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The mechanism of indirect interaction of the order parameter via acoustic oscillations is considered. The 
special character of the contribution of the static deformation is taken into account. The spectrum of the 
acoustic oscillations that interact with the order parameter is assumed to be linear. The microscopic 
description of the thermodynamics with the aid point transformations is reduced to the self-consistent 
field theory. The principal results of the theory are applied to the model in question. The low- 
temperature phase transition in KMnF, is discussed on the basis of these results. 

PACS numbers: 64.60.Cn, 64.70.Kb 

INTRODUCTION 

In the theory of phase transitions, the interaction of 
the order parameter with the mean field is usually con- 
sidered only a s  an approximate description of the initial 
localized microscopic interaction.' At the same time, 
the interaction with the mean field is actually the result 
of the special character of the contribution of the ho- 
mogeneous mode to the indirect exchange.') In the 
present paper we investigate the case when the total 
interaction reduces entirely to the interaction of the 
order parameter with the mean field. 

The simplest physical system that has such a be- 
havior is  a system of two-level states placed in an 
elastically isotropic medium and interacting only with 
the deformation. The effective interaction i s  made up 
of the contribution of the static deformation and of the 
exchange via acoustic oscillations. The linearity of the 
spectrum of the acoustic oscillations, which is typical 
of the model, leads to the absence of a short-range 
dynamic effective interaction. The model can be solved 
exactly and represents the case when the self-consis- 
tent field theory yields a rigorous description of the 
thermodynamics in the microscopic approach. The 
model includes a first-order phase transition. In the 
temperature-pressure plane, the trans it ion line termi- 
nates at the critical point. Two possible critical be- 
haviors appear in the model. If the degree of degen- 
eracy of the levels of the two-level system a r e  different 
van der Waals behavior takes place near the critical 
point. If the degrees of degeneracy of the levels coin- 
cide, the results correspond to the Weiss t h e ~ r y . ~  The 
law-temperature phase transition recently observed in 

KMnF, (Ref. 6)  is interpreted a s  a direct realization of 
the model. 

DESCRIPTION OF MODEL 

Assume that a lattice with two-level systems a t  i ts  
site is immersed in a homogeneous elastically iso- 
tropic medium. The Hamiltonian of such a composite 
system can be written in the form 

where A and p are  the elastic moduli, UaB (r) is  the 
strain tensor a t  the point r, summation over repeated 
indices is implied, qj =* 1 is a parameter that specifies 
the occupation of the states of the two-level system 
with coordinate r,, and J, +gU,,(r,) is the difference 
between the level energies of the two-level system and 
depends on the strain. The summation in (1) is over the 
lattice sites, and the integration is over the corres- 
ponding volume. 

Allowance of the deformation contribution to  the 
thermodynamics will be carried out in analogy with 
Ref. 7. We determine the expansions of the strain teng- 
o r  and of the parameter qj in Fourier harmonics by the 
formulas 

Here ga, is the uniform deformation, U! is the Fourier 
component of the displacement vector, V is  the volume 
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of the system, and N is the total number of lattice 
sites. In expression (2), the summation is over a de- 
numerable set  of values of k, and the prime of the sum- 
mation sign means omission of the term with k =O. The 
number of terms in the sum (3) is finite (equal to N), 
and the sum runs over the same values of k a s  in the 
long-wave part of the denumerable se t  of values in (2) 
(this is accomplished by a suitable choice of the boun- 
dary condition). 

We consider the thermodynamic potential 

where uaB is the s t ress  tensor, T =1/P is the tem- 
perature, and the sum is taken over the configurations. 

We substitute in (4) expression (1) and take (2) and 
(3) into account. Next, following Ref. 8, we separate 
formally the contributions of the "bare" acoustic oscil- 
lations, a procedure which is statistically accurate. 
Expression (4) then takes the form 

Here v = V / N  is  the volume of the lattice cell, 

a r e  respectively the thermodynamic potential and the 
Hamiltonian of the acoustic oscillations. The angle 
brackets in (5) denote averaging over the acoustic oscil- 
lations. 

After averaging the exponential in (5), the f i rs t  term 
in the exponent remains unchanged, and the second, 
by virtue of the Gaussian character of the distribution 
of the acoustic oscillations, can be reduced to the 
f orm2) 

Adding to (8) the corresponding term with k =0, we 
transform the sum over k into a sum over the sites of 
$ . Since, by definition, = 1, this sum leads to a 
constant increment to the thermodynamic potential. 

