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Finite-dimension ring interferometer in an external magnetic 
field 
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A theory is developed for a single ring interferometer (SQUID) having a finite contact with L and placed 
in an external static magnetic field He.  Numerical methods are used to study the nonlinear-equation 
solutions that yield the distributions of the field in the ring and inside the contact. The obtained solutions 
are investigated for stability, and the stable and unstable configurations are determined. The free energies 
of the different states are obtained. The points of equilibrium transition from one state to another are 
found, as are the boundaries of the hysteresis region. The dependence of the field Hi inside the ring on 
the external field He is plotted at different values of the width L of the contact and of the area a of the 
internal opening of the ring. In the limiting case of small widths ( L  < < I), and also in the case of strong 
fields (He > > I), analytic formulas are obtained. The general expression for the self-induction coefficient 
of the ring interferometer is found. A comparison is made with the results of other studies of this subject. 

PACS numbers: 85.25. + k 

1. INTRODUCTION 

We consider in this paper the problem of penetration 
of an external static magnetic field into a superconduc- 
ting ring that is closed by a Josephson junction of finite 
width L (see Fig. 1). The external magnetic field He 
is directed along the z axis perpendicular to the plane 
of the figure. It is assumed that the superconductor has 
an infinite length along the z axis (cylinder with cuts 
along L). It is obvious that all the quantities in the plane 
of the barrier depend in this case only on the angle co- 
ordinate x(0 c x s L). 

The distribution of the field and of the current in a 

Josephson barr ier  of finite width i s  described by the 
nonlinear e q ~ a t i o n l - ~  

d2rq/dz'=sin cp, (1) 

where the density of the current through the barrier is 
j(x)= s i n p b )  and the magnetic field i s  ~ ( x )  =dp/dx. 
(The quantity p(x) is called the phase difference of the 
superconductor order parameter.) 

FIG. 1. Schematic view of 
a ring SQUID in an exter- 
nal field. 
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The ,main purpose of the study is to find the field Hi 
inside the barr ier  a s  a function of the field He on i ts  
outer boundary. This problem i s  timely because sys- 
tems with ring SQUIDS1' a r e  widely used for exact 
measurements of magnetic fields s o  that an analysis 
of the operation of such a device is of practical im- 
portance. Many papers have been written on this sub- 
ject, except that the weak link in the superconducting 
ring is usually assumed to be the point contact (see, 
e.g., Refs. 1-8), i.e., L<< 1; we, however, a re  inter- 
ested in the case of a barr ier  of finite width (L 2 I).'' 

To solve our problem it is necessary to formulate the 
boundary conditions for Eq. (I). One of the conditions 
is obvious: since the external field i s  given, we have 

To find the second boundary condition we use the con- 
nection between the phase difference q(x) a t  some point 
x of the barrier and the flux inside the ring (cf. Refs. 
1-7): 

(it i s  easily seen that the condition (3) takes into account 
the effect of quantization of the ring). Here @,= hc/2e 
=2. lO"0e-cm2 i s  the flux quantum, @(x) is the mag- 
netic field inside the closed contour C, passing in the 
interior of the ring walls and crossing the junction at a 
certain point x (see Fig. 1). Recognizing that @(O) 
= H,R? (we use here dimensional units, with r the in- 
side radius of the ring), we obtain the sought condition 
in the form (see also Refs. 9 and 10) 

Here a= n?/X,A, A = 2X,+ 1 is the effective thickness of 
the layer in which a magnetic field is present in the 
junction, and Hi is the dimensionless field (see foot- 
note 2). 

Equation (1) jointly with the boundary conditions (2) 
and (4) enables us to find the distribution of the field 
and of the current in the junction, and simultaneously 
also the value of the field Hi inside the ring a s  a func- 
tion of He, L ,  and a. To solve our problem we note 
first that Eq. (1) has a first  integral in the form 

where C is an arbitrary constant, q(0) is the value of 
q(x) at x =  0, and 5 = i1  i s  the sign function. The deri- 
vative d/dx is written in accordance with (5) in the 
form 

d q / d x = 2 ~  {sinz(cp ( x )  12) +C) ". (6) 

It follows therefore that a t  C>O the derivative dq/dx 
[i.e., the field ~ ( x ) ]  does not vanish anywhere and the 
corresponding solution q(x) varies monotonically with 
increasing x (increasing solution at 5 = 1). 

