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We investigate, dislocation retardation in antiferromagnets as a result of “Cerenkov” generation of spin
waves and their scattering by the moving dislocations, as a function of the ground state of the
antiferromagnet. It is established that the retardation force has a velocity threshold in the magnon
generation mechanism; the influence of the magnetic field on the threshold velocity is investigated. The
dependence of the retarddtion force on the temperature, velocity, and orientation of the dislocation is
studied. It is shown that in the presence of a non-activation branch in the spin-wave spectrum the
retardation force is anomalously large. The general character of the temperature dependence of the

retardation force of the dislocations in antiferromagnetic dielectrics and metals is investigated. It is shown
that interaction with the spin waves can make a substantial contribution to the dislocation retardation

force in antiferromagnets at low temperatures.

PACS numbers: 75.30.Ds, 61.70.Ga

1. INTRODUCTION

It is well known that many properties of solids (plasti-
city, brittle fracture, microhardness) and also some
kinetic phenomena (sound absorption, internal friction,
width of ferromagnetic resonance line, etc.) are deter-
mined by the dislocations in the crystal. At low temper-
tures, when the diffusion processes are suppressed, the
‘principal role in the dislocation retardation is played by
their interaction with the quasiparticles of the crystal.
The interaction of dislocations with phonons and conduc-
tion electrons has been sufficiently well investigated
(see, e.g., the reviews!'?), With metals as the example,
it was shown that the restructuring of the quasiparticle
spectrum in the superconducting transition exerts a sub-
stantial influence on the dependence of the retardation
force on the dislocation velocity.? The interaction of the
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dislocations with spin waves and the ensuing additional
magnon retardation mechanisms of dislocations in fer-
romagnets were considered in Refs. 3-5.

Antiferromagnets are typical examples of crystals that
are particularly rich in phase transitions, which have
been well investigated both experimentally and theoret-
ically.® The spin-wave spectra in antiferromagnets are
also highly diverse, so that interest attaches to an in-
vestigation of the interaction of magnons with disloca-
tions’ and of the influence of the ground state on the re-
tardation force.

The present paper is devoted to a theoretical study of
the influence of magnons on the mobility of dislocations
in antiferromagnets. It is shown that dislocation mo-
tion with even constant velocity leads to a coherent mag-
non emission if the dislocation velocity v exceeds the
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Fig. 1. Schematic dependence of the dislocation retardation
force due to Cerenkov generation of spin waves in the absence
of damping. The critical velocities v§) =v (H!)) and v®

=v (H?)) correspond to different values of the magnetic field
HD > H?),

minimum phase velocity v of the spin waves.

The mechanisms of “Cerenkov” emission of magnons
by a dislocation makes the main contribution to the mag-
non retardation in the velocity region v 2v_. The re-
tardation force due to this mechanism is produced jump-
wise at v =v_, then decreases with increasing disloca-
tion velocity (see Fig. 1).

When account is taken of the thermal motion of the
magnetic moments of the sublattices, it turns out that
because of scattering processes in which two or more
magnons take part, the contribution of the magnons to
the retardation force becomes different from zero also
at v>v,. The increment added by these processes to
the friction force at v <v turns out to be small. Mag-
non damping blurs the jump on the plot of the retarda-
tion force against the velocity, and this plot itself be-
comes smoother (Fig. 2).

It is known that the external magnetic field determines
the activation of the magnons and can influence their
phase velocity. This makes it possible to control, with
the aid of an external magnetic field, the total “intens-
ity” of the retardation force, the quantity v, =v (H),
and the discontinuity of the retardation force at v=v,
(H). It is important to note that the influence of the ex-
ternal magnetic field on the retardation of the disloca-
tions in antiferromagnets differs qualitatively from its
influence on the retardation of the dislocations in ferro-
magnets. In ferromagnets, the increase of the magnetic
field leads to a decrease of the retardation force and to
an increaseof v, .° In antiferromagnets with magnetic
anisotropy of the “easy axis” type, the increase of the
magnetic field in phase with the antiparallel arrange-
ment of the magnetic moments leads to a decrease of the
activation energy, to a decrease of v, and to an increase
of the friction force (see Fig. 1).

