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The magneticdynamics equations for superfluid He3 that describe the relaxation of the magnetization in 
a strong magnetic field in the hydrodynamic approximation are analyzed. It is shown that the temporal 
behavior of the relaxation depends on the initial conditions. The laws of variation in time of the 
longitudinal component of the magnetization are found for two limiting cases. The nonmonotonic 
relaxation that has been observed in experiment is explained. The possibility of the existence of auto- 
oscillation regimes in the B phase and their effect on the magnetic-relaxation process are discussed. 
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1. INTRODUCTION 

The process whereby the magnetization in superfluid 
~ e '  relaxes to the equilibrium value is at present not 
an adequately studied process. The sharp relaxation- 
time decrease that has been experimentally o b s e r ~ e d l * ~  
to occur in ~e~ when i t  goes over into the superfluidstate 
indicates that a new relaxation mechanism comes into 
play when this transition occurs. In the one-dimensional 
case such a mechanism can be the "intrinsic" mechanism 
proposed by Leggett and ~ a k a g i ?  i. e., relaxation on 
account of the establishment of spin equilibrium between 
the Cooper-pair condensate and the Fermi excitations. 
The theory based on the "intrinsic" mechanism3 pre- 
dicts different time dependences for the longitudinal 
component of the magnetization (i. e., the component 
parallel to the external magnetic field H,) for two cases. 
In the f i rs t  case the magnetization is parallel to Ho, but 
i ts  magnitude is not equal to the equilibrium value, and 
the re-establishment of the magnetiude of the mag- 
netization should occur in time according to a square- 
root law, which has been observed by Sager, Kleinberg, 
Warkentin, and Wheatley.' In the second case the mag- 
netization has the equilibrium magnitude and relaxes 
with respect to direction, the relaxation being such that 
the time dependence of the longitudinal component of the 
magnetization in the A phase should be linear. Such a 
dependence has been observed by Corruccini and Osher- 
off,' but the observed dependence of the characteristic 
relaxation time on temperature and the magnetic-field 
strength does not coincide with the theoretically pre- 
dicted dependence. The suggestion has been madeie4 
that the indicated discrepancy can be explained by the 
transport of the magnetization by the superfluid spin 
currents. This mechanism has, however, not yet been 
sufficiently studied for us to be sure  of the correctness 
of this explanation. The variation of the temporal re- 
laxation law with the external field and temperature and 
nonmonotonic relaxation have also been observed. ' Be- 
cause the theory has not been adequately developed, 
these observations cannot, in general, be comparedwith 
it. 

In view of the foregoing, i t  is useful to investigate a s  
fully a s  possible phenomenological equations that do not 
depend on the details of the relaxation mechanism. The 
choice of a particular mechanism will then affect only 

the magnitude and dependence on the external conditions 
of the phenomenological parameter that enters into the 
equations. By that means we a re  able to separate the 
problem of the temporal behavior of the relaxationfrom 
the problem of the elucidation of the specific relaxation 
mechanism. The equations that we need can be written 
in the hydrodynamic region, where the frequencies 
characterizing the motion of the magnetization a r e  low 
compared to the reciprocal of the time required for the 
establishment of equilibrium for the given value of mag- 
netization. 

In the present paper we shall investigate the phen- 
omenological equations describing magnetization re- 
laxation in the spatially homogeneous case for strong 
magnetic fields. Those fields a re  considered to be 
strong for which the spin-orbit interaction energy is 
small compared to the Zeeman energy. The simplifi- 
cation arising therewith allows us  to investigate the 
equations thoroughly enough for a comparison with ex- 
periment to be possible and, for the important cases, 
to find the time dependence of the longitudinal com- 
ponent of the magnetization. The dependences thus found 
a re  compared with the experimental data of Sager et dl .  ,' 
since the experiments in which these data were obtained 
were performed in that region of temperatures, and 
magnetic fields, where the conditions for the applicabil- 
ity of the approach used in the present paper a r e  ful- 
filled. 