In the case C < 0 the derivative dq/dx vanishes at 
certain points, where it reverses sign (because the 
solution is continuous). This case corresponds to 
bounded solutions. For these solutions i t  is necessary 

to take into account in (6) the sign function 5 =  i1, which 
determines the direction of the field at the given point. 
The integral (5) enables us  to express q(x) in terms 
of Jacobi elliptic functions, but we shall find it more 
convenient to deal directly with the integral representa- 
tion (5). 

2. REGIONS OF EXISTENCE AND CLASSIFICATION 
OF SOLUTIONS 

As in a number of preceding  paper^^^''^ it is conven- 
ient to reduce the solution of the boundary-value prob- 
lem (1) to an investigation of the corresponding Cauchy 
problem, i.e., to finding the "initial" values q(0) that 
determine uniquely, jointly with the initial derivative 
dq/dxl,, = H,, all the solutions of Eq. (1). Assume that 
we know the value of the field Hi which was established 
inside the ring. The solution q(x) must in this case 
satisfy the requirement dq/dxl., = H,, from which we 
get, taking (6) into account 

It i s  clear therefore that, depending on the ratio of Hi 
to q(O), the problem can have negative and positive val- 
ues of C, i.e., both increasing and bounded solutions. 

From condition (2) and the equation dq/dxl,,= Hi 
we obtain with the aid of (6) the relation 

H.Z/4-sin' (cp  ( L )  12) =H?/4-sina(cp (I)) / 2 ) ,  (8) 

which serves to determine the values of q(L); 

A x 2  arcsin ((H,'-Hez) /4+sina (cp ( 0 ) / 2 ) ) " .  (9) 
We chose here for A the principal value of the arcsine, 
0 < A  6 n, and n is an arbitrary integer. Substituting 
the value x =  L in (5) we obtain, taking the foregoing 
into account, the integral equation 

which serves to determine the quantities q(0) a s  func- 
tions of L ,  He, a, and the number n. It must be rec- 
ognized in (7)-(10) that Hi = (O)/o in accordance with 
(4). Knowledge of the quantities q 1 ,, = q(0) and dq/  
dx 1 ,, = Hi enables us  to determine uniquely the corres- 
ponding solution of Eq. (11) and to determine both the 
magnetic flux that is established in the ring [see (3) and 
(4)] and the distribution of the field and of the current 
inside the junction. 

Equation (10) was solved numerically with a computer. 
The results of the investigations a re  shown in Figs. 
2-4, where Hi is plotted a s  a function of He for several 
values of L and a. Each point on these curves, given 
Hi, L,  and a corresponds to fully defined values of q(0) 
and Hi = q(O)/a, i.e., corresponds to a fully defined 
solution of Eq. (1). To make it easier to  follow the qual- 
itative changes of the solution a s  the representative 
point moves along the curves of Figs. 2-4, it is con- 
venient to classify the solutions in accord with whether 
the field inside the ring is larger or  smaller than the 
outside field. Figure 5 shows, in the (Hi,He) plane, the 
domain of existence of static solutions of Eq. (I), brok- 
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FIG. 2. The flux uHi inside the ring vs the external field for a 
ring SQUID with L = l  and with u= 5, 10 ,  and 20. The thick 
sections of the curves correspond to stable states, the dotted 
sections show the unstable states. The numbers on the curves 
correspond to different field configurations in the junction in 
accordance with the classification used for the states in Fig. 6 .  

en up into 12 regions,= depending on the relation be- 
tween Hi and He. In addition, the boundary I Hi\  = 1 He/ 
= 2, which is a singular line for Eq. (11, is separated 
and the curves Hi=  ( ~ ~ * 4 ) l / ~ ,  where A = 1, are  shown. 
There a r e  no static solutions outside the indicated 
region. 