In the phase with flopped magnetic moments, the in-
crease of the magnetic field leads to a decrease of the
phase velocity of the spin waves, and in a number of

7. vy v

FIG. 2. Dependence of the dislocation retardation force due to
the Cerenkov generation of damped spin waves (solid line).
The dashed line shows the same plot without damping.
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cases to an increase of the discontinuity of the retarda-
tion force with increasing magnetic field at v =v, (H).
The retardation force, generally speaking, depends on
the direction of the dislocation velocity relative to the
crystal axes and to the magnetic field. The anisotropy
effect is most pronounced in those antiferromagnet
phases in which the spin-wave spectrum has no activa-
tion. Thus, for example, in an antiferromagnet with
flopped magnetic moments the retardation force is an-
omalously large when the dislocations move along the
magnetic field.

An analysis carried out in the present paper shows
that the magnetic field can exert a substantial influence
on the plastic properties of antiferromagnets.

2. RETARDATION FORCE OF MOVING
DISLOCATION

To describe the interaction of dislocations with spin
waves we start from the following expression for the
Hamiltonian of an antiferromagnet (AFM):

K=K, +36 s, (2.1)

where # is the energy of the spin subsystem:

oM, \? M.\?
e o[ ()] B

- % [ (aM,)* + (aM,)*] - B' (M) (nM) — (M, + Mz)ll} .
(2.1a)
Here a, a’, and § are the exchange constants; M; and
M, are the magnetic moments per unit volume of the
sublattices; B and B’ are the magnetic anisotropy con-
stants, n is a unit vector directed along the easy mag-

netization axis, and V is the volume of the crystal.

In the energy of the magnetoelastic interaction #; we
shall take into account both the homogeneous and inhom-
ogeneous magnetostrictions:

+ OM; oMy
M= J‘ dr [‘Yﬂ(Mi; M) wa(r,t)+ Y(’:,np?:'# W (r,t) ].

)

(2.1b)
We assume the antiferromagnet to be isotropic in
terms of the magnetostriction properties. We then write
'Ym(Mx; M.) ='Yi(MﬁMu+MuMu) +’{1(MnMu
+Man() +6al G'YJhlle—*.'fi (M|'+Mz=) ],

Y(’::n, =gl ['/zﬂ: (5u5u, + 54,5n) + 5150501,

(2.2a)

(2.2b)

where a!! =a® =a,; a'? =a?' a,; the quantities v;, B,

and B, are dimensionless and are of the order of unity;
Js jl =1,2.

At a dislocation velocity much larger than the speed of
sound the distortion tensor w;, can be regarded as a giv-
en function of the coordinates and time: w, =w(r-r,
- vt) (ry is the initial coordinate of the dislocation core
and v is dislocation velocity). We neglect here the re-
action of the magnetic subsystem on the elastic fields in
the crystal. In addition, we consider those AFM in which
the phase velocity of the spin waves is much less than
the speed of sound; we shall therefore neglect “relativ-
istic” effects in the dislocation motion.

It is known that the force acting on a dislocation is de-
termined by the tensor of the stresses on the dislocation
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axis in accordance with the Peach-Koehler formula:

(2.3)

F(=_Em‘l.');6ub-.

where 3,,:0,,—%0“6,, b, is the Burgers vector compo-
nent, T, is a unit vector along the dislocation axis, and
0, is the elastic stress tensor. In magnetically ordered
crystals 0,, is determined not only by the distortion ten-
sor but also, owing to magnetostriction, by the magnetic
moments of the sublattices

Oue=0."10.,."(M;).
The presence of dislocations leads to deviations of the
magnetic moments from their equilbrium values M,;, so
that M; =M,; + my(r, ¢); therefore

0.m (M) = 0. (M")*ZM m@n| (24

Pempg4-VE
where the first term describes the stresses in the crys-
tal due to the homogeneous magnetization, the second is
connected with the transfer of energy from the disloca-
tion to the magnetic subsystem, i.e., to the onset of the
friction force Fy':

F™ =2y Z'ag.'.(_m'ﬁ'ml(h t) b.. (2-5)

aM, TamPot V1

In this formula the value of the deviation m, is taken on
the dislocation axis.