2. THE EQUATIONS OF MOTION 

The equations of motion in the absence of dissipation 
a r e  obtained with the aid of the ~amiltonian'  

%'=MY2x-MH+U (d) , (1) 

where M is the magnetic moment of the amount of helium 
under consideration, Ho is the external magnetic field, 
U is the spin-orbit interaction energy, d is the vector 
order parameter in triplet pairing. It is convenient to 
go over immediately to the dimensionless variables 

and measure the time in units of the Larmor periods, 
i. e. , make the change of variable t -w,t, where w, is 
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the Larmor frequency for the field H,. In terms of 
these variables, and under the condition that the z axis 
is antiparallel to Ho, we have 

To allow for the dissipation in the hydrodynamic ap- 
proximation, we shall need, besides the Hamiltonian 
written down above, the dissipation function f. It is 
determined by the rate of change of S in the coordinate 
system rotating with the Larmor frequency. The purely 
Larmor precession of S does not lead to the destruction 
of the equilibrium magnetization distribution between 
the condensate and the excitations, and, thus, should 
not, according to Leggett and Takagi's analysis,3 lead 
to energy dissipation. We obtain then from symmetry 
arguments 

(2 
where x is the phenomenological parameter. The 
expression that has been written down for f coincides, 
a s  i t  should, with the expression obtained for the en- 
ergy dissipation in the hydrodynamic limit by Leggett 
and ~ a k a ~ i , ~  who also determine n in their theory. We, 
however, decided not to use here the ready expression, 
but to present the above-stated arguments in order to 
show that the form of the dissipation function (2) can be 
obtained under quite general assumptions. For the 
same reason, we shall not use the explicit expression 
for x. 

The assumption that the magnetic field is strong al- 
lows us to use the approach developed earlier for the 
investigation of the magnetic-dynamics equations for the 
superfluid phases of ~e~ in the absence of dissipation. 6 * 7  

This approach consists in the use of the smallness of the 
parameter a2 = (w,,/w,)', where w,, is the frequency of 
the longitudinal oscillations. The principal simplification 
arises a s  a result of the preservation of the orientation 
of S relative to the system of the d vectors. As a re- 
sult, one degree of freedom in the system under con- 
sideration turns out to be "frozen," and the motion of 
this system is described by two, and not three, pairs of 
conjugate variables. As the independent variables, let 
us choose S =  Sc, where S, is the component of S along 
the direction of the 6 axis of the moving coordinate sys- 
tem connected with the d-vector system. At the initial 
moment of time, the 6 axis coincides with the z axis of 
the fixed coordinate system. On account of the above- 
indicated preservation of the orientation of S in the 
moving coordinate system, S coincides in magnitude 
with IS  1. However, these quantities behave differently 
under time reversal, which is important in the appli- 
cation of the Onsager principle. The variable conjugate 
to S is G = a + y ;  a ,  0, and y a re  the Euler angles char- 
acterizing the rotation of the system of d vectors from 
their initial position. The second pair of variables a r e  
P = S, - S and a. In terms of the variables S, @, P, and 
a, the Hamiltonian and the dissipation function have the 
form 

%=*/,(S-ij"P+U(PlS, cD, a), 

x 2 s  
(3) 

I= - {-(E+SP- -P -P(ZS+P) ( & + I ) * ) .  
2 2S+P : 1 (4) 

Using the standard procedure,8 we obtain from these 
expressions the equations of motion: 

d s  au - =- - 
dt am' (5) 

The right-hand sides of these equations contain terms 
of different orders of magnitude, namely, - 1, a2, and 
a4. To them correspond motions occurring with dif- 
ferent time scales. The analysis of the Eqs. (5)-(8) 
will consist in the separation of the motions occurring 
with essentially different frequencies. The normal pro- 
cedure for such a separation was worked out by 
Bogolyubov and Krylov (see, for example, Ref. 9). It 
consists in finding the change of variables 

the coefficients qt, q2, . . . , ~ ~ ~ u ~ , ~  .: , vt, 9, . . . , 
wt, wz, . . . being functions of S, P, *, and a, that leads - - -  
to a system of equations for S, P, @, and (Y in the form 

Here E is a constant of the order of a2 and the functions 
Dl,. . . , A,, . . . , B,, . . . , Ct,. . . entering into the 
right-hand sides depend on only the slow variables. 