Equations (9) and (10) contain the integer n which de- 
termines the number of extremal points of the function 
H(x) (i.e., the number of vortices inside a junction of 
width L). Figure 6 shows schematically the behavior 
of H(x) in regions 11-VII (in our problem it suffices to 
consider the solutions in only these regions). The 

FIG. 3.  The same as in Fig. 2 ,  but at L=3. 
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FIG.4. Thesameas inFig.2,  butatL-5. 

numbers on the curves in Fig. 6 represent different sol- 
utions, the number N of the solution being connected 
with the number n in one of the following manners: 
N =  4n,N= 4n+ 1,N= 4n+ 2,N= 4n+ 3, andan increase 
of n by unity corresponds to entry of an additional vor- 
tex into the junction (see Ref. 16 for details of the as- 
sumed classification of the solutions). The primes in 
Fig. 6 mark the numbers corresponding to bounded sol- 
utions [for which the constant C in (5) and (6) is neg- 
ative and the field H(x) is of alternating sign]. In Figs. 
2-4 a re  also indicated the numbers of the solutions that 
a r e  realized at  various positions of the representative 
point on the curves. A comparison of Figs. 2-4 with 
Fig. 6 makes it easy to trace the character of variation 
of the field H(x) in the junction when the external field 
He changes. 

3. INVESTIGATION OF THE STABILITY OF THE 
SOLUTIONS 

We check on the stability of the solutions correspond- 
ing to different positions of the representative point 
on the curves of Figs. 2-4 by the method used by us 
previously for other problems.11'18 We choose a s  the 

FIG. 5. Regions of existence of static solutions . 
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FIG. 6. Schematic form of the configurations of the field H(x) 
realized in a junction of finite width in different regions of var- 
iation of the parameters Hi and He (see Fig. 5). The numbers 
on the curves correspond to different solutions. The primed 
numbers are those of the bounded solutions (for which the field 
H(x) belongs to an alternating-sign branch). 

basis the nonstationary equation 

d2lp dlp d2cp 
- +i3 - - - +sin cp=O, 
dt2 dt dz2 

which describes the evolution of the solution with time 
(here i s  p i s  a phenomenological parameter that takes 
the damping into account and ensures a static solution 
a s  t --). Putting q(x, t )  = q(x)+ $(x)eWt, we obtain a 
linearized equation for the Fourier component of the 
small deviation ( J I < <  1) from the investigated static sol- 
ution cp(x): 

Equation (12), together with the boundary conditions that 
follow (2) and (4) 

determines the spectrum of the eigenvalues E. If at 
least one of the eigenvalues E is positive, then the 
growth rate of the solution w+= -$P+  ($p2+ E)112>0 is 
positive and the deviation Qe'"+t increases with time, 
thus indicating that the solution q(x) i s  unstable. On 
the other hand, if all the eigenvalues E < 0, then the 
deviation $ewt decreases with time and the solution i s  
stable. 

The system (12), (13) was investigated by us numeri- 
cally with a computer. By specifying the values q(0) 
and Hi=  q(O)/a, we found the static solution q(x) of 
Eq. (I), and then solved the problem (12), (13) for the 
minimal positive eigenvalue. The results of this in- 
vestigation can be formulated in the following manner. 

In Figs. 2-4, all the descending branches of the cur- 
ves (for which the values of Hi decrease with increas- 
ing He) a re  unstable. Among the ascending (with in- 
creasing He) branches, the unstable ones a r e  almost 
all the branches corresponding to bounded (C < 0) solu- 
tions (for example, the ascending branches l', 2', 3' in 
Figs. 2-4 a re  ~ns tab le ) .~ '  In addition, there a re  un- 
stable branches also among the growing solutions 

(C <O) (for example, branch 8 in Fig. 4, marked by an 
arrow, is  also unstable). The remaining points of the 
Hi(H,) curves correspond to stable solutions. Thus, the 
sequence of the appearance of the stable and unstable 
regions at L > 3 i s  quite complicated. 

