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A theory is developed of inelastic collisions of ions with a crystal. Analytic expressions are obtained for 
the probabilities of electron excitation in an ion and for the loss of electrons by an ion when the ion is 
scattered by a chain of atoms, with account taken of the thermal vibrations of the lattice. It is shown 
that the probability of these processes in a crystal can vary significantly in comparison with an 
amorphous medium, because of the incoherent action of the various crystal atoms on the ion. 

PACS numbers: 61.80.Mk 

1. INTRODUCTION 

The theory of inelastic collisions of fast heavy ions 
with isolated atoms of matter was developed in the 
classical papers of Bethel and B l o ~ h . ~  The probability 
w@) of the formation of vacancies in the electron shells 
of ions and atoms depends on the distance p between 
the ion trajectory, which can be regarded a s  a straight 
line, and the nucleus of the target atom. The observed 
probability is obtained by averaging w(p) over all pos- 
sible impact parameters. 

loss by the ion is observed under cdnditions close to 
resonance. The theory of this phenomenon will be con- 
sidered in the present paper. Within the framework of 
the general approach we shall consider also the effects 
of coherent excitation and coherent ionization. The 
major role played by thermal vibrations of the crystal 
atoms in processes of coherent ionization and excitation 
will be demonstrated, and the probabilities of these 
processes in a crystal and in an amorphous medium 
will be compared. 

If the target i s  a crystal, then the formation of vacan- 2. POTENTIAL OF ELECTRON-CRYSTAL 
cies in the electron shells can lead to a number of ef- l NTERACTION 
fects that a re  directly o r  indirectly connected with the 
ordered arrangement of the atoms in the crystal. One 
such effect ar ises  when the ion is channeled in the 
crystal (see, e.g., Ref. 3) along a crystallographic axis 
or  plane. Under these conditions the ion trajectories 
pass a t  relatively large distances from the crystal  
nuclei, and this can lead to a decrease of the vacancy- 
formation probability both in the ion and in the target 
atoms, compared with an amorphous medium. A de- 
tailed discussion of this effect is contained, for ex- 
ample, in the paper of Appleton, Eginsoy, and G i b ~ o n . ~  

An effect of a different type should ar ise  when the ion 
traverses in the crystal a sufficiently large distance 
at constant velocity along a near-linear trajectory. 
This, in particular, is the condition that obtains for a 
channeled ion. In this case the individual collisions 
of the ion with the target atoms a re  correlated in time. 
This correlation, a s  will be shown below, can lead to a 
substantial change of the probability of electron loss by 
the ion. Okorokov5 has previously called attention to 
the possibility of coherent excitation of optical electron 
levels in an ion that passes through a crystal. The 
theory of the coherent excitation effect was considered 
later by Kalashnikov and P a n k r a t o ~ , ~  who used a per- 
turbation method, and by Shindo and Ohtsuka7 in the 
two-level approximation, The coherence effect arises,  
according to Refs. 5-7, when the characteristic fre- 
quencies of the successive collisions of the ion with the 
crystal atoms a re  close to the frequency of the transi- 
tion between discrete electron levels. 

The electron level of the transition can decay within 
the time of flight of the ion through the crystal by 
transition of the electron to the continuous spectrum. 
In this case, a s  was recently observed by Datz et a1.' 
a relative increase of the probability of the electron 

Assume that an ion with a nuclear charge eZ, moves 
along a channeled trajectory in the direction of a defi- 
nite crystallographic axis. We assume that this axis 
consists of indentical atoms of matter with nuclear 
charge eZ2 spaced a distance d apart. In a cylindrical 
coordinate system with z axis along the atom chain, 
the electrostatic potential of the chain can be repre- 
sented in the form of a one-dimensional Fourier inte- 
gral  

We have introduced here  the notation 

F(K) is the form factor of the crystal  atom, p is  the 
radius vector and is perpendicular to the chain axis, 

i s  the structure factor of the chain, and z ,  i s  the longi- 
tudinal displacement of the mth atom of the chain from 
its eqiilibrium position. 