To find the deviations m; it is necessary to use the

equations of Landau and Lifshitz:

om;/at=g[M,; x H;*'], (2.6)
where the effective fields are defined by

H,""' =—626/6m,.

The presence of moving dislocations leads to the appear-
ance in H‘}’ f of a term proportional to the components of
the distortion tensor wy,(r — r,-vt). Since the Fourier
components of the tensor w(k, w) are proportional to
8(w-kv), the solution of (2.6) takes the form

my(k, 0)=f;k, 0)d(o—kv)e*".

The deviation on the dislocation axis is then equal to

my= (2.7)

o= )‘jdkf,(k kv).

Formulas (2.4)-(2.7) solve the problem of finding the
friction force. The function f;(k, w) has poles at w=¢;
(k), while f,(k, kv) has a singularity at

kv=g,(k). (2.8)

This equation determines the wave vectors of the spin
waves that can be radiated by a moving dislocation.
Equation (2.8) has a solution only at v>v_,, where v is
the minimal velocity of the spin waves; therefore the
structures of m; at v >v, and v <v,, are principally dif-
ferent. The distribution of the magnetization at v <v,
does not differ qualitatively from the distribution around
the immobile dislocations; m; on the dislocation axis is
equal to zero in this case.® Atv>v, the quantity m;
remains finite as ¥ — « and describes the propagating
spin waves.
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The friction force determines the energy losses per
unit time in the course of the dislocation motion:

Q=Fv. (2.9)

In nonequilibrium thermodynamics there are well de-
veloped' methods for the calculation of the energy dissi-
pation . A second independent method of calculating
the magnon retardation force can therefore be proposed.

We represent the magnetoelastic energy (2.1b)interms
of the spin-wave creation and annihilation operators®:

# .= 2 e D (q) 5o+ W5 (K, q) CSleralrk
14"

s (I, @) €5x057 e} HH.C. (2.10)

The scattering amplitudes ¢, ¥, and x are linear in the
components w,;,(q). The dependence of #2, on the time is
due to the dislocation motion.

The expression for the energy dlss1pat10n per unit
dislocation length L is of the form

Q=——L‘2’mu(v«r‘vn), O=0;—0;, (2.11)
where vy, is the probability of the transition in the mag-
netic subsystem from the state ¢ to the state f under the
influence of the perturbation; w,, is the transition ener-
gy.

Using (2.10) and (2.11), we represent the dislocation
energy loss due to the magnon retardation mechanisms
in the form

2
0=—"7 Y, @) 10:(q) %[, (k)~qv]

2
-2 Y @)t (e, @ P14 (e (K)

kg4
+n(ey (k—q))]6[e, (k) +es (k—q) —qv]

— Y @) ¥ (@) (e ()

k,q,4,i"

—n(ey (k+q)) 18[e;(k) —ey (k+q) —qv]. (2.12)