4. FREE ENERGY OF STATES. HYSTERESIS 

A useful characteristic of the state of a system i s  its 
free energy G. There is a well known expression for 
the functional of the free energy of a weak supercon- 
ductor in an external magnetic field in the absence 
of current.' This expression was generalized in Ref. 
17 to include the case when transport current flows in 
the system. In our case, to find the functional G it is 
necessary to take into account also the presence in the 
system of a cavity with a magnetic field. This can be 
quite simply done. It has already been noted that Eq. 
(1) for the phase cp coincides in this case with the equa- 
tion for the flux in the system [relation (3)]. It is clear 
that from the mathematical point of view the solution 
of the boundary value problem (I), (21, and (4) should 
be anextremal of the functional of the free energy, i.e., 
the condition 6G = 0 should be satisfied on the solution 
cp(x). Taking this into account, we easily obtain5' 

G[cpl=b[cpl+'/~lpoH,-lpLH., 
L 

&IT]= [ ~ / 2 ( d l p / d z ) s + i - ~ ~ ~  r q l d ~ ,  (14) 
0 

(FC=(P (O) ,  lp==cp (L)  . 
This expression can also be obtained from (11). In 
addition, from (11) we can find, with the aid of simple 
transformations (see Ref. 17 for details), for example, 
the law governing the change of the energy of a weak 
superconductor in our system: 

The first  term in the right-hand side of (14a) can be 
naturally interpreted a s  the Poynting vector a t  the point 
x = L,  while the second term i s  simply the change of 
the energy of the magnetic field in the cavity, and the 
third describes the energy dissipation in the junction. 

With the aid of (14) we can compare the free energies 
of the different states and determine the points of the 
equilibrium transition from one stable state to another 
(assuming that the system follows all the time the 
states with the minimal free energy). An example of 
the function ~ [ q ]  for several states i s  shown in Fig. 7. 
The arrows in Figs. 2-4 indicate the points He, of the 
equilibrium transition from one stable state to another. 
The fact that at a given external field He there can 
exist in a system several stable states make hysteresis 
phenomena possible. The system can then be in a state 
with free energy exceeding the minimum possible (for 
example, the stable states 0 '  on Figs. 2 and 7 have at 
He>He, a re  larger free energy than the states 1 and 2). 
The boundaries of the hysteresis, obviously, coincides 
with the boundaries of the existence of the correspond- 
ing stable state and lie inside the hyperbolas Hi = (IfL, 
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-HI I << 1. Ekpanding the integral in  (10) in powers of 
the small  parameter He-H,, we get L = (H,-H,)/sinu~,, 
whence 

FIG. 7. Dependence of the free energy G on He for a SQUID 
with L= 1 and a= 10. The arrows indicate the points H, of the 
equilibrium transition from one solution to another. The num- 
bers on the curves correspond to the numbering system used 
for the solutions in (6) (not all the solutions are marked). 

* 4)'12 that bound in Fig. 5 the regions of existence of 
the static solutions. 

We call attention to two types of hysteresis states. 
The first  is connected with the penetration of the field 
inside the ring in quantized batches, whereby no qual- 
itative change takes place in the field configuration in 
the junction itself (the transitions 0' (region 11) - 0 
(region V) and 1 (region 11) - 2 (region V) in Fig. 2 cor- 
respond to penetration of individual flux quanta inside 
the ring opening). 

Another type of state is connected with the penetration 
of the flux quantum with the formation of a vortex inside 
the junction itself (transitions 1 (region 11) - 6 (region V) 
in Fig. 3). With increasing L , such states appear more 
frequently (Fig. 4). At sufficiently small  L there is no 
hysteresis a t  all1-' and states with vortices in the junc- 
tion itself a r e  also impossible (the vortex does not fit 
in the junction if the field is not very strong). 