We approximate the potential of an individual atom 
of the chain by the Moliere potential 

where a =0.885Z;lha, is  the Thomas-Fermi radius of 
the atom, and a =ii2/rne2; ai ={0.1; 0.55;0.35), and 
P i  ={6.0; 1.2; 0.31 a re  the Moliere constants. In this 
case, according to (2) 
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Because of the transverse oscillations of the ion in 
V ( K z ,  p) = w 2 asKO (x ip ) ,  (4) the channel, pn depends on t'. However, this dependence 

i - 1  can !x neglected because, a s  already noted above, the 
where K,(x ,p) is a Macdonald function, and frequencies of these oscillations a re  much lower than 

the frequencies of the passage between the neighboring 
(5) atoms of the chain. 

The processes considered here  take place mainly a t  
relatively close distances between the ion and one of the 3. COHERENT IONIZATION AND ELECTRON 
chains, and we can therefore neglect for  simplicity the EXCITATION 
influence of the neighboring chains, and assume that 
the ion moves in the field of one chain.') In the labora- 
tory frame, the channeled ion moves mainly along a 
chain with velocity v and executes slow (compared with 
the frequency of the passage between the atoms) oscil- 
lations in the transverse plane.3 In a coordinate system 
where the ion is on the average a t  res t  and a chain of 
atoms is incident on it with velocity v, the four-poten- 
tial of the chain is given by 

e. ' j e x p [ - i ~ , ~  (z'+vti) I V ( K z ,  p)S(Kz) dKi, U' (p, z') = - 
2n -- (6 ) 

A,' ( p ,  2') = LI' (p ,  z ' ) ,  A.'=A,'--0, 

where y = (1 - v2/c2)-I h. In this coordinate frame the 
potential depends on the time t'. Since even the most 
tightly bound electrons move in the ion with nonrela- 
tivistic velocities, the appearance of a magnetic field 
in this coordinate system can be neglected. 

We confine ourselves to the case when the closest- 
approach distance p,, between the moving ion nucleus 
and the chain axis greatly exceeds the radius of the 
initial orbit of the electron whose transitions will be 
considered. The minimum distance p,, depends on the 
chaneeling conditions. At ion incident angles to the 
axis close to c r i t i ~ a l , ~  

and the condition p,,, >>re is satisfied a t  least for the 
inner shells, where re =a&;'. For electrons of the 
outer shells this condition is satisfied a t  incidence ang- 
les JI<< JI,,, when part of the ions move near the center 
of the channel and therefore p,, can be comparable with 
the channel diameter. Putting in (6) p =Ipn +pal and z' 
=z:,, where p, =O and z; = O  a r e  the coordinates of the 
ion nucleus and pen and z& a r e  the coordinates of the 
electron relative to  the ion nucleus, we can expand 
Ur(p,z') in a Taylor ser ies  and retain the f i rs t  non- 
vanishing terms : 

(7) 
Here n is a unit vector normal to the z axis. 

The quantity V(K,,pn) in (7) does notdepend on the 
electron coordinates and does not lead to any transi- 
tions whatever. The Hamiltonian of the interaction of 
the electron with the field of the chain i s  of the form 

We consider f i rs t  electron transitions from the quasi- 
discrete level i in an ion to an excited state f, which 
can be quasidiscrete (excitation) or  belong to the energy 
continuum (direct ionization). Using a time-dependent 
perturbation method, we calculate the transition prob- 
ability w if@n) over the entire time of interaction of the 
ion with the chain at a given ion trajectory pn. The 
limits of applicability of such a calculation will be 
analyzed later on. In first-order perturbation theory 
(see, e.g., Ref. 9, Sec. 41) we obtain for  the probability 
of the electron transition during the entire interaction 
time 