The first term in (2.12) corresponds to the energy lost
by the moving dislocation on account of the “Cerenkov”
radiation of the spin waves. The second term describes
the energy losses in the course of radiation of two mag-
nons by the moving dislocation (this process, just as the
“Cerenkov” radiation, has a threshold). The third term
describes the energy loss due to the scattering of the
thermal magnons by the moving dislocation. The last
process, in contrast to the preceding ones, has no vel-
ocity threshold and makes a contribution at all disloca-
tion velocities. The emission of two magnons is a pro-
cess of second order compared with the Cerenkov radia-
tion and can therefore be omitted. The process of mag-
non scattering by dislocations depends substantially on
the temperature, and its contribution to the energy dis-
sipation is small compared with the contribution of the
“Cerenkov” radiation in terms of the parameter 7/6,;
at v <v,, however, when there is no “Cerenkov” radia-
tion, the scattering of the magnons by the dislocations
must be taken into account.
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3. AFM WITH MAGNETIC ANISOTROPY OF THE
EASY AXIS TYPE

We consider the motion of a screw dislocation in an
AFM with anisotropy of the easy axis type (8- 8’ >0).
We dwell first on the case when the magnetic field is ori-
ented along the anisotropy axis z and is weaker than the
flopping field H, =M[(25 + 8- B’) (8- B’)]!/2. If the Bur-
gers vector of the dislocation is directed along the mag-
netic field, and the dislocation moves perpendicular to
the direction of the magnetic field, then the retardation
force due to the “Cerenkov” generation of spin waves is
equal to

F=MQ (1_ 1), '
H,v Ver (3.1)
where 6 is the Heaviside function,

ve=vo(1—HH )", vo=gM,[28(a—a’) 1", §=Yi—1

Expression (3.1) takes into account the excitation of
the magnons with a dispersion law &, = (3 +v3k?)!/? - gH,
where £y =gH,. Starting with the velocity
a+a')"' H ]

>pte=p, —_—) —
vy [H-(a—a oM,

a second spin-wave branch is excited
ea= (8ol 4+0,2k?) +gH.

The expression for the retardation force is described in
this case mainly by formula (3.1). The inclusion of the
second branch of the wave leads to the appearance of the
singularity in the dependence of F on v; this is shown in
Fig. 1. The jump of the force F at v =v* is estimated
from the formula

AFlome o L SUYY ( ata’ )"'
bt RS a—a'l °

3.2)

We consider now an AFM in a phase with a flopped
magnetic moment. If the dislocation is oriented along
the magnetic field and moves perpendicular to the plane
of the magnetic moments, then at v >v only the upper
branch of the spin waves is excited, and the retardation
force is determined by the formula

’

ata
[(ata’) n*+ (@ —a'*)v]*

e 1o (=-1):

— gM':I 2__~u2]2h2
F, = 3 [ (yoty2) n*—yv?]%b {
(3.3)
where

n=H/H,, H,=26M,, v=(1—v%)" H/H,<n<i,

Uer=gMo{[126n°— (B—B')v*] (a+a’) I+ [26[ (ata’) n*+ (a—a')v?] ]}

We note that when H approaches H,; for dislocations with
disorientation the friction force increases substantially
and its value at the phase-transition point is

2

1 [}
Fi=—gM§ ————b
2 Y TG

v
X8 (——v“( - 1).

If the dislocation having the same orientation moves in
the plane of the magnetic moments, then at v >v the
upper branch of the spin waves is excited, as before,
and the friction force is

(3.3a)
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1
F,= %gMo' (Y1 +7ya) 20?2

X{[ (a+a’)n’+ (a—a’)v? ]‘/'

ata’
20— (p—p’)v* "% v
== ()
Comparing (3.3) with (3.4), we see that the slowing-down

force is anisotropic, since F7/F,~ 7% and in magnetic
fields Hy < H< H, the force F; greatly exceeds F,.

(3.4)

In the case when the dislocation lies in the basal plane
perpendicular to the magnetic-moment-flopping plane
(T L n) and moves along the direction of the magnetic
field, the retardation is due to generation of the lower
branch of the spin waves, and the retardation force is

p_wg_ﬂ.:e("__1), (3.5)

2v A Ver
where A is the magnetostriction gap in the dispersion
law of the spin waves, and v, =vy. The retardation
force (3.5) greatly exceeds the dislocation retardation
force of the parallel to the magnetic field.