We note that in the absence of an external field (He 
= 0) states with a flux "frozen-in" inside the ring a r e  
possible in our system (see Figs. 2-4). In a singly 
connected system (wide junction in an external field12) 
at He= 0 there were no hysteresis states and the only 
solution corresponded to the case H(x) = 0. Thus, al- 
lowance for the inhomogeneity in the system [the 
presence of an opening jointly with the condition of flux 
quantization (3)] leads to the appearance of the pinning 
effect and to the possibility of hysteresis states in a 
zero field (see also Ref. 9). 

5. ASYMPTOTIC EXPRESSIONS AND DISCUSSION OF 
RESULTS 

In a number of limiting cases it is possible to obtain 
analytic expressions that yield the solution of the prob- 
lem. Thus, in the case of a narrow junction (L << 1) the 
fields inside and outside the ring are  almost equal, IH, 

H,--H,+L sin oHi. (15) 

This formula is suitable in a large range of fields He, 
but such that do not violate the condition LHe << 1. Cal- 
culating the derivative of (15) we get 

i.e., a t  Lo<  1 we have d~ , /dH,  > 0 and there i s  no hyster- 
es is  on the H,(H,) curves. On the other hand, if Lo> 1, 
then the derivative d~, /dH,  can be either positive o r  
negative, and the H,(He) curves should have sections 
with hysteresis. It is easy to show that the stability 
limit of the solutions (i.e., the point E = 0, see Sec. 3) 
is determined at L << 1 by the condition d ~ , / d H , =  0, 
i.e., cosuH, = -I/uL. At oL < 1 all the states a re  stable. 

In the case of arbitrary L but strong fields (He >> l ) ,  we 
have rp,-rp,= H,L and, in addition, He = H,. After ele- 
mentary trigonometric transformations we obtain from 
(8), taking (4) into account, 

It i s  easy to verify that in fields Hi> L + a>> 1 there is 
no hysteresis on the H,(H,) plot. In weaker fields (but, 
as before, He >> I) ,  hysteresis i s  possible. The func- 
tion H,(H,) can be easily constructed graphically from 
the asymptotic formulas (15) and (17) (see Fig. 8). The 
product of the sine functions in (17) i s  typical of the 
beats produced when oscillations a r e  superimposed 
(the analogy with an oscillating system explains the use 
of the term "quantum interference"). If the quantities 
L and u a r e  commensurate (their ratio i s  rational), 
then the product of the sine functions i s  a periodic func- 
tion. For noncommensurate values of L and a there is 
no periodic dependence in formula (17). 

We call attention to the fact that formula (15) yields 
an oscillatory function Hi(He) with a constant oscillation 
amplitude. According to (17), in strong fields the amp- 
litude of the oscillations decreases in inverse propor- 
tion to He and the best picture connected with forma- 
tion of vortices inside the transition se ts  in. 

FIG. 8. a) A~ymptotic plot of formula (17) for L= 3, o= 100, 
and Ife>> 1. The curve has sections both with and without hys- 
teresis (i.e., sections with single-valued Hi (He) dependence. 
The inset b shows a plot of (15) [or (20)] in the case 1=oL=0.2. 
There is no hysteresis on this curve. 
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When the results obtained above are  compared with 
the results of earl ier  work on the same subje~t ,4 '~  i t  
must be borne in mind that Refs. 4-8 dealt with a ring 
interferometer with a point contact (L <c 1). The analy- 
sis there was based on the phenomenological formula 
(in dimensionless units) 

which states that the magnetic flux 4, inside the ring 
is equal to the external flux through the ring (4, = Heu) 
from which we subtract the flux connected with the 
screening current j,,, that flows around the ring (the 
Meissner effect). In formula (18) we have introduced 
a phenomenological parameter I (the coefficient of 
self induction of the ring), which remains undetermined. 
The quantity j,,,= I,,/I,, using the relations 