I D ~ , ( P ~ )  =n-a 1 j exp(imcft l )  u:?" ( t l )d t r  1'. 
-- 

(9) 

where f iwif  = c f  - c i  is the energy difference between the 
final and initial states of the electron, and uf;')(tl) is a 
matrix element of the interaction Hamiltonian (8). In- 
tegration in (9) yields 

The square of the modulus of the structure factor, aver- 
aged over the longitudinal thermal vibrations, is 

WfNd Wid  + sin' - sin-' - exp 
2yv 2yv 

Here N is the number of atoms in the chain and u2 is 
the mean squared amplitude of the thermal oscillations. 
It is known that in the Debye approximation the tem- 
perature dependence of u2  is given by 

where M is the mass of the atom of the chain, 8, is 
the Debye temperature, and k ,  is the Boltzmann con- 
stant. 

The expression for the transition probability must 
generally speaking be averaged also over the trans- 
verse thermal vibrations of the chain atoms. This 
averaging, however, hardly changes the result in the 
practical case when the distance pn between the chan- 
neled ion and the chain axis exceeds the amplitude u 
of the transverse thermal vibrations. At the same 
time, allowance for the longitudinal thermal vibrations 
is essential, since i t  leads to the appearance of an in- 
coherent background in the probability (see below). 

After summing the transition probability over the 
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final states of the electron in the ion, we get 

The quantity 

can be interpreted here as the flux density of photons 
with frequency w, whose action on the electron is equiva- 
lent to the action of the field of the chain of crystal 
atoms, and o(w) is the cross  section for photoabsorp- 
tion on the electrons of the ions in the state i. As a 
function of LG, this cross section has sharp maxima 
near the discrete absorption lines corresponding to  elec- 
tron excitation, and a rather smooth maximum above 
the photoabsorption edge; this maximum corresponds 
to the transition of the electron into the continuum. 

Corresponding to the amorphous medium in (12) is 
either the case of sufficiently large amplitude of therm- 
a l  vibrations (u2 - -), o r  the case of sufficiently large 
lattice constant (d-rn,Nd = L, where L is the length of 
the chain), when there a r e  no coherent effects. For  a 
Moliere potential, V(c/yu, p,) is  determined by expres- 
sion (4). In this case 

If we neglect next the screening of the field by the 
target atom (u =m) and the relativistic effects (y =l) ,  
we can obtain for an amorphous medium (u2 -m) with 
the aid of expressions (10)-(13) and (4) the result of 
Datz et al.1° for the average ionization losses, a s  well 
a s  the classical results of Bethe and Bloch. 

According to results the (10)- (12), the transition 
probability consists of an incoherent part, which is al- 
ways present because of the thermal vibrations of the 
atoms in the crystal and is proportional to the number 
of atoms in the chain, and a coherent part, which is 
determined by the second term of (10). 

We consider f i rs t  the case of electron excitation. In 
this case a(@) in (11) is determined by the resonant 
absorption of the equivalent photons: 

2x'c2 
a ( ~ ) = g - r ~ ~ ( ~ - ~ ~ ) .  

001 

Here Ew, is the difference between the energies of the 
levels between which the transition takes place; r, is  
the partial radiative width of the excited level, and g 
i s  a factor that takes into account the level degeneracy 
with respect to the projections of the angular momen- 
tum of the ion. 

At conditions far  from resonance, i.e., if 

the coherent part makes a negligibly small contribution 
to the total probability of the excitation. Therefore the 
probability is determined mainly by the incoherent 

part: 

w,=(p,) 3 wJXo' (pn)N[l- e ~ p ( - ~ o ~ ~ ' / y ~ ~ ~ )  1, (14) 

where 

i s  the electron excitation probability by interaction with 
an isolated atom of the chain. It is easily seen with the 
aid of (14) that if the amplitude of the thermal vibra- 
tions is small enough, then the excitation probability 
we, (p,) can be in this case much smaller than in an 
amorphous medium. The excitation-probability sup- 
pression factor is determined by the quantity 

On the contrary, when the resonance condition w, 
= 2nkywl-I is  satisfied the excitation probability takes 
the form 

If the number k of the resonant harmonic i s  not too 
large ( k s  8-10), the coherent part of the excitation 
probability is approximately N times larger than the 
incoherent Therefore the total excitation 
probability (15) is also substantially larger than in an 
amorphous medium. 