In our case the variables Sand  P are  the slow vari- 
ables, since their derivatives a r e  small, is a fast 
variable 6 - I ) ,  and the variable 5 can be either fast 
or  slow, depending on the magnitude of the difference 
- I. We should, accordingly, consider two different 

cases: 1) (5- 1)- 1, the so-called nonresonance case, 
in which 5 is a fast variable and 2) (F- 1) << 1, the 
"principal resonance"_approximation; 5 i s  a slow vari- 
able. The resonance S =  1 is called the principal reso- 
nance because there ar ise  in the investigation of the 
second and subsequnt approximations in $2' still other 
so-called multiple resonances. In the vicinity of these 
resonances 5 is a fast variable, but the periods of the 

and variation a r e  commensurable, and from 5 and 
we can construct a slow variable. Therefore, the 

condition (S - 1): 1 is not sufficient for a resonance to 
be absent, and S is required to lie far  from all the reso- 
nance values that occur in the approximation in ques- 
tion. This will be discussed in greater detail in the 
investigation of the second approximation in 52'. 

Below, a s  an application, we shall consider the A and 
B phases of ~e~ in the open geometry for the case in 
which the system is in equilibrium a t  the initial mo- 
ment of time, i. e., in the A phase the vector d is per- 
pendicular to Ho, while in the B phase the antisotropy 
axis for the order parameter-the vector n-is parallel 
to H, (the Leggett configuration). For  these cases the 
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potential U has respectively the following form: terms have no effect on the precession-frequency shift 
for the stationary states. 

P uA=- % [ ( < + z ) ~ ~ ~  @+ ScOs(2a-@) I' , (I7) From the equations of the f i rs t  approximation we can - - 
find 3, P ,  +, and z. The physical quantities S, P, Q ,  ~ ~ = u d [ ~ + ~ + ( z + ~ ) ~ ~ m ] ' .  15 2 S (18) and a! corresponding to them contain small the correc- 

For  applications i t  is useful to represent these po- tions &qt, .  . . ,&mi. There ar ises  in the computation of 

tentials in the form of an expansion in double Fourier these corrections an arbitrariness whose elimination 
requires the imposition of additional conditions on the series: - - 
functions 91,. . . , wt, etc. Let us require 5, P, a, 
and (Y to be equal to the values, averaged over the fast 

U=E 2 hhI(P/S)e'(ke-'a). 
k.1 

(19) variables, of the corresponding variables in all orders 
in n2. For  the nonresonance case i t  is convenient to 

For  the A phase, setting E, =@,/16, we obtain the fol- represent the corrections in the form of double Fourier 
lowing values for the expansion coefficients: series:  

For  the 3 phase, when E, =S2$/15, the nonzero coef- 
ficients of the expansion have the following values: 

1 P "  
h.'-h-20= 

(2. s) . (21) 

3. SEPARATION OF THE MOTIONS 

The system of equations of the f i rs t  n2-approximation 
is obtained by averaging the Eqs. (5)-(8) over the first  
variables (the Van der Pol approximation). In the non- 
resonance case the equations do not differ from the cor- 
responding equations that neglect dissipation ( see  Ref. 7, 
Sec. 5). In the resonance case the equations a r e  a s  fol- 
lows: 

- - - -  
where V(P/S, *) is the a-averaged spin-orbit inter- 
action energy (see Ref. 7, Sec. 3). The Eqs. (22) and 
(23) describe the damping of the oscillations. If the 
oscillations a re  weak, then to them correspond the 
complex frequencies 

where w,, is equal to (a2~/a?) t /2  evaluated a t  the min- 
imum of the potential V as a function of $. Thus, the 
oscillations a r e  attenuated over a period of time 
- (x n2)-', a f t e ~  whict the s y s t e p  finds itself in the sta- 
tionary state S= 0, 5 = 0, and P = 0. As can be seen 
from Eq. (25), in first  order in n2, the dissipation 

etc. The additional condition implies that goo = uoo = v00 
=woo = 0, and for the remaining components we obtain 

where the h,, a re  the coefficients in the expansion (19). 

In the resonance case the Fourier ser ies  expansion 
should be performed only in terms of the variable z: 

q ( S . P ,  'P, a )  = ? ql ( S , P ,  @)e-"'. 

For  I + 0, 

Here the h ,  are  the coefficients of the expansion of the 
potential U in a Fourier ser ies  in cy: 

For applications, i t  is especially useful to know the 
oscillating corrections in the resonance case. Let us 
give here the explicit expressions for these corrections 
in the A phase, assuming that Sand 5 are  equal to their 
steady-state values: 

Setting x = cosp, we obtain 

No oscillating corrections ar ise  in the resonance case 
in the B phase for the state described by the potential 
(19). In this case the criterion for the applicability of 
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the hy.drodynamic approach is the condition w;T<< 1, 
and not wLr<< 1, a s  in the A phase. In order of magni- 
tude, T is the time between quasiparticle collisions. 