L 

I.,,=j, J sin cpdx, I.=j.L, 
# 

can be represented in the form 

1 - 
j.,,= - J sin cp dx=sin cp = 

and at small L we have j,, = sinp (x) = sinp (0) r sin#i 
{we make allowance here for the fact that the phase 
~ ( 0 )  i s  the dimensionless flux c$, inside the ring, [see 
(3)l). As a result, Eq. (18) takes the form 

@,=4.-l sin Gt, 

which coincides with Eq. (15) if the latter i s  multiplied 
by a and we put l=oL. We shall show that the last 
identity holds true in the general case for a barr ier  of 
arbitrary width L. In fact, from (18) and (19) we have 

where we have used Eq. (1) and took into account the 
boundary conditions (2) and (4) for the field H. 

Thus, the self-induction coefficient of a single ring 
interferometer is in the general case (in dimension- 
less  units) equal to the product of the a rea  of the open- 
ing by the width of the contact: 

l=oL. (21) 

Proceeding to dimensional units (see footnote 2), we 
obtain an expression for the dimensional self-induction 
coefficient 9: 

in which we express (18) in the form @,= @,-Yl,,,, 
where ae , ,  a re  dimensional fluxes and I,, is the total 
current flowing around the ring. 

Let us explain why the approach developed by us 
makes i t  possible to determine completely the para- 
meter 2 (orY). The point is that we base ourselves 
essentially on Eq. (I), which connects the values of the 
field inside and outside the ring. The screening prop- 
erties of the system a re  then automatically taken into 
account by the form of Eq. (I), and the weakening of 
the internal field (the Meissner effect) i s  determined 
in our case completely by the geometric factors L and 

a. In the earl ier  papers4" and in Eq. (181, there was 
actually no use made of Eq. (I), and the Meissner 
effect was taken into account phenomenologically by 
introducing a certain (indeterminate coefficient I .  

Thus, our formula (l5), when (21) is taken into ac- 
count, coincides with formula (20) previously obtained 
for point contacts.4* The condition for the applicabil- 
ity of this formula was indicated above, namely LHe 
<< 1. In sufficiently strong fields (He> 1 / ~ ) ,  even in  
the case of a point contact, a deviation from relation 
(20) takes place and i t  i s  necessary to use in its place 
Eq. (17). The latter is valid (at H i e  He >> 1) also for 
broad contacts and takes into account the effect of vor- 
tex formation inside the junction itself. 

We note that the present paper did not deal with the 
nonstationary processes in the system. These can be 
analyzed in principle with the aid of the general equa- 
tion ( l l ) ,  which in this case holds for the magnetic 
flux inside the system. The final state of the system, 
of course, depends here on the initial conditions. The 
establishment of the stationary state in a system with 
a point contact (L <<I) was considered previously in a 
number of papers (see, e.g., Refs. 6-8). We note also 
that the nonstationary equation used in the cited papers 
for the magnetic-field flux in the system can be either 
obtained from (11) by averaging the last equation over 
the interval OG x 9 L and then putting L << 1. 

We note in conclusion the following circumstance. 
A ring SQUID in  an external static field is always in 
one of the possible stable states and cannot be  trans- 
formed by simply increasing the field into a nonsta- 
tionary regime similar to that which ar ises  in a Joseph- 
son contact when a current exceeding the critical value 
is made to flow through it. It is possible, however, to 
point out a situation wherein a nonstationary regime of 
this kind can be realized under static conditions. In 
fact, if the ring SQUID is made of two different super- 
conductors and the points of their junctions a re  a t  dif- 
ferent temperatures T, and T,, then an additional ther- 
moelectric current i s  produced in such a ring, and 
with it is associated a magnetic flux @, (for more de- 
tails see  the r e ~ i e w " ~ ) .  This magnetic flux i s  due to  the 
disequilibrium (temperature gradient) and therefore 
is not subject to  the quantization condition (i.e., it can 
assume arbitrary values). Therefore when a bimet- 
allic SQUID is heated the field Hi in i ts  internal cavity 
increases and can in principle go outside the limits of 
the hyperbolas Hi = (e* 4)'12 (see Fig. 5) that bound 
the limit of the existence of the static solutions. The 
SQUID then goes over into a nonstationary regime, a 
traveling vortex structure is produced in the junction, 
and the SQUID itself serves as a source of electro- 

. 

magnetic radiation (for details see  Ref. 14, where a 
nonstationary picture of this type is considered). We 
note that in a sufficiently strong external field the 
hyperbolas (He 4)'" a r e  close to one another and 
therefore the appearance of a weak thermoelectric flux 
may be  sufficient to transfer the SQUID into a non- 
stationary regime. 