Thus, the coherent action of the crystal-chain atoms 
on an electron in a moving ion can either increase or  
decrease the electron excitation probability compared 
with an amorphous medium. 

Let the channeling conditions be such that the Massey 
criterion for the nonadiabaticity of the collisions 
(wg S yu) is satisfied. Then the excitation cross sec- 
tion (15) a s  a whole decreases like u*f(v) with increas- 
ing ion velocity v.' Against the background of this gen- 
e r a l  decrease there should be observed probability 
maxima at  velocities u =u, = w,,d/2nky corresponding to 
the resonance conditions. 

The criterion for the applicability of perturbation 
theory is that the excitation probability we,@,) be small. 
Under resonance conditions, according to (15), this 
criterion may be violated in sufficiently thick crystals. 
We shall return to this case later. 

We now investigate the process of electron loss by 
the ion. In this case the electron goes over from a dis- 
crete energy level into the continuous spectrum, and 

. 

o(w) in (11) is  now the cross  section uph(w) of the photo- 
effect on one of the electron subshells of the ion. In 
accordance with the character of the behavior of the 
photoeffect cross  section," we obtain the following re- 
sult. 

Let the equivalent-photon energy Ewmh =52nv.)rt-' 
corresponding to the f i rs t  harmonic greatly exceed the 
binding energy I of the electron in the ion. Then the 
coherent part of the electron-loss probability 
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become negligibly small compared with the incoherent 
part 

In turn, the incoherent part of the probability can in 
this case be substantially smaller than in an amorphous 
medium. Thus, the total electron-loss probability w,,, 
turns out in this case to be smaller by a factor ( t iy~/Iu)~ 
than in an amorphous medium. 

On the other hand if the first-harmonic energy Aw,, 
is smaller than or  comparable with the binding energy, 
then the energy loss probability w,,,,(p,) candiffer only 
by a numerical factor of the order of unity from the 
corresponding probability in an amorphous medium. 
Coherent effects cannot lead in this case, in contrast 
t o  excitation, to a substantial increase of the prob- 
ability. The reason is the relatively large width of the 
photoeffect spectrum compared with the width of the 
excitation spectrum. The conditions for the applicabili- 
ty of the perturbation method to the calculation of 
w,,,(p,) therefore remain generally speaking the same 
a s  in an amorphous medium. 

Assume that a multiply charged channeled ion has 
more than two bound electrons on its shells. Assume 
furthermore that for one of the inner shells (say, the 
K shell) the quantity tiw,, is of the order of the ioniza- 
tion threshold I, of this shell, with Rw,, much higher 
than the ionization threshold I ,  of the next shell (say, 
the L shell). Then, according to (16) and (17) a t  suf- 
fic iently low thermal-vibration amplitude &u << yv) the 
probability of formation of a vacancy in the K shell can 
become mugh higher than the probability of the L vac- 
ancy. If a t  the same time the Massey criterion I? 5 yv 
is satisfied for both shells, than the ion beam will con- 
tain, as a result of collision with a sufficiently thin 
crystal, an appreciable number of ions with vacancies 
in the inner shell. 

4. ENERGY LOSS BY AN ION UNDER CONDITIONS 
OF RESONANT INTERACTION WITH THE CRYSTAL 

Let one of the characteristic frequencies w, 
=2nkyvd-I of the field of the atom chain (a) be close to 
the frequency w, = ( c ,  - where E, is the energy 
of the initial electron level in the ion, and E ,  is the 
energy of the excited level. We consider the case when 
the lifetime on the excited level can be comparable with 
or  even smaller than the time of passage 7, of the ion 
through the crystal. 