In both the resonance and nonresonance cases F =  0 in 
the f i rs t  ~2~-approximation, i. e. ,  the relaxation of the 
magnetization to the equilibrium value does not occur. 
To describe the relaxation, we should consider the sec- 
ond a2-approximation. It should, however, be borne in 
mind that the nondissipative terms in the system (5)-(8) 
a re  correct only up to terms of the order of n2, and we 
do not, generally speaking, have the right to consider 
the next approximation. In order to get around this dif- 
ficulty, we shall in what follows be interested in the 
variationof only those quantities that, in the absence of 
dissipation, a r e  conserved with the requisite-for us- 
accuracy on account of the general conservation laws, 
or on account of physical considerations. 

Let us begin the investigation with the nonresonance 
case. In this case we obtain for Sand P the following 
closed system of equations 

The Eqs. (33) and (34) have singularities a t  the "reso- 
nance" values of ??, i. e., at those value for which the 
vanishing of one of the denominators k(S- 1) + 1  is not 
accompanied by the vanishing of the corresponding num- 
erator. The nonresonance system (33), (34) is not 
applicable in the vicinity of these singularities, where 
[k(S- 1) + 11 - 52. We can, however, consider the be- 
haviro of the solutions to the system (331, (34) at those 
Svalues a t  which the resonance denominator satisfies 
the condition 52 << k(S- 1) + I  << 1. As the examples con- 
sidered in the following sections show, the analysis of 
the behavior of the solutions to the system (33), (34) in 
the vicinity of the singularities of the system turns out 
to be important for the understanding of the general 
character of the solutions. 

4. RELAXATION IN THE A PHASE 

The substitution of the values of hi,  from (20) into 
(33) and (34) leads to the following system of equations: 

(36) 
The right member of Eq. (36) is positive, and there- 

for increases monotonically in time. The expres- 
sion for dS/dt h q  a more complex structure. For s 
> 1, the quantity S< 0, and S approaches the resonance 
value S= 1. For S <  1, the sign of the derivative is de- 
termined by the competion between the first  and the two 
remaining terms in the square brackets in Eq. (35). In 
the region where the term - 1/(1- 3 is the dominant 

term, 5 is drawn into the resonance region. There is, - 
however, a region where S and 1 - S have opposite signs. 
If the initial values of g a n d  P l ie in this region, then 
initially moves away from the value S= 1. 

For P=-2% the coefficient attached to 1/(1- S) in 
Eq. (35) vanishes, and therefore the neighborhood of the 
point S= 1, P =  -2 deserves special investigation. Such 
an investigation is also required for a comparison with 
the experiments of Sager e t  al. since the initial state 
in these experiments was obtained by rotating the mag- 
netization through an angle of 180" from i ts  equilibrium 
state, i. e., the initial values of S a n d  P l a y  in the vi- 
cinity of the indicated singular point. 

L e t u s s e t S = l + u a n d F = - 2 + 5 ,  withu,5<<1. Then 
(F/S+ 2) = 5 = 2u+ 5. Retaining in Eqs. (35) and (36) only 
the dominant-with respect to the small  corrections- 
terms, and changing the time scale by setting t' = tx52;/ 
16, we obtain the following system of equations for 5 
and 5: 

A clear idea about the behavior of the solutions to this 
system is afforded by the phase trajectories, i. e. ,  the 
((5) curves shown in Fig. 1. The arrows indicate the 
direction of variation of 5 and 5 with increasing t'. 

The physical region ( >O is divided into two by the 
cuvve a), the equation for which i s  5 = 5 + t3/(2 - 3t2)  
= 5 + t3/2. The phase trajectories that originate from 
the region enclosed between the curve a )  and the 5 axis 
remain, a s  t' increases, in this region, and do not ap- 
proach the resonance value c= 1. They, however, get 
into the domain of influence of the other resonance value 
S =  0. For the phase trajectory corresponding to the 
variation of S along the direction of the magnetic field, 
S= 0 is not a resonance value, and in this case the sys- 
tem (35), (36) is integrable, and leads to the law, 

obtained earl ier  by Leggett and Takagi. Analysis of 
the phase trajectories in the neighborhood of the S= 0 
resonance shows that there a r e  both phase trajectories 
that enter and phase trajectories that leave the vicinity 
of this point. Thus, the S= 0 resonance does not trap 
the phase trajectories, but is traversed during the mo- 
tion of the system over a finite period of time. As the 