To transform the square of the zeroth harmonic, 
which compensates the increment to the sum (8), we 
use the statistical identit? 

Z { ~ . P  [ L  (+z t)]} = e x p [ ~ ( ( i ) ) - -  
(..I I 

where L(z )  is an arbitrary differentiable function, 5* 
is an arbitrary local function of the configuration, and 
the partition function, which determines the mean val- 
ues, is specified by the last  factor in the right-hand 
side of (9). 
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The homogeneous deformation DUB is determined from 
the condition of the minimum of the potential 3. As- 
suming for  simplicity that an isotropic pressure has 
been applied to the system (aaB = - ~ 6 ~ ~ ) ,  we obtain for  
the homogeneous-deformation tensor the expression 

where K =x+2@/3 is the modulus of the hydrostatic 
compression and A =g/K. 

Using the transformations listed above and the re- 
sults of (8)-(lo), we obtain for the thermodynamic po- 
tential 

where 

For  convenience we present here also the expression 
of G in terms of Young's modulus E and the Poisson 
coefficient u . ~  

Thus, the initial interaction has been reduced to an 
interaction of the parameter qj  with effective field J. 
The sum over the configurations cannow be easily cal- 
culated. The expressions for the thermodynamic po- 
tential and for the average value of the order parameter 
take a final form 

Here q+ and q -  a re  the degrees of degeneracy of the 
states of the two-level system with q = 1 and q = - 1, 
respectively, and a =q+/q-. We have also introduced 
the notation xo = - ($ )ha  and O J  =xo + x .  

SOLUTION IN THE CASE OF ARBITRARY a#  1 

From (14) and (16) we obtain an equation for the self - 
consistent value 

(20+x) -A ( p - p , )  =G th 2 ,  (17) 

where Po =Jo/A. The ambiguity of the stable solution of 
Eq. (17) leads to a first-order phase transition in the 
system. Taking into account the symmetry of (15) with 
respect to the change of the sign of x,  we obtain from 
(17) an equation for the equilibrium phase transition 
line 

T 
p =  +-so .  tr P O  A (1 8) 

The phase-transition line terminates a t  a critical point 
with parameters 

G 
T,=G, pc=po+ so. (1 9) 

Finally, the limits of the regions of stability of the 
metastable states a re  determined in accordance with 
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(17) by the eqwtion plane of the stable states. The critical point is in this 
case a branch point, s o  that the behaeior of the thermo- 
dynamic quantities a s  they approach this point does not 
depend on the character of the approach. Introducing 
the distance to the critical point c and the approach 
angle cp by the relations 

where the pressure ptr is given by the condition (18), 
R = (1 - T / G ) ' ~ ,  and the choice of the sign (upper o r  
lower) determines one of two branches of the boundary 
curve. The corresponding phase diagram in the (p, T) 
plane is  shown in Fig. la .  

T-T, -- A ( ~ - P C )  -e sin cp, 
G -ecoscp* 7- (26) 

we obtain, for example for x in the vicinity of the 
critical point the expression The discontinuities of the entropy and of the volume 

in an equilibrium phase transition a r e  determined by 
the modulus of the order parameter: X-L=Ee cos cp. 

The function E is defined by the formulas 

For the isothermal compressibility and the specific 
heat we obtain from (14)-(16) the expressions 

at  - 1 < A < 0 ,  where 
where 

I-<q)l 
x= - 1-$G(l-<q, ' )  ' 

A= 
9(tg cp-~0)' 

4e coscp ' 

c, is the regular part of the specific heat and i s  ob- 
tained by differentiating B,. 

When the critical point is approached, the singularity 
has a power-law character, but the exponent in the de- 
pendence on the trajectory of the motion can vary in the 
range from $ to 1. At the boundary of the stability region, the denomina- 

tor x in (24) vanishes, and this leads to a divergence of 
the thermodynamic derivatives, a s  should be the case. 
Special properties a re  possessed by the extremum point 
of the stability limit (the point M in Fig. la),  whose co- 
ordinates a r e  

On the family of trajectories corresponding to a defi- 
nite value of the exponent,we have x = b ~  where b is 
a parameter of the family. The family itself is given 
at  E << 1 and < a < 1 by the equation 

4aG G a- l  
T,= - (a+i)2 ' Py'Pe- --. 

A a f l  

At this point we have J =O. Therefore, in contrast to the 
other points of the stability-region boundary, the spe- 
cific heat c, remains finite on moving to this point from 
the metastability region, and tends to the value c,. 