4. AFM WITH MAGNETIC ANISOTROPY OF THE
EASY PLANE TYPE

We consider the retardation of dislocations in an AFM
with magnetic anisotropy of the easy plane type (8- 8’
<0), when the external magnetic field is located in the
basal plane xy and is directed along the x axis.

If the dislocation is directed along z(T lin), then at v
Ily the retardation force is obtained from the formula

Fy= gM.’('r;'t,)'b’v'( p,pr )"‘ 8 (;%_1), 4.1)
and at vilx we have
. zM.’('fa:u'rs)'b'ﬂ’ [+ (w+ ::r: )’] 0 (% -1).  @.2)

If the dislocation lies in the basal plane, is oriented a-
long ¥, and moves along the anisotropy axis, then the re-
tardation force due to the “Cerenkov” generation of the
spin waves is

_ EMS (1) n' gV )0

Fl
2v

ata’ ' gH, v

X{[ (at+a’)n*+ (a—a’)v? ] +T}e (—1;:,— 1) !
where A = (g2Hin? + A%)!/2 is the gap in the spin-wave
dispersion law, and 4, is the magnetostriction gap. In
formulas (4.1)-(4.3) at H < H, the critical velocity is
equal to v =v3. We note also that in this case the re-
tardation force for dislocations located in the basal
plane turns out to be proportional to the large quantity
gH,/A,

4.3)

5. INFLUENCE OF THE MAGNON SCATTERING
MECHANISM ON THE DISLOCATION DYNAMICS

We now analyze the contribution made to the retarda-
tion force by the mechanism of spin-wave scattering by
dislocations; this mechanism is described by the last
term of (2.12). For dislocations moving with low vel-
ocities v < v,,, this term can be described at T > g, and
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H =0 in the form

o
Q= —
4aTOxL

8 (k—k')

sh*[e,(k)/2T] ' (5.1)

Y, @rvearr
AR

where
W ) = Waa (06 1) =5 ([ (11810 00 (@) (2131 w0 (@)
20 (Kekn' wem(q) ButBakk w,, (q) ) ] (usttr+vp017)
F2[ (Y2 +843) wee (@) =22 (q) +202 (Bikelim Wem (q) +B:kk w0 () ) Jtavn'};

5.1
Pk K) =¥ (6 k) = EL 0 (@) 00 @) (5.1a)

-2iw=v (q) ) ['{1 (ulvk'+vtvk') +'fz (Iltllx"*'vxvx') ], (5 .lb)

k'=k+q, %, and v, are the amplitudes of the canonical
transformation, and wy,(q) are the Fourier components
of the distortions.

We shall analyze (5.1) for the case of screw and edge
dislocations.

Retardation of scvew dislocations. In this case the
main contribution to (5.1) is made by the scattering~
amplitude components that are due only to the inhomo-
geneous magnetostriction. The scattering amplitudes
for a screw dislocation are of the form

‘l’u=‘l’zz=gMok.km'wm(Q) ﬁ:[ax(ukux"FUka-) +2a,uxvy ] (5.2)

Noting that the expression in the square brackets (5.2)
is equal to (@ - @,)/ak, and substituting (5.2) in (5.1),
we get

O=(Fv), F=B.(T/8x)%, (5.3)
where B, =p2b%aC(n, T) is the coefficient of dislocation
retardation by spin waves, C(n, T)~1 and depends on
the orientation of the dislocation relative to the direc-
tion of the easy axis n. If the dislocation is oriented and
moves parallel to n,

C(n, 1)=3 cos’(v’l\l).
If the dislocation lies in a plane perpendicular to n, then

C(n, 1)="Ys sin:(v?) |2 sin?(v¥) —cPs‘ (iﬁ) N

Retardation of edge dislocations. In this case the con- -

tribution of the scattering-amplitude components, due to
the inhomogeneous magnetostriction, turns out to be of
the same order as the contribution due to the homogen-
eous magnetostriction. Substituting (5.1a) in (5.1) we
find that the retardation force of an edge dislocation is
given by (5.3), where

