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It is shown that the Hall effect and the thermoe1ectric phenomenon should possess the following peculiar 
anomalies in crystals in which a pseudovector can exist: a) the Hall field should be inclined at an angle 
to the magnetic field H even if H and the current density j are aligned in the principal directions and b) 
an effect similar to the Nernst effect should be observed at H = 0. The reflection of a wave from a low- 
symmetry crystal is considered. 

PACS numbers: 72.15.Gd, 72.15.Jf 

1. INTRODUCTION For  the demonstration of the anomalies of the kinetic 
phenomena in crystals with axial symmetry, we chose 

Crystals of certain classes possess a preferred axis, the Hall effect and the thermoelectric phenomena. 
z,, along which an axial vector (a pseudovector) can be 
aligned. For this purpose, this axis should not inter- 2. THE "STRANGE" HALL EFFECT 
sect a D axis (a two-fold ~ . ~ m m e t r ~  axis) and, further- 
more, it should not lie in a symmetry plane (i.e., in a 
u plane). Let us emphasize that crystals of these classes 
can possess a center of inversion. In Table I we have 
written out some of the classes in question, and give 
examples of intermetallic compounds1) for  each class. 
In the last column we indicate papers in which the sym- 
metry of the crystals is determined. 

The object of the present paper is to show that, in 
crystals of these classes (they a r e  called crystals with 
axial symmetry), certain macroscopic kinetic phenom- 
ena described by second-rank tensors should possess 
a number of specific anomalies. In the majority of 

If a conductor is placed in a constant, uniform mag- 
netic field, then the relation expressing the electric- 
field intensity E in terms of the current density j has 
the form [see Ref. 11, 8 21, formula (21.10)]: 

Ei = pj;' (H) jh f [ jX bIi, @!:' (H)  = p:;' (H)= p;:' (- H), 
b, (H) ==-bi ( -@ 1 (1 ) 

The second term in the f i rs t  expression describes the 
Hall effect. If the magnetic field can be considered to 
be weak, then the vector b depends linearly on the mag- 
netic field: 

cases the second-rank tensors that describe the macro- 
No restrictions have been imposed on the symmetry of scopic properties of solids a re  symmetric under inter- 
the tensor R i,. If R,, - Rki # 0, then we can introduce 

change of the indices. The symmetry of the tensors is 
the pseudovector, R, that is  the dual of the antisym- either a consequence of the Onsager relations (see Ref. 
metric tensor Ryi =t(Rik-Rki): 

10, $120; for example, the conductivity tensor a,, 
=a,,), or a consequence of the fact that the tensor is a R, = i l r s i l l ~ ~ ~ ' .  

(3 

mixed derivative if a scalar function (for example, the 
where c ikl  is the completely antisymmetric tensor of the static magnetic susceptibility tensor p i , = -  B ~ F / ~ H ~ ~ H , ,  
third rank. Then the Hall field, EH, , acquires the where H is the magnetic field and F is the free energy). 
"strange" form: 

There is. however, no symmetry requirement in cer- 
tain case's. In these cases, whether-the tensor does 
o r  does not possess an antisymmetric part is deter- 
mined solely by the class symmetry of the crystal. from which it follows that, even in the case when the 
Since the antisymmetric part of a second-rank tensor magnetic field and the current density a r e  oriented along 
can be associated with a dual pseudovector, i t  is clear the principal directions of the tensor R Y ~ ,  the Hall field 
that the tensor can possess an antisymmetric part if is not perpendicular to  H. In Fig. 1 the vectors R and 
the symmetry admits of the existence of a pseudovector, 

j a r e  parallel to one of the principal directions of the 
i.e., if the crystal in question possesses axial sym- tensor R?:, H is parallel to another, and the components 
metry. 

TABLE I. 

system 1 w 1 s i w a n c e  1 ::-- 
1 I I 

Hexagonal 
FIG. 1. 
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of the.Hal1 field a r e  respectively equal to 

0 is the angle between Em and H; and R$' is  one of the 
principal values of the tensor RY:. 

To elucidate the nature of the strange Hall effect, let 
us f i rs t  express the vector b in terms of the components 
of the conductivity tensor o,,(H) =p;i @I) (see the prob- 
lem of 21 in Ref. 11): 

1 1 1 
bi = --s,kak, ai = - - ~ ~ ~ ~ a ~ ~ ,  alh = y (~rn(H)-  ohc(H)) ,  lo1 -- -- - 2 - -. 

si,='lz (oa (H) f ov (H) ) 7 

(6) 

with 14 =I sl +s,,a,a,, where I sl is  the determinant 
composed of the elements of the matrix s,,. In the case 
of weak fields the vector a depends linearly on the mag- 
netic field: 

at=QsrHk, (7) 

and it follows from (6) that 

Here oik is the conductivity tensor for H = O  and (o,l is  
the determinant composed of its components. The ten- 
sor  a,,, a s  we have said, is a symmetric tensor. This 
restriction does not extend to the tensor Q,, if the crys- 
tal possesses axial symmetry.a) The antisymmetry of 
the tensor Qik naturally leads to the antisymmetry of the 
tensor R,,, and 

Here Sp; =oii, a(6Q), =oikQr;Qi =$crkl~6q) ,~(Pa 

=%!,a - Qk,). 