0.2 

-. I I I I 

n 0.2 0.4 0.6 0.r r < 
FIG. 1. 
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phase trajectories recede from the 5 axis, the devia- 
tions from the law (39) increase. It should, however, 
be noted that the neighborhood of the resonance point 
S = O  has a "focusing" effect on the phase trajectories. 
After crossing this neighborhood, the direction of the 
magnetization approaches that of the z axis. Thus, the 
estimate for the trajectories passing close to S= 0, but 
remaining everywhere in the region of applicability of 
the Eqs. (35) and (36) shows that (1 +cos~),,/ 
(1 - cos@)+,=e2. It is to be expected, therefore, that 
the deviations from the law (39) will be more significant 
a t  the initial stage of the relaxation-up to the crossing 
of the region of 5 values close to zero. 

The trajectories originating from above the curve a) 
terminate on the straight line b) ( 5  = T), which corresponds 
to the principal resonance S=l. The Eqs. (37) and (38) 
a re  inapplicable in the neighborhood, (6 - 5)-525', of this 
straight line. It is easy to see, however, that there a r e  
no phase trajectories emanating from this neighborhood 
of the resonance straight line. This means that, in the 
case of initial data lying above the curve a), the relax- 
ation will in the end proceed along resonance states. 

Figure 1 also shows the curve c): C = 5 - t3/2. On 
this curve dg /d t  = 0. The phase trajectories emanating 
from the left of the curve c) intersect the curve c )  a s  
they approach the resonance region, dg/dt changing i ts  
sign a t  the same time. The variable F, will decrease 
during the motion between the curves c )  and b), which 
apparently explains the experimentally observed' non- 
monotonic relaxation. The cause of the nonmonotonic 
character thus consists in the fact that, in the vicinity 
of the resonance value g= 1, the quantity z v a r i e s  in 
time much more rapidly than and therefore the rapid 
decrease of 5 should be compensated by the equally rapid 
decrease of g,. Corroborating this explanation is the 
fact that the extent of the nonmonotonic section on the 
relaxation curve varied when the pulse that produced the 
initial deviation of the magnetization was modulated. 
The modulation changed the initial value and, with it, 
the extent of the section of the corresponding-to this 
value-phase trajectory between the curves c) and b) .  
The Eqs. (35) and (36) allow us to find the equation, in 
the coordinates S andp, and valid for all3 and values, 
of one of the boundaries of the region where the relax- 
ation is nonmonotonic (to wit, the equation of the curve 
on which dgz/dt = 0): 

(40) 
The other boundary of the nonmonotony region is the 
straight line S= 1. 

In the resonance region the motion of the magneti- 
zation is described by three equations for three vari- - - 
ables: S, P, and o. Let us note that, according to 
the results of Sec. 3, the quantities Sand  b attain their 
steady-state values a t  fixed over a period of time 
t -  ( x ~ 2 ~ ) - ' ,  after which their variation occurs only as a 
result of the dependence of the steady-state values of 
S and $ on P. In order to find how P varies in time, 
let us, following Leggett and ~ a k a ~ i , ~  use the averaged 
expression for energy dissipation, i. e., let  us average 
over the fast variable CY the equality 

The variation of the energy occurs largely a s  a result 
of the variation of the z component of the magnetization. 
The rate of change of the remaining terms (s2/2 and 
U) in the energy (1) contains the superfluous power 
Q2. Setting x = cosp, and substituting the steady-state 
values 5% 1 and g= 0 into (41), we obtain for the relax- 
ation of the angle 6 the equation: 

In Ref. 3, the averaging of the expression for the en- 
ergy dissipation is performed under the assumption that 
the vector d assumes any direction with equal probability 
during i t s  motion. As a result, the rate of energy dis- 
sipation turns out to be a constant. The right member 
of Eq. (42) is not very different from a constant at large 
angles of deviation, but i t  vanishes a t  /3 = 0, and at small  
angles, such that (1 -x)  << 1, the longitudinal com- 
ponent of the magnetization varies in time according to 
the exponential law 

(I-x)=(i--x,) exp ( -xQA4( t - t o ) } .  (43) 