B,=b'a~* (p*+1:")Cu(m, 7),  P=(B +ps")", (5.4)

Thus, the dislocation retardation force due to scatter-
ing of the spin waves depends little on the form of the
dislocation (edge or screw) or on its orientation, and
can be estimated from formula (5.3). We note also that
formula (5.3) at H=0 is valid in the indicated tempera-
ture limit T > ¢, for an antiferromagnet of any type, both
easy axis and easy plane.

Ci(m, 7)~1.

6. INFLUENCE OF RELAXATION PROCESSES ON
THE RETARDATION FORCE

In the preceding sections we disregarded in the calcu-
lation of the retardation force the relaxation processes
in the magnon system, and therefore the retardation
force increased jumpwise at v =v_,. Allowance for the
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damping of the spin waves should make the dependence
of the retardation force on the velocity smoother. The
influence of the relaxation processes will be considered
using as an example an antiferromagnet of the easy axis
type in a phase with antiparallel magnetic moments.
The finite relaxation time 7 will be taken into account
phenomenologically, by replacing the 6 functions in the
expressions for the energy dissipation (2.12) by the
Lorentz function

§(o—e)—~ 1— T

n *(o—e)*+1 (6.1)

Leaving out the rather cumbersome intermediate calcu-
lations, we write down the expression for the retarda-
tion force of a dislocation in the approximation £,7>>1
and (H, - H)/H, < 1:

2gM,'y*b%

F nHw

3,2
[arctg Qr—arctg ( Qr _r_;:’_v)] ,

cr

6.2)

where 2 =¢,(0). A plot of the retardation force against
the velocity is shown in Fig. 2. It follows from (6.2) that
the width of the smearing of the “step” is determined by
Ox\"" a

= () (6.3)
The phenomenological parameter 7 in (6.3) can be gov-
erned by different magnon-interaction processes. We
shall assume the principal process to be the scattering
of the magnons by one another and by the dislocations.
The relaxation time for the first of these processes will
be estimated from the formula®

V., ~8x(1/6y)", 6.4)
while that of the second from!?
1/7.a=6x (T/Bx)*t"a, (6.5)

where £ is the dislocation density. Comparison of (6.4)
with (6.5) shows that in the temperature region T <« (£!/2
a)!/3©, the main contribution to the relaxation is made
by processes of scattering of spin waves by dislocations;
in this case 7™ is determined by formula (6.5).

At v <o, the retardation force is linear in v:

2gM 'y b0
aH Qi

F (6.6)

v, v<Ug.
Thuge, the retardation force due to the mechanism of
the “Cerenkov” generation with allowance for the relax-
ation differs from zero also in the velocity regionv <v,
i.e., where the dislocations are slowed down by magnon
scattering processes. We compare now the contributions
of the two mechanisms to the retardation force atv < v, .
For the scattering mechanism, the force is described by
formula (5.3), while for the Cerenkov generation mech~

anism with allowance for relaxation it is described by
formulas (6.6) and (6.5). The ratio of the force F, due to
the scattering of the magnons by the dislocation to the
force F. due to the “Cerenkov” generation of the spin
waves with allowance for the relaxation is estimated in
the temperature region T < (£!/24)!/30, in the following
manner:

4nea=*(1—H/H,)* (T/8y)°
ngo’G"’?' tha

Fy
7= 6.7)
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At the characteristic values gM,=10!" sec™!, a~3x10

cm, 6~10% 7~3, and £~10!° ¢cm™ the ratio (6.7) is of
the order of

F, H\? T :
T.N(i_i) [10-—(2%),,,8'] <.

