, 1)  = 

y?, n+m+l=2' 

To carry  out the KW transformation of the statistical 
sum of the system on the cube, it is convenient to re- 
gard it a s  a special case (in the sense of a special 
choice of the W function) of the spin system on the 
group Z, @ 2, W 2,. The irreducible representations of 
this group can be numbered with three integers: 
p = O , l ,  q = O , l ,  and r = O , l ,  and a r e  of the form 

XP. , (n,  m, 1)  = (- 1) p n + p + r l ,  (6.2) 

where n, m, 1 number the elements of the group itself 
in an obvious way. It follows from the results of Sec. 2 
that the system on the group Z2W Z,@Z, is self-dual. 
Also if the W function of the original system is given by 
Eq. (6.1), then the normalized l? function of the dual 
system i s  

The structure of the W function, Eq. (6.3) coincides 
with the original structure, Eq. (6.1). Thus the spin 
system on the cube is self-dual. This means that the 
statistical sum of the spin system on the cube is sym- 
metric under the involutive transformation (6.4). 

We note that the transformation (6.4) has a line of 
fixed points given by the equations 
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I n  the genera l  case it is not clear whether  the sym- 
met ry  relat ive t o  the t ransformation (6.4) can  s e r v e  as 
a source  of exact data  on the positions of the singulari- 
ties of the statistical s u m  in the  space  of the pa- 
r a m e t e r s  y,, y,, and y,. We note only the special  case 
of the cube, in which these p a r a m e t e r s  are connected 
by  the relat ions 

It corresponds to one of the d i sc re te  approximations 
f o r  the classical Heisenberg model; the s u m  of states 
can be  wri t ten i n  the f o r m  

where the three-dimensional vec tors  n, r u n  through 
the ver t i ces  of a cube inscr ibed in the unit sphere.  The  
connection (6.6) between the p a r a m e t e r s  is preserved  
a f t e r  the t ransformation (6.4), and the t ransi t ion tem-  
pera ture  f o r  the model (6.7) c a n  be  calculated exactly. 
T h i s  case is tr ivial ,  however, s ince  t h e  statistical 
s u m  (6.7) reduces to  th ree  noninteracting Is ing models. 

"We omit the factor p= (&T)- in the exponent in Eq. (2.6), in- 
cluding it in the definition of H. 

2'~f we regard g,,, a s  connectivities in a G-stratification over 
the lattice, the mnstraints Q-,=Z are  the condition for zero 
curvature. 

3'It can easily be seen that the relation between the groups G 
and 6 is of the nature of a duality; i. e . ,  if & is the group of 
characters of G, then 6 = G is the group of characters of the 

group 6 .  
4'In the model PN the existence of two different phases is pos- 

sible. The KW symmetry enables u s  to d e t e r p e  the criti- 
cal value p,, which satisfies the equation PC = 8 (&). This 
gives &=ln (I+ N"'). Some rigorous results of the exis- 
tence of two phase in P, have been obtained recently." 
'It is easily seen that the spin system on the tetrahedron is 
equivalent to the model P4 (see Sec. 4). 
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The magnetic susceptibility in a system that is unstable against singlet electron-hole pairing or a 
structural phase transition is computed. The magnetic susceptibility has a fluctuation-induced singularity 
near the transition temperature: it undergoes a finite jump in the region of applicability of the Landau- 
Ginzburg theory and obeys a power law with an exponent equal to d v  - 1, where v is the exponent of 
the correlation length, in the scaling region. The diamagnetism is found in the mean-field approximation 
to decrease smoothly below the transition temperature. The results qualitatively explain the experiments 
that have been performed on SnTe samples in the vicinity of the ferroelectric transition point. 

PACS numbers: 75.30.Cr, 75.40.Bw, 64.60.Fr, 77.80.Bh 

1. INTRODUCTION phase-transition-induced anomaly h a s  been observeds 
in the magnetic susceptibility (MS) of SnTe a t  T = T,. 

The  occur rence  of a fe r roe lec t r ic  phase transition 
i n  A,B, c r y s t a l s  and solid solutions based on them h a s  The  exis tence of such  a n  anomaly is not a prwri 
been well established. In  part icular ,  the dependence apparent  within the f ramework  of the conventional no- 
of the transition temperature,  T,, f o r  SnTe on the c a r -  tions about a s t ruc tura l  transition, which does not af- 
r i e r  concentration is well known. I*z A structural-  fect  the magnetic p roper t i es  of the system. Since i t  
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