The numerical integration of Eq. (42) for al l  angles 
leads to the dependence depicted by the solid curve in 
Fig. 2, which in we also present for comparison the 
experimental data obtained by Sager et  al.' We took 
only the data for the open geometry and for the strongest 
of the magnetic fields used in the experiments.' The 
used data satisfy the conditions for the applicability of 
the expounded approach. Thus, for an 85-0e field, in 
which w, T= 0.1, 0.003. The agreement between 
the theoretical curve and the experimental points is 
satisfactory. It should, however, be borne in mind that 
the value of x is not known a priori, and is an adjustable 
parameter determining the scale along the time axis. 
A more sensitive verification could be a comparison 
with experiment of the angle dependence of the relax- 
ation rate, which is given by the right-hand side of Eq. 
(42). It is, however, difficult to extract d~, /d t  with 

FIG. 2. Result of the integration of Eq. (42)- continuous 
curve. The points repre sent the data of Sager et a l .  for 
magnetic fields, pressures, and (1 - T / T J  values respectively 
equal to: A) 60 Oe, 21 bar, 0.0028; 0) 85 Oe, 21 bar, 0.0028; 
0) 85 Oe, 20.7 bar, 0.0053. 
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reasonable accuracy from the published experiments. 
It should also be borne in mind in a comparison with 
experiment that Eq. (42) was derived under the assump- 
tion that the system is completely homogeneous. There 
ar ise  in the presence of an inhomogenity spin currents 
which can affect the relaxation rate both directly, a s  a 
result of magnetization transfer, and indirectly, a s  a 
result of a change in the 5 value corresponding to sta- 
tionary precession. 

We thus see  that even a small  change in the initial 
values of Sand P can, if these values a r e  close to S 
= 1, P = - 2, lead to significantly different temporal 
relaxation laws. In experiments, because of the shift 
of the precession frequency of the magnetization from 
the Larmor frequency, the actual initial angle between 
S and Ho differs f rom the nominal angle computedfrom 
the pulse duration. This difference is determined by 
the parameter6 W ~ / H ~ H , ,  where H,is the amplitude of 
the rotating variable field. This parameter depends 
both on temperatue and on the magnetic field, and i t  i s  
therefore not surprising that a change in the time de- 
pendence of the relaxation was observed in the experi- 
ments of Sager e t  al. when these quantities were 
changed. In order to obtain the predicted dependence 
for the relaxation, we should control the initial conditions 
more precisely, which, apparently, can be done more 
conveniently at points far  from the point g= 1, P=-2. 

5. RELAXATION IN THE B PHASE 

The analysis of the magnetization relaxation in the B 
phase is performed according to the same scheme a s  the 
analysis in the A phase. For the nonresonance case the 
equations of motion have, according to (331, (34), and 
(211, the following form: 

The main difference between this system and the cor- 
responding system for the A phase consists in the fact 
that here we have only one resonance value, S= 1, a s  a 
result of which 9 tends to this value whatever the initial 
conditions are; P, a s  in the A phase, increases mono- 
tonically. The point s= 1, H= -2 is in this case a sin- 
gular point. Setting in the neighborhood of the singular- 
ity, a s  was done in the analysis of the system (35), (36), 

we have 

The equation for the phase trajectories (see Fig. 3) 
has the form 

The phase trajectory passing through the coordinate 

FIG. 3. 

origin i s  a bounding trajectory. The trajectories lying 
below it tend to the abscissa (i. e . ,  the P = n) axis. As 
they approach the axis, the dependence of the two vari- 
ables (u and 5 )  on the time becomes exponential; there- 
fore, the value [ = 0 i s  attained after an infinitely long 
time. For real  systems this means that the relaxation 
in this case will occur on account of other mechanisms. 
The trajectories lying above and to the left of the bound- 
ing trajectory reach the [ axis after a finite period of 
time, after which the motion of the system should be 
described by the equations for the resonance case. Thus, 
in the B phase the magnetization cannot relax from in- 
itial states close to $= 1, P=-2 along the direction of 
the magnetic field. The curve onwhich dq /d t  = 0 for the 
system (461, (47) is U =  1/3. It l ies in a region of fairly 
large values of a, and therefore i t  seems natural that 
nonmonotonic relaxation was not observed in the B phase 
in the experiments of Sager et nl. 