When solving the Schr'ddinger equation for the wave 
function of the electron in the ion we confine ourselves 
to two states $, (r') and $,(rf) and one preferred harmon- 
ic w, of the interaction potential. Then the wave func- 
tion of the electron a t  an arbitrary instant of the proper 

time t '< yrp can be represented in the form 

Y (rt, t f )=cI  ( t l )  ql(rf) -tcz (t') qZ(rf) . 
The probability amplitudes c,(tl) and c,(tl) of observing 
an electron a t  the instant t' = yt in one state o r  another 
satisfy the system of equations 

The matrix element of the interaction energy of the 
electron with the field of the chain is determined here  
by the expression 

and a dot over a symbol means differentiation with re- 
spect t o  the proper time P.  We assume also that the 
level widths r, and r, a r e  determined mainly by the 
processes of the transition of the electron to the con- 
tinuous spectrum under the influence of the field of the 
chain. Then r, and r, coincide with the probabilities 
of electron loss per unit proper time [see (16) and (17)~ 
from the corresponding l e ~ e l s . ~ '  

It should be noted that the ionization widths r de- 
crease with increasing charge 2,. Therefore a t  suf- 
ficiently high charges the width of the excited level too 
can be determined by the radiative lifetime, inasmuch 
a s  r, -2;. 

Thus, the problem reduces formally to the system of 
equations for two levels acted upon by a resonant field. 
In contrast to Ohtsuka and Shindo7 we take into account, 
by means of the quantities r, and r,, the possibility 
of the interaction of the levels with the continuous spec- 
trum; this interaction, a s  will be shown below, can 
substantially alter the picture of the considered coherent 
effects. I t  should also be noted that an analogous prob- 
lem of resonant interaction of two damped levels ar ises  
in the investigation of such problems a s  the decay of 
atomic levels in an intense field of resonant electro- 
magnetic radiation,', the collective spontaneous emis- 
s ion of close almost identical atoms,13 transitions be- 
tween decaying electron terms in slow ion-atom col- 
lisions ,I4 and in other problems.15 '16 

A solution of Eqs. (18) that satisfies the initial con- 
ditions c, (0) = 1 and c, (0) = 0 is 

We have introduced here the notation 

1 AI' 1 
a =  ( i )  + a*=- 6-8- 

2 ( ? ) - Q .  
As a rule, the width of the initial level is much less 

than the width of the excited level ( r ,  << r,). Let the 
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channeling conditions be such that the interaction en- 
ergy lVl,@,)l is much less than the resonance defect 
IE6l or  the energy uncertainty fir,/2 of the excited lev- 
el. We then obtain for the probability of observing an 
electron in an excited state at the instant of laboratory 
time t 

It follows therefore that a t  resonance (6 =0) the proba- 
bility of observing an electron in an excited state a t  the 
instant when the ion emerges from the crystal is pro- 
portional to the square of the number of atoms of the 
chain over the length traversed by the ion during the 
time of decay of the excited state. 

We note that the condition I Vl,I << max {ElbI, m,/2} is 
the condition for the validity of perturbation theory in 
the treatment of coherent excitation of an ion in a 
channel in sufficiently thick crystals Ndv-'>>r;l. 
Therefore the result (21) agrees with the corresponding 
result obtained within the framework of perturbation 
theory in the case when the time of passage through the 
crystal is shorter than the lifetime of the excited state 
(see formula (15) and the text that follows). 

In the general case, when 1 V1,I 2 E 16 l +lZ',/2, we 
shall describe the energy lost by the ion in terms of the 
electron-dragging probability: 

The relaxation of this probability with time is deter- 
mined according to (20) by the expression 

Here G' =ReS2,51lt =ImS2, and t f  = yt. 