In conclusion we thank V.V. Shmidt for  a discussion 
of the results. 
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� he term SQUID stands for "superconducting quantum inter- 
ference device." 

2'~n dimensional variables, these inequalities take the form L 
<< h, and Lk A,, where h j  - 0.1 mm is  the Josephson depth of 
penetration. In the text we use dimensionless quantities, with 
the lengths measured in units of h J, the current in units of j, 
( j ,  is the maximum value of the stationary current through the 
barrier), the field in units of Hj= cP0/&hJA - 1 (cPo is the flux 
quantum, A= 2AL + I ,  AL is the London penetration depth, I - lo-' cm is  the thickness of the dielectric layer, and the flux 
in units of @,,/a. 

 he numbering of the regions I-XII in Fig. 5 was chosen to 
preserve the correspondence with the numbering assumed 
previ~usly '~ in the investigation of the behavior of a Joseph- 
son barrier with current in an external field. 

 his agrees with the f a d  that the solutions with alternating- 
sign sections of thefieldtib) turned out to beunstable also in the 
previously considered problems?2-" The ascending branches 
of the solutions 0'. however, a re  stable. 

 he term $ c p o ~ i  in (14) (equal to ati;/8r in dimensional units) 
is the energy of the magnetic field inside the cavity. The ex- 
pression for the free energy of a singly connected weak 
superconductor in an external field1*" contains a term $/4,, 
therefore the coefficient is missing from the corresponding 
term. 
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Critical phenomena in thin superconducting films 
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Resistive transitions occuring in thin vanadium films with varying temperature, current, and magnetic 
field were investigated. It was observed that the excess conductivity d at T < T,  and H < H, depends 
exponentially on the reduced parameters = 1 - T / T , ,  h = 1 - H/H, ,  and j = 1 - I / I , .  The resistive 
transitions satisfy the similarity law, i.e., they can be described by functions of E, h ,  and j which are 
universal for all the curves. The obtained regularities are discussed within the framework of the 
fluctuation theory of second-order phase transitions. The temperature and magnetic-field widths of the 
transition agree numerically with the predictions of the theory. 

PACS numbers: 73.60.Ka. 74.40. + k 

Resistive transitions i n  the region of phase trans-  
formations into the superconducting state are measured 
quite frequently. These measurements determine the 
values of the critical parameters-the temperature of 
the superconducting transition T, and the critical mag- 
netic fields H,. However, the nature of the resistive 
state i n  the region of the superconducting transition is 
as yet nowhere clear. 

In the vicinity of the phase-transition point, a sub- 
stantial role is played by fluctuations of the order  para-  
meter, which lead to noticeable deviations f rom the self- 
consistent field theory (SFT), which makes use of an 

average value of the order  parameter  1 A I  2. In the cri t-  
ical  region defined by the so-called Ginzburg number,' 
where the fluctuation correct ions exceed the mean value 
of 1 A 1 ', the SFT cannot be  used at all and an adequate 
description is obtained within the framework of simiAar- 
ity theory (see, e. g., the monograph of Patashinskii 
and ~okrovsk i? )  . 

The corrections that must  b e  introduced in the SFT 
when the cri t ical  region is approached can be  obtained 
from an  analysis of the smal l  fluctuations. In part ic-  
ular, the resul t  of their  contribution is an excess con- 
ductivity at T >> T,, f i r s t  calculated by Aslamazov and 
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