For the B phase the potential U, (see (18)) in the Leg- 
gett configuration does not depend on a, i. e., the fast 
variable has already been separated out, and therefore 
the system of magnetic-dynamics equations for the B 
phase in the resonance case can be obtained from Eqs. 
(5)-(8) by setting aV/aa  = O  in them: 

dSldt=-XJe/8cD, (49) 

da 
-=- 

au, s au, 
1 + - x - -  

d t  dP 2S+P d o  ' 

In the absence of longitudinal oscillations, the relax- 
ation of the magnetization is described by Eq. (511, in 
which the derivative a U B / a P  should be computed for the 
S and @ values corresponding to the steady state. Such 
a derivative is, a s  is well known, nonzero in the B phase 
only fo r  P <-5/4, i.e., for  the angles k3 >8, = a r c  cos 
(-1/4); in this case (see Ref. 7, formula (23) for J =  0) 

Recalling that in the steady state P = S , -  1, we find that, 
in the vicinity of P =-2 (P =-2 + 51, the relaxation oc- 
curs according to the exponential law: 

Here t' = x($S2i)2t. In the neighborhood of P=  -5/4, 
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i. e. ,  for P =-5/4 - i),  where i )  is small, the relaxation 
law will be a s  follows: 

When -5/4c Pc 0, for the stable steady states the 
derivative a b , / a ~  = 0, i. e. , P is equal to zero, and the 
relaxation of the magnetization does not occur. 

This result is clearly at  variance with experiment. 
The relaxation observed in experiment occurs over a 
period of time of the same order a s  the relaxation time 
for P C -  5/4, and therefore i t  cannot be explained by 
the effect of the terms of the next order in aZ. 

To explain the observed relaxation, we can assume 
that a transition into the auto-oscillating state occurs 
a s  P approaches the value P=-5/4. In this state @ 
and S oscillate, the dissipation of the energy of the os- 
cillations being compensated for a s  a result of the in- 
crease of P and the corresponding decrease of the Zee- 
man energy. In i t s  turn, the existence of the oscilla- 
tions [see Ref. 7, formula (17)] leads to a shift of the 
precession frequency from the Larmor frequency and 
to the relaxation of P. Such a compensation is impos- 
sible for motions whose phase trajectories lie far  from 
the singular trajectories. For  the nonsingular tra- 
jectories the dissipation is characterized by the time 
(xa2)-', while the inflow of energy is correspondingly 
characterized by the time (xa4)-'. The compensation 
can, thus, occur only for phase trajectories passing 
close to a separatrix. The possibility in principle of 
compensation in this case is connected with the fact that 
a s  the phase trajectory approaches the separatrix, the 
frequency of the longitudinal oscillations tends to zero, 
and S and cP spend the greater part of the time in the 
vicinity of the maximum of the potential, i. e. ,  in the 
region where the rate of change of cP and, with it, the 
dissipation of the energy a r e  small. The precession- 
frequency shift does not, however, vanish in this case. 

For  a rough estimate of the relaxation rate, we can 
substitute into the right-hand side of (51) that value of 
a U , / a ~  which corresponds to the maximum of the po- 
tential. Then the relaxation in the case when P is greater 
than, but not too close to, -5/4 will also be described 
by Eq. (52). In Fig. 4 we compare the right member of 
Eq. (53) with the rate, computed from the experimental 
data of Sager et al. ,' of change of S,. The scale of the 
curve was adjusted to the points lying in the region 
x<-1/4, since the predictions of the theory in this 
region a r e  specific. Let us  also note that the accuracy 

with which d~ , /d t  can be determined from the data given 
in Ref. 2 is not high, and, therefore, the comparison 
carried out in Fig. 4 should not be taken too seriously. 
The above-presented qualitative arguments constitute 
an attempt to explain the relaxation observed in the P 
>-5/4 region without giving up the assumption that the 
system is spatially homogeneous. In the inhomogeneous 
case, a s  Webb's experimenti0 and i t s  interpretationH 
show, there exist effective relaxation mechanisms f o r  
all angles, relaxation being possible both in the regime 
of stationary S and @ and in the autooscillation regime. 