Here and below, at T > T,, we choose yo to be the angle 
of inclination of the phase-transition line to the tem- 
perature axis, and at  T <  T, the angle cp, differs from 
the transition-line inclination angle by r. 

The phase-transition line is a cut through the @, T) The case a =1 in the limit E << 1 corresponds to tra- 
jectories along which A is constant. The expression 
for b in the trajectory equation takes the form 

FIG. 1. Phase diagrams: 

This case covers also the motion along the phase- 
transition line (y =pol, in accord with the van der 
Waals theory.' 

-' r a-case a = 2, b-symmet- Motion along trajectories with constant angles y # cp, ' 

corresponds to the other limiting value of the exponent: 
a = 3. In this case 

r ic case a = 1; 1-phase - 
A/P-P@)/~ transition line, 11-limits 

of stability of metastable 
regions . b- ( 3  sin 9-3x, cos cp (-"a. (33) 

THE SYMMETRIC CASE a = 1 

If a =1, then xo =0, so  that the phase-transition line 
is determined by the condition p =Po. The corresponding 
phase diagram is shown in Fig. lb. The entropy jump 
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in the equilibrium phase transition is equal to zero in 
accord with (21). 

Let us examine the behavior of the specific heat c, 
in the vicinity of the critical point when a =l. Figure 2 
shows the behavior of the irregular part of the specific 
heat in the metastable region a t  fixed pressures, a s  a 
function of the parameter T =T/T,- 1, where T, is the 
temperature instability a t  the considered pressure p. 
In the case p =Po (line 1 of Fig. 2)  the specific heat 
has a finite limit a s  T- 0. If I p -pol 2 0 (curves 2 and 
3), the heat capacity diverges like 1 TI -'. In this case 
the region of considerable deviation of the specific heat 
from the case p =Po is determined by the condition 
171 < < l ~ ( p  - p o ) / ~ I z h .  

In the case of motion in the stable region, the value 
of the heat capacity a t  the critical point, remaining 
finite, depends on the character of the approach, a s  
determined by the expression 

where Z is given by formulas (28), and the correspond- 
ing expression for A takes in accord with (29) the form 

9 sinz cp A= - 
4e cos' cp ' 

It follows from (34) that the most interesting a re  the 
trajectories along which A is constant. In this case the 
specific heat has a t  the critical point a definite value 
that depends on A. The difference c, - co as a function 
of A-l is shown in Fig. 3. In particular, for motion 
along the trajectory p =Po we obtain the usual specific- 
heat discontinuity of the self-consistent-field theory.' 

We note finally that in the case of motion along iso- 
bars that far  from the phase-transition line, the 
thermodynamic quantities have in accordance with (1 2)- 
(16) the singularities usually obtained for an ensemble 
of two-level systems (the Schottky anomalies) a t  all 
values of a. 

CONCLUSION 

The considered model is an ordered system whose 
thermodynamics is  described exactly by the theory of 
the self-consistent field. In real  systems there exist 
also interaction that depend on the d i s t a n ~ e . ~ '  To the 

1 7 -  

FIG. 2. Behavior of the irregular part of the specific heat c, 
- c~ in the metastability region, near the critical point, in the 
case a =l. Line 1 corresponds to the pressure =po. Curves 
2 and 3 correspond to Ih -Po I> Ih - po I *0.  

Cr-cru 

1 FIG. 3. Dependence of 
the irregular part of the 
specific heat cp- c, at the 
critical point on the tra- 
jectory parameter A'. 

- 4  -2 0 2 4 , p  

extent that these interactions a re  small, the mechanism 
investigated in the present paper can be the reason 
why the experimentally observed behavior was close to 
the self-consistent behavior (for other possible causes 
see footnote 1). 

The described simplest model can be directly applied, 
for example, to the case of an isomorphic transition, 
when the pressure-induced growth of the crystal field 
causes the molecular levels to cross,  s o  that the ground 
state is altered thereby. To  be able to regard such a 
system a s  a two-level system, the corresponding tem- 
perature must be low enough. 