The use of a formal solution to the kinetic equation 
in a weak magnetic field (Ref. 12, $$ 22 and 27) allows 
us to find an expression for the vector Q. The tensor 
a,,@) can be represented in the form 

where the vector $ is the solution to the integrodifferen- 
tial equation 

and Cp is the linearized collision operator [into its 
definition enters the derivative, af,/a&, of the Fermi 
function (see Ref. 12, $22)]. 

In weak fields 

The term proportional to the magnetic field determines 
the antisymmetric Hall part of the electrical-conduc- 
tivity tensor: 

Hall - 2ea 
otk ( 2 ~ f i ) ~ c  J ~ ~ P * ~ . ~ ; ~ { ( [ V X H I  a& d ,  ap ~ . - ~ { u . ) ) .  (13) 

the antisymmetry of the tensor ui",& ensuring that the 

differential operator b x ~ ] a / a p  will be gnti-Hermitian 
and the collision operator, GP, Hermitian (see Ref. 
12,4 23, as well a s  Ref. 13). 

Let us introduce the notation 

In the r-approximation 1 = b2, where n = v /v ;  thus, 1 
is the mean-free-path vector. From (13) and (14) we 
have 

Hall 

Hence 

or, according to (7) 

Separating out the antisymmetric part, and going over 
to the dual vector Q, we have after simple transfor- 
mations the expression 

Noting that (af,/ack = af,/ap, and integrating by parts, 
we can transform the last expression into the compact 
form: 

It can be seen from the formulas (17) and (18) that the 
value of Q essentially depends on the characteristics of 
the scattering, it being necessary for  the existence of 
the strange Hall effect that the antisymmetry be present 
a t  the microscopic level. Let us introduce the differen- 
tial mobility tensor uik(uik = al,/a$,). The expression 
(18) can be written in terms of this tensor: 

where u is  the vector dual of the antisymmetric part of 
the uik tensor. Since I, is a solution to the integral 
equation with the kernel W p ,  p t ,  which is proportional to 
the probability of transition from the state Ip) into the 
state Ip'): 

while avi/apk = a2c/apiap,, it is clear that ui,  does not 
have an antisymmetric part only if W P,  , I  is a function 
of the difference p - p'. In the general case this is, 
naturally, not so. It is difficult t o  find a sufficiently 
simple expression for the dependence 1 (p) that would 
allow us to estimate the value of Q. The point is that, 
in the 7-approximation [for 1 = r ( c k  and for 1 
=l(&)p/p], the strange Hall-effect vector Q =0, a fact 
which can be directly verified. If we assume that 
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then, accooding to  (18) and (19), I R (  =l/nec (11 is the 
number of electrons in a unit volume) and, consequently, 
the constant of the strange Hall effect is of the same 
order of magnitude a s  the normal Hall constant. 

3. THE THERMOELECTRIC TENSOR 

The electric-field intensity E = - Vcp and the tempera- 
ture gradient VT a r e  connected with the current density 
j and the thermal flux q- cpj in the case of crystals of 
arbitrary symmetry by relations of the following form: 

(in Landau and Lifshitz's notationll). As we have said, 
a,, is  a symmetric tensor. The thermal-conductivity 
tensor u ,, is also symmetric, but the "thermoelectric 
tensor a,, is nonsymmetric in the general case" (Ref. 
11, p. 145). Since the antisymmetric part of the tensor 
a,, can be associated with a dual vector A, it is clear 
that the tensor a,, can have an antisymmetric part only 
in crystals possessing axial symmetry (see above). For 
A + 0 the relations (20) can be written a s  follows: 

It is clear from these relations that effects similar to  
the Nernst-Ettingshausen effects should be observed in 
crystals with axial symmetry when H = O  (naturally, 
there should not be effects of the Hall and Leduc-Righi 
types because of the symmetry of the tensors a,, and 

,,I. 
The microscopic nature of the antisymmetry of the 

tensor a,, has not been investigated by us. Therefore, 
we note only the following circumstance. In a calcula- 
tion the tensor a,, is expressed in the form of a product 
of two second-rank tensors. For  example, for the de- 
generate electron gas [see Ref. 12, 25, formula 
(25.23)] 

The tensors and qik(&) are  respectively equal to 

and 1") is  the solution to the kinetic equation 

differing from ep (see above) only in the case when 
the electrons undergo inelastic collisions [into the 
definition of the operator @& enters not V,/a&, but 
af,/a~; see Ref. 12, 23, the formulas (23.13) and 
(23.14)]. The electrical- and thermal-conductivity ten- 
so r s  can be expressed in terms of $,,(&,) and cp,,(&,): 