6. CONCLUSION 
The analysis carried out in the present paper of the 

phenomenological spin-dynamics equations written for  
the superfluid phases with allowance for  the dissipative 
terms shows that the time dependence of the relaxation 
of the magnetization is satisfactorily described by these 
equations. The observed time dependences can be char- 
acterized by one phenomenological parameter, x . The 
existence of the various time dependences i s  due to the 
existence of different relaxation regimes-nonresonance 
and resonance-and the possibility of a transition from 
one regime into the other. The choice of a regime i s  
determined by the initial experimental conditions. There 
exist regions of initial data that lead in the end to one o r  
the other regime. In the vicinity of the boundaries of the 
regions the system is sensitive to small  changes in the 
initial data. In particular, in the A phase the regions 
corresponding to the various modes of behavior of the 
magnetization coincide in the neighborhood of the point 
S = 1, P =-2, which apparently explains the sharp  change 
that is experimentally observedZ to occur in the char- 
acter  of the relaxation when a relatively small change 
is made in the external conditions in the case when the 
initial state i s  prepared by rotating the magnetization 
through 180" from the equilibrium state. 

In accordance with the terms of the formulated prob- 
lem, we did not touch upon here the dependences of the 
phenomenological parameter n on the external condi- 
tions, such a s  the temperature and the magnetic field; 
these dependences a r e  determined by the specific relax- 
ation mechanism. The phenomenological theory allows 
us, however, to interprete experiments in terms of the 
parameter x. A comparison of the temperature and 
magnetic-field dependences found experimentally for the 
parameter n with the theoretical predictions f o r  the 
various relaxation mechanisms will allow us  to deter- 
mine which of the mechanisms is dominant under a given 
se t  of external conditions. 
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The mechanism of indirect interaction of the order parameter via acoustic oscillations is considered. The 
special character of the contribution of the static deformation is taken into account. The spectrum of the 
acoustic oscillations that interact with the order parameter is assumed to be linear. The microscopic 
description of the thermodynamics with the aid point transformations is reduced to the self-consistent 
field theory. The principal results of the theory are applied to the model in question. The low- 
temperature phase transition in KMnF, is discussed on the basis of these results. 
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INTRODUCTION 

In the theory of phase transitions, the interaction of 
the order parameter with the mean field is usually con- 
sidered only a s  an approximate description of the initial 
localized microscopic interaction.' At the same time, 
the interaction with the mean field is actually the result 
of the special character of the contribution of the ho- 
mogeneous mode to the indirect exchange.') In the 
present paper we investigate the case when the total 
interaction reduces entirely to the interaction of the 
order parameter with the mean field. 

The simplest physical system that has such a be- 
havior is  a system of two-level states placed in an 
elastically isotropic medium and interacting only with 
the deformation. The effective interaction i s  made up 
of the contribution of the static deformation and of the 
exchange via acoustic oscillations. The linearity of the 
spectrum of the acoustic oscillations, which is typical 
of the model, leads to the absence of a short-range 
dynamic effective interaction. The model can be solved 
exactly and represents the case when the self-consis- 
tent field theory yields a rigorous description of the 
thermodynamics in the microscopic approach. The 
model includes a first-order phase transition. In the 
temperature-pressure plane, the trans it ion line termi- 
nates at the critical point. Two possible critical be- 
haviors appear in the model. If the degree of degen- 
eracy of the levels of the two-level system a r e  different 
van der Waals behavior takes place near the critical 
point. If the degrees of degeneracy of the levels coin- 
cide, the results correspond to the Weiss t h e ~ r y . ~  The 
law-temperature phase transition recently observed in 

KMnF, (Ref. 6)  is interpreted a s  a direct realization of 
the model. 

DESCRIPTION OF MODEL 

Assume that a lattice with two-level systems a t  i ts  
site is immersed in a homogeneous elastically iso- 
tropic medium. The Hamiltonian of such a composite 
system can be written in the form 

where A and p are  the elastic moduli, UaB (r) is  the 
strain tensor a t  the point r, summation over repeated 
indices is implied, qj =* 1 is a parameter that specifies 
the occupation of the states of the two-level system 
with coordinate r,, and J, +gU,,(r,) is the difference 
between the level energies of the two-level system and 
depends on the strain. The summation in (1) is over the 
lattice sites, and the integration is over the corres- 
ponding volume. 

Allowance of the deformation contribution to  the 
thermodynamics will be carried out in analogy with 
Ref. 7. We determine the expansions of the strain teng- 
o r  and of the parameter qj in Fourier harmonics by the 
formulas 

Here ga, is the uniform deformation, U! is the Fourier 
component of the displacement vector, V is  the volume 
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