A characteristic feature of the self-consistent be- 
havior is the suppression of the fluctuations by the 
mean field, s o  that it becomes possible to approach the 
boundary of the stability region in experiment. In this 
connection, we point out the phase transition recently 
observed by Strauss and Riederer6 in KMnF, at 1.7 K 
a t  a uniaxial pressure 197 kbar. According to their 
data, the low-pressure phase was preserved up to 
2.35 kbar and was independent of the rate of change of 
pressure. They have also investigated the excitonic 
level possessed by KMnF,. As a result of the phase 
transition, the position of the level changed jumpwise 
by 51 cm-'. Finally, according to their conclusions, 
the phases of the high and low pressures a re  both 
tetragonal and all that differs in their structure is the 
tetragonality factor. 

We present an estimate for this transition on the 
basis of the results of the present paper. We choose 
the elastic parameters to  be K =0.6 Mbar and +2@ 
=1 Mbar.1° Recognizing that the s t ress  tensor is  of the 
form oaB = -P6afiB I (which leads to the substitution p 
-p/3 in the formulas of interest to us) and assuming 
the upper experimental value of the pressure to be lo- 
cated on the boundary of the stability region, we obtain 
from (20) the estimate g = 1 . 6 ~ 1 0 - ' ~  erg. Therefore 
the estimate for the change of the energy of the ground 
state in the phase transition is 12 cm-', which agrees 
in order of magnitude with the observed shift of the ex- 
citonic level. Assuming that the other conclusions of 
the present paper a re  qualitatively applicable for the 
description of the low-temperature transition to KMnF,, 
we can, in particular, predict the existence of a criti- 
cal point on the phase-transition line. An estimate of 
the position of the critical point yields a value T, 
g1.76 K. An experimental check on this prediction, 
in our opinion, is of interest. 

In conclusion, I am grateful to V, M. ~ a b u t w s k i i  for 
constant interest in the work. I am deeply grateful to  
V. L. Ginzburg for all  the participants of the seminar 
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We investigate. dislocation retardation in antiferromagnets as a result of "Cerenkov" generation of spin 
waves and their scattering by the moving dislocations, as a function of the ground state of the 
antiferrornagnet. It is established that the retardation force has a velocity threshold in the magnon 
generation mechanism; the influence of the magnetic field on the threshold velocity is investigated. The 
dependence of the retardation force on the temperature, velocity, and orientation of the dislocation is 
studied. It is shown that in the presence of a non-activation branch in the spin-wave spectrum the 
retardation force is anomalously large. The general character of the temperature dependence of the 
retardation force of the dislocations in antiferromagnetic dielectrics and metals is investigated. It is shown 
that interaction with the spin waves can make a substantial contribution to the dislocation retardation 
force in antiferromagnets at low temperatures. 

PACS numbers: 75.30.Ds, 61.70.Ga 

1. INTRODUCTION 

It  is well known that many propert ies  of sol ids  (plasti- 
city, b r i t t l e  f rac ture ,  microhardness)  and a l s o  s o m e  
kinetic phenomena (sound absorption, internal  friction, 
width of ferromagnet ic  resonance line, etc.) a r e  deter- 
mined by the dislocations in the crystal .  At low temper- 
tures ,  when the diffusion processes  a r e  suppressed,  the 
principal role in the dislocation retardat ion is played by 
their interaction with the  quasipart ic les  of the crystal .  
The  interaction of dislocations with phonons and conduc- 
tion electrons h a s  been sufficiently well investigated 
(see, e.g., the reviewsin2). With meta l s  as the example, 
i t  was shown that the res t ruc tur ing  of the quasipart ic le  
spec t rum in the superconducting transition exer t s  a sub- 
stantial influence on the dependence of the retardat ion 
force  on the dislocation velocity.' T h e  interact ion of the 

dislocations with spin waves and the ensuing additional 
magnon retardat ion mechanisms of dislocations in  fe r -  
romagnets  w e r e  considered in Refs. 3-5. 

Antiferromagnets a r e  typical examples of c rys ta l s  that 
are part icular ly r i c h  i n  phase t ransi t ions,  which have 
been well investigated both experimentally and theoret- 
i ~ a l l ~ . ~  The  spin-wave s p e c t r a  i n  ant i ferromagnets  a r e  
a l s o  highly d iverse ,  s o  that in te res t  a t taches to an in- 
vestigation of the interaction of magnons with disloca- 
tions' and of the influence of the ground s t a t e  on the re -  
tardation force.  

The  presen t  paper  is devoted to a theoret ical  study of 
the influence of magnons on the mobility of dislocations 
in  ant i ferromagnets .  I t  is shown that dislocation mo- 
tion with even constant velocity leads to a coherent  mag- 
non emiss ion  i f  the dislocation velocity v exceeds the 
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