The Hermitian nature of the operators and @ guar- 

antees the symmetry of o,, and x ,,, This  very same 
property of the collision operator most likely leads to  
the symmetry of the tensor ~cp,,/d&],=,, [otherwise 
it is  difficult to  explain the symmetry of the tensor u ,, 
at  an arbitrary temperature; the symmetry of cp,,(&) 
has, a s  f a r  a s  we know, not been analyzed in detail]. 
Even if both tensors ($,, and dcp,,/d&) a r e  symmetric, 
the tensor a,, is symmetric only in the case when the 
principal axes of the tensors $,, and dcp,,/d& coincide. 
If the crystal  possesses s o  low a symmetry that there 
a re  not three preferred, mutually perpendicular di- 
rections in it (crystals of the triclinic and monoclinic 
classes), then there is no reason whatsoever to expect 
the two different tensors to have coincident principal 
directions. In this cases the tensor a,, will certainly 
have an antisymmetric part. 

In metals, in which the thermal conductivity of the 
electrons, a s  a rule, significantly exceeds the thermal 
conductivity of the lattice, the tensors #,, and cp,, can 
coincide with each other, owing to  the Wiedemann- 
Franz law, and this should apparently lead to a de- 
crease in the antisymmetric part  of the thermoelectric 
tensor a,,; therefore, i t  is desirable that the detection 
of the antisymmetric part be carried out in that tem- 
perature region where inelastic collisions a re  important 
and the Wiedemann-Franz law is not obeyed. Notice 
that in low-symmetry crystals the deviation from the 
Wiedemann-Franz law is manifested, in particular, in 
the fact that the principal directions of the tensors a,, 
and xi, will not coincide. 

4. PROPERTIES OF LOW-SYMMETRY CRYSTALS 

The absence of three preferred, mutually perpendicu- 
l a r  directions in crystals with triclinic and monoclinic 
lattices should lead to a number of distinctive anomalies 
in the kinetic properties of these crystals. Fi rs t  of all, 
notice that the strange Hall effect should be observed 
in them even if the tensor Q,, does not have an anti- 
symmetric part (see footnote 2), since there is no rea- 
son to expect that the principal directions of the tensors 
Q ,, and a,, will coincide. 

The fact that in low-symmetry crystals each sym- 
metric second-rank tensor "selects" its own set of 
principal directions may have an effect on the optical 
properties of these crystals. Owing to the dependence 
of the components of the permittivity tensor &,, on the 
frequency w, the principal directions of &,, should also 
be frequency dependent. Furthermore, there is no rea- 
son to expect that the imaginary, &&, and real, &(,, 

parts of the tensor c,, = && +is; will have common 
principal directions. Because of this, the propagation 
of electromagnetic waves in such crystals will differ 
from the propagation of the waves in crystals with a 
higher symmetry. For  example, let us consider the 
reflection of an electromagnetic wave normally inci- 
dent on the surface z = O  of a low-symmetry crystal. 
We shall characterize the crystal by the surface im- 
pedance CUB =Y,, +ix,, (a, p = x ,  y), the principal direc- 
tions of the tensors r,, and xaB being different (they 
a re  rotated with respect to each other through an angle 

130 Sw. Phys. JETP 50(1), July 1979 M. I. Kaganov 130 



..= ( ; r: ) , 
/ XI cosz cp+s sinzcp (2,-z2) sin cp cos cp x*= \ (xi-zZ) sin cp cos cp ZI sinz (P+z~ COS' cp 

Let (for definiteness) the incident wave be polarized 
along the axis 1. Let us denote its amplitude by Eh . 
The reflected wave will turn out to be elliptically po- 
larized, with the axes of the ellipse turned through 
some angle with respect to the axis 1. The value of the 
ellipticity and the angle of rotation of the plane of po- 
larization can easily be determined from the values of 
the components of the electric-field intensity, E,, , in 
the reflected wave along the axes 1 and 2: 

gtart+t(xt cos'(P+z~ sin'cp), t?=r,+i(z, sinzcp+zz cos'cp), 
fl~=i(x,-x2)sm cp cos p. 

CONCLUSION 

It is now fashionable to investigate noncrystalline 
solids (disordered alloys, amorphous solids, glassy 
substances), or two-dimensional and one-dimensional 
structures, i.e., solids deprived of the "usual" sym- 
metry elements. In this paper we have attempted to 
ascertain the phenomena to which the loss by a crystal 
of a certain number of point-group symmetry elements 
will lead. Of course, the analyzed examples by no 
means exhaust the range of possible unusual properties 
of law-symmetry crystals and crystals with axial sym- 
metry. 
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 elow ow we shall discuss the ftaccidenta19) symmetry of the 
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