The relaxation of the electron-dragging probability 
(22) is  accompanied in the general case by oscillations, 
this being a characteristic effect in the decay from 
resonantly interacting levels (cf. the results of Refs. 
12-14). The frequency SZf of the modulation of the 
dragging probability increases, and the modulation 
depth decreases, both with increasing resonance de- 
fect tib and with increasing level splitting 12 v,,I by the 
resonant field of the crystal chain. 

The expression for the electron-dragging probability 
(22) can be presented in a more illustrative form when 
the level-uncertainty energy difference I E ~ r / 2 l  is  much 
less than the level splitting 12V1,1 o r  the resonance de- 
fect IF61 : 

Art' Art. 
(I+%')-'" ah-]. (23) 

2(1+EZ)" 

Here 5 =21 Vl,I/E6 is the ratio of the level splitting to 
the resonance defect and can be arbitrary. It is seen 
that in this limiting case the probability does not oscil- 
late with time (with the crystal thickness), but the state- 
decay law, generally speaking, does not reduce to  a 
sum of exponentials with corresponding damping con- 
stants. This is the result of the substantial interference 
between the decay and the level interaction via the 

165 Sov. Phys. JETP 50(1), July 1979 

resonant field of the chain. 

In the limit of small 5 we obtain the results of per- 
turbation theory. At large t, 

The decay of the initial state of the electron in an ion is 
exponential, but the argument of the exponential con- 
tains now the rate of decay of the excited level. In par- 
ticular, if the initial state of the electron was metas- 
table (I?, << r,), then under the influence of the strong 
(5B 1) resonant field of the chain it begins to  decay a t  a 
rate equal to half the rate of decay of the excited virtual 
level. We also note that if the level damping is com- 
pletely neglected ( r ,  =I', =0) the probability of absorb- 
ing an electron in an excited state in this limiting case 
(5 1 )  contains only terms that oscillate with time. 
Thus, if we neglect the electron level decay in the 
course of interaction with the crystal, then only period- 
ic transfer of an electron from one state to  another 
takes place. In this case we obtain the result of Ohtsuka 
and Shindo7 (see also Ref. 9, problem of Sec. 40). This 
result, however, does not lead to any conclusions con- 
cerning the probability of electron loss by the ion. 

5. LlMlTSOF APPLICABILITY OF THE THEORY AND 
FINE STRUCTURE OF RESONANCES 

An analysis of expression (23) shows also that co- 
herent effects in the process of electron loss by an ion 
should be observed not only in the case when the re- 
sonance defect is smaller than the width of the quasi- 
discrete levels. If the level splitting due to  the re- 
sonant periodic field in the chain is large enough, it 
suffices to have the resonance defect smaller than the 
value of this level splitting (1 E61 5 21 Vl,I ). 

The resonance width 21 Vl,l can exceed under certain 
conditions the energy difference of two neighboring 
harmonics of the periodic potential of the crystal chain. 
In that case we cannot confine ourselves in the analysis 
to  the action of only one harmonic on the electron. 
Thus, the necessaiy condition for the applicability of 
the developed method is 

We substitute in this condition the matrix element of the 
interaction energy (1 9) and the value EAw = 2nyvW -I, 

and then compare the ratio in the left-hand side of in- 
equality (24) with the probability w(,O? @,) of the excita- 
tion of the electron in interaction with an isolated atom 
of the crystal [see (14)j. It is then easily seen that the 
condition (24) is equivalent to  the condition that w',O? do,) 
be small. On the other hand, the condition w$!! @,)<< 1 
is  necessary for the entire approach a s  a whole, which- 
presupposes smallness of the field of the chain atoms 
a t  the location of the electron compared with the field 
of the nucleus of the ion isee (7) and the corresponding 
text]. 