Consequently, at T « (¢!/2a)!/%@, and v < v,, the princi-
pal role in the magnon retardation of the dislocation is
played by the Cerenkov generation of the spin wave; the
resultant force is given by

Ox (-eT—N)’ E"av.

 2gM,'5b%

F,= Han 6.8)

In the temperature region T > (£!/22)!/3@, and at v
<K v the forces F, and F, depend in equal fashion on the
temperature and velocity, and both mechanisms make
approximately the same contribution to the total slow-
ing-down force F ~ (T/6,)%v.

7. DISCUSSION OF RESULTS

We consider now the general character of the temper-
ature-velocity dependences of the dislocation retarda-
tion force in antiferromagnetic dielectrics and in metals
at T «<©p, using as an example an AFM of the “easy ax-
is” type, H<H,.

A. Dielectrics

In this case the dynamics of the dislocations is de-
termined by two mechanisms, which cause the onset of
two components of the retardation force: F —the retard-
ation force due to generation of spin waves, and F,—the
phonon retardation force.! Atv<«wv, we have then

T\ 2gM, ‘7600, E"a .
=B {— y ¢ = e | < (&"a)"By,
Fe=8 (e,) » B ~H Q0 T<(t"a)*6m  (7.1)
T\ 1
FrBy () v Bk (7.2)

Comparison of these two equations shows that at the
characteristic values

B.~10-*(1—H/H,)"* g/cm-sec, B,~10~* g/cm*sec

the magnon contribution becomes predominant in the
temperature region

T _(65\*B.
=<6
i.e., at ©,~10’K, ©,~10 K, T «<©,/[10%(1 - H/H,)?].
Thus, in magnetic fields H~ H, and at temperatures T
<10 K the retardation of “slow” dislocations (v<uv,,
~©ya[1 - (H/H,)*]'’?) is due mainly to radiation of damp-
ed spin waves.

At v 2 v the magnon retardation force is determined
by the formula (3.1) and does not depend on the tempera-
ture. At the characteristic values of the parameters
near v~ v

(7.3)

Fe=10-[1- T

" ]--/,.1 F,zios(i)’( 1_3)-/.'

ep Hﬁ
i.e., at T< 1071 - H*/H}]"1/%*0, we have F, > F,.

Consequently, the slowing down of the “fast” disloca-
tions (v 2 v,,) in the temperature region T <« 10°[1 - H%/
Hf]" /3@, is determined by the magnon mechanism.
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B. Metals

At low temperatures in metals it is necessary to take
into account, besides the magnon and phonon compo-
nents of the slowing-down force, also the electron com-
ponent!!

fm { Y,057Bw,  gatv<d (7.4)

0eB.gmtIn(gnt), gm>1

where wy =gH is the cyclotron frequency, B,~bneg/vg
~10" g/cm-sec; ¢, =2kp; €r, Vg, and kp are the Fermi
energy, velocity, and momentum; »n is the conduction-
electron concentration.

Comparison of Egs. (7.1), (7.2), and (7.4) shows that
at v < v, in the temperature region T < T, =k, (gH,T
B,)!/*©,~10- 10% K the electron contribution becomes
predominant. Qutside this region of temperatures, the
retardation of the slow dislocations is determined by the
phonon mechanism.

In the case v 2 v, and T < T,, by virtue of the retard-
ation, contributions are made by the temperature-inde-
pendent electron and magnon retardation mechanisms.
At typical values of the parameters near v=v_, we have

F~10*(1—H/H)", F.~10""1n (gmtVe). (1.5)
Consequently in the magnetic-field region (H, — H)/H,
<1072 the force of the magnetic retardation due to spin-
wave radiation is comparable with the electronic retard-

ation force.

Thus, the interaction with the spin waves can make an
appreciable contribution to the dislocation retardation
force in antiferromagnets at low temperatures.

1A different dependence of the retardation force on the mag-
netic field was obtained in Ref. 3, where the spatial disper-
sion of the spin waves was not taken into account.
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