Another limitation on the two-level approximation can 
ar ise  in the presence of several close resonance fre- 
quencies w g ) ,  w t ) ,  . . . , w t ) ,  which occur, for example, 
when the initially degenerate levels 1 and 2 in a hydro- 
genlike ion a re  split under the influence of the time- 
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independent component of the field of the chain. This 
component corresponds to the continuous potential of 
the chain, which is defined by Eq. (4), where K ,  must 
be set equal to zero. The expansion, similar to (7), 
of the continuous potential U,@) of the chain in a Taylor 
ser ies  takes, accurate to the quadratic terms, the form 

The dc component (25) of the chain-field potential 
splits the levels 2slh and 2Plk in a hydrogenlike ion by 
an amount 

where d,,,, is the matrix element of the dipole moment 
of the electron. The splitting of the levels 2plh and 
2pSh is due mainly to the quadratic term in the expan- 
sion (25) and takes the form 

where Q is the matrix element of the quadrupole mo- 
ment of the electron. Since the matrix element of the 
dipole moment, which connects the states 2P1h2P3k, is 
equal to zero, the splitting of these levels, which is 
connected with the second term in (25), ar ises  only in 
second-order perturbation theory. Calculation shows 
that it is small compared with the quadrupole splitting 
(27) a t  Zl >> 1. 

Thus the transitions Islh - 2Pdz and Islh - 2pSh will 
have close but unequal frequencies wt) and wt),  such 
that W(Z' - wt' =44h2,&. These two resonances and 
the probabilities of the electron loss appear indepen- 
dently if the energy width 1 V121 of each resonance is 
smaller than the difference wt) - w:)~ AW, of the re- 
sonance energies. The doublet structure of the re- 
sonance in the probability of the electron loss was ob- 
served in some cases by Datz et a1.' In other cases, 
when hwO<<l Vl,I, the two resonances merge into one. 
Smce Aw, and 1 V121 have different dependences on the 
transverse coordinate p, of the ion nucleus, their ratio 
can  vary within certain limits, depending on the chan- 
, lieling conditions (the angle of indices of the ion beam 

on the crystal). It should be noted also that the resonant 
, frequencies cot) and w!) a re  shifted relative to  the fre- 

quency w, which corresponds to the transition between 
the initial levels Islh and the degenerate levels 2s and 
2p. The shift turns out t o  be positive and is determined 
by the splitting of the levels 2slh and 2filh: 

This shift was also observed in the cited experiments." 

In numerical calculations of the coherent ionization 
and of the excitation of multiply charged ions under 
channeling conditions, the single-chain approximation 
may not be sufficient. In this case the potential in the 
channel is determined by several closest chains and 
does not have axial symmetry. A generalization of the 
results in this case is attained by maiing the following 
substitutions in the final results [(12)-(19), (21), (26), 
(2'01: 

where p, and cp, a r e  the polar coordinates of the mth 
chain, R and cp a re  the polar coordinates of the nucleus 
of the ion. The origin of the polar coordinates is 
chosen a t  the center of the channel, and the summation 
in (28) is over all the chain coordinates closest to the 
origin. The probability of inelastic transition depends 
in this case on the angle q. For  example, for  a 
Moliere potential [see (4), (5), (13)) U ( o / y v , R ,  cp) takes 
the form 

In the numerical calculations it may be convenient to 
represent the potential in the channel in the form of a 
Fourier ser ies  in cp: 

We note that the axially asymmetrical field U(0, R ,  cp) 
lifts the degeneracy of the 2fi levels of the hydrogen- 
like multiply charged ions with respect to  the projec- 
tions of the angular momentum (in first-order pertur- 
bation theory). Therefore under certain conditions one 
can observe in the ionization probability a structure 
more complicated than the doublet structure. 

CONCLUSION 

The foregoing analysis shows that the rate of the 
ionization of an ion channeling in a crystal  can differ 
substantially from with the ionization rate in an 
amorphous medium. 

1. The increase of the probability of the electron loss 
by the ion via resonant excitation in channeling, which 
was considered theoretically, can be used to obtain fast  
multiply charged ions. An important factor is also that 
the ionization of the channeled ions is not accompanied 
by an increase of the angular divergence of the ion 
beam, a s  is the case in an amorphous medium. 

2. The relative suppression of the probability of 
formation of a vacancy in a more exterior shell can be 
used a s  an effective means of obtaining vacancies in 
inner shells of many-electron ions. The discrete spec- 
trum of the photons equivalent to the field of the chains, 
a t  ion velocities v -lo0 cm/sec, lies in the x-ray reg- 
ion. Owing to  the high flux density of the equivalent 
photons ( j  -1032-1033 ~ r n - ~ s e c - ~ )  the rate of selective 
production of vacancies greatly exceeds the rate of 
production of such vacancies with the aid of the existing 
x-ray sources. 

3. The dependence of the processes of loss and acqui- 
sition of charge by ions on the channeling conditions 
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can lead to a change in the magnitude and establishment 
time of an equilibrium charge in an oriented crystal  
target. The kinetic equations of the equilibrium-charge 
theory should take correc t  account of the elementary 
processes of ionization and recombination of ions in the 
channeling regime. 

')A generalization of the results to the case of several nearest 
chains will be presented in Sec. 4. 

''We neglect small shifts of the levels due to their interaction 
with the states of the continuous spectrum. 
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The Kramem-Wannier transfonnation is constructed for spin systems on a plane lattice. Systems with 
discrete nonabelian groups are considered, including generalized Potts models. The existence of three 
different phases in these models is predicted. 

PACS numbers: 61.50.Em 

1. INTRODUCTION 

In 1941 Kramers and Wannierl discovered a special 
symmetry which relates low-temperature and high- 
temperature expansions in the plane Ising model. The 
corresponding transformation, the Kramers-Wannier 
(KW) transformation, i s  a definite nonlocal substitution 
on the variables in the sum over states (partition func- 
tion). After this substitution the statistical sum in- 
volves not the original "spin" variables o =* 1, defined 
on the nodes of the lattice, but new "spin" variables 
p =* 1 defined on the faces of the lattice, or, equiva- 
lently, on the nodes of the "dual" lattice. Furthermore 
the new Hamiltonian, expressed in terms of p ,  differ 
from the original one by the replacement a- p and a lso  
a transformation of the temperature parameter: 

restricted, and conversely. For the "dual" variables 
p we therefore use the name "disorder parameter."' 

The existence of this sor t  of transformations i s  evi- 
dently a very general property of lattice statistical 
systems that possess a symmetry group. KW trans- 
formations have been constructed explicitly for a num- 
ber of systems on a plane lattice. These include the 
N-position models of Potts (see Ref. 3) and generalized 
Ising models, systems with spins taking values in 
groups 2, (2, Ising m o d e l ~ ) , 4 . ~  and in the group U(1) 
(XY models). For  2, systems the disorder parameter 
a lso  takes a value in the group 2,. Therefore the KW 
transformation reduces to a transformation of numeri-. 
ca l  parameters of the Hamiltonian, just a s  in the ordi- 
nary Ising model. In the case of the XY model the dis- 
order parameter i s  an element of the group 2, and the 

p+T=arth e-'O. (1.1) KW transformation relates to each other statistical 
sums of different spin systems. 

The transformation (1.1) establishes a connection be- 
tween values of the statistical sum in high-temperature KW transformations can a lso  be carried out for some 
and low-temperature phases and, in particular, enables systems on many-dimensional lattices. Here new pos- 
one to find the exact value of the critical temperature sibilities arise.  For  example, a KW transformation 

P,-'. In the phase in which the fluctuation of the order connects the three-dimensional Ising model with the 
parameter o are large, those of the variables p are gauge Ising model. and the four-dimensional gauge 
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