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Resonant interaction of an x-ray wave field with the acoustic displacement field in a perfect crystal, 
which occurs under certain conditions, is considered. It is shown that the resonance effects correspond to 
self-intersection of the dispersion surface of the dynamic diffraction of the x rays; this surface is periodic 
in reciprocal space with a period equal to the wave vector of the acoustic wave. Under resonance 
conditions, a substantial change takes place in the x-ray absorption coefficient in the case of weak 
acoustic action, new Bloch-wave trajectories appear, and the oscillations of the reflected- and refracted- 
beam intensities are a m p l i i .  

PACS numbers: 78.70.Dm 

The high sensitivity of x-ray diffraction to crystal- 
lattice distortions makes i t  easy to observe the influ- 
ence of ultrasonic oscillations on i ts  intensity in both 
thin1-= crystals (gt < 1, where p is the linear absorp- 
tion coefficient and t is the thickness) and thick4'= ones 
(gt- 10, conditions for the appearance of the Borrmann 
effect6). In thin crystals, an increase of the integral 
reflection intensity takes place and corresponds to a 
transition to kinematic scattering with increasing ultra- 
sonic deformation, whereas in thick crystals the 
anomalous passage of the x-rays becomes weaker. This 
influence i s  observed regardless of the wavelength of 
the ultrasound and increases with the deviations, due to 
acoustic displacements, from the Bragg condition. It 
was recently ~hown,~-'' however, that ultrasound with 
a wave vector K, lying in the reflecting plane causes 
resonant suppression of the Borrmann effect if i t s  
wavelength A, coincides with the x-ray extinction length 
7. The theory'' of this phenomenon, which made i t  pos- 
sible to explain the exceedingly high sensitivity of the 
intensity of the anomalous passage to weak ultrasonic 
deformations (deformation amplitude c - 10-9-10-8) was 
based on the Takagi system of equations," which de- 
scribes the diffraction of x-rays in distorted crystals. 
This method i s  effective only for a definite one-dimen- 
sional geometry of the problem. A more general analy- 
sis starts from the fact that the acoustic displacement 
field produces in the crystal an instantaneous super- 
lattice with a period equal to the vibration wavelength, 
and uses the equations of the dynamic scattering theory 
for an ideal crystal. We note that in Ref. 12 these equa- 
tions were used to solve the problem of thermal diffuse 
scattering in Bragg reflection of x-rays. The scatter- 
ing of x-rays by a crystal with an ultrasonic deforma- 
tion field was investigated in Ref. 13 in similar fashion 
a t  A,<<?. In this case there a r e  no resonance effects, 
s o  that the acoustic field influences the diffraction 
noticeably only a t  large values E -  lo'*. The method 
used in Ref. 13 for a qualitative analysis of the general 
equations and for constructing the dispersion surface i s  
not applicable when A, and 7 a r e  of the same order. 

The purpose of the present study was to investigate 
the resonant interaction of an x-ray wave field in an 
absorbing crystal with the acoustic displacement field 

a t  an arbitrary geon'etry of the problem, on the basis 
of the dynamic scattering theory for an ideal crystal. 

The reciprocal lattice of a crystal with a standing 
displacement wave 

u=U sin (2nK,r) ,  

(where U= U, sin(2nvsT) and v, is the frequency of the 
ultrasound oscillations) contains in addition to the 
principal points H also satellites H i  nK,, which de- 
scribe diffraction with absorption o r  emission of n 
phonons. The Fourier components of the polarizability 
corresponding to the point H+nK, i s  expressed in 
terms of a Bessel function of order n (Ref. 14): 

XL i s  the Fourier component of the polarizability of the 
undistorted crystal. Since U is a function of the time, 
the quantities xHrn also depend on the time. Since, 
however, us <<v, (v, is the x-ray frequency), we can use 
a quasistatic approximation and neglect the transfer of 
energy from the phonon to the x-ray quantum. We a r e  
considering here diffraction by a static displacement 
wave, and the final result should be averaged over the 
period of the ultrasound oscillations. At IH. u,( << 1 
i t  is necessary to neglect the coefficients XH*,,K, with 
n > 1. In addition, K, << H and the coefficients x IKs a r e  
also negligible (they a re  exactly equal to zero for a 
transverse acoustic wave). 

If the crystal i s  in a reflecting position, then simul- 
taneously with the points 0 and H the points HinKs and 
*nKs a re  close to the Ewald sphere and the diffraction 
become multiwave. It  is important that the number of 
plane waves that must be taken into account exceeds the 
number of nonzero structure factors. In fact, a s  
shown by a consecutive ~alculat ion '~ of the Bragg scat- 
tering of waves corresponding to satellites of the 
principal points of the reciprocal lattice, the ampli- 
tudes of the waves JK, +nK,) (KO is the wave vector of 
the refractive wave) and IK, + H +nK,) a r e  of the same 
order, regardless of the fact that JxnGI << J x ~ + ~ ~ ~ J -  This 
follows from the structure of the system of equations 
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describing multiwave diffraction15: 

in which the amplitudes &,+, of the plane waves 
IK,+H) enter with coefficients XG-H. 

At K, >> KIx,I the system (1) reduces to  a set  of inde- 
pendent systems of equations for the pairs of amplitudes 
dKo+nKs and dKO+H+nlK,, with arbitrary n and n'. The 
problem can be treated in analogy with the ordinary- 
wave case, and the dispersion surface is an aggregate 
of two-wave dispersion surfaces.13 

Resonance effects a r e  possible when K, and KIxH1 a r e  
of the same order. The problem does not reduce here 
in a two-wave problem. Using the condition (Ha Uo( << 1, 
we confine ourselves only to the plane waves I K , ~  K,) 
and (KO + H +K,), which a re  connected with the waves 
(KO) and (KO +I$ by polarizability coefficients with n = 1 
(this approximation will be justified below). Recogniz- 
ing that in (1) we have k = K(l  +xd2)  and that 
[dKo+H]Ko+G i s  the component of dK0+, normal to K,+G, 
and writing 

where K i s  the wave vector of the incident radiation and 
n i s  the normal to the crystal surface, we obtain for the 
symmetrical Laue case and for a centrosymmetric ab- 
sorbing crystal a system of six-wave diffraction equa- 
tions: 

(A-151) D=O, (2) 

where A=& + f, 
0 - A  0 0 

- A r O O  0 0  

0 0 0 0  SO - A  
0 0 0 0 - A  r + s H  

A = - CKxH/2 cos6,, 6, i s  the Bragg angle, C = 1 or 
cos 26, for radiation polarized perpendicular or  parallel 
to the scattering plane 

r-2K sin 9. (9-9s), s.= 
K (G+G) 
KcosBB ' 

6 = - q - Kx,,/2cosB,, f i s  a unit matrix, and D i s  a 
generalized vector whose components a r e  the wave amp- 
litudes of the normalized Bloch wave: 

Thus, the problem has been reduced to  finding the 
eigenvalues and eigenvectors of complex symmetrical 
matrix. In the limiting case 9 = 0 ,  (Uo=O), 0 i s  a null 
matrix, we obtain three independent two-wave problems 
for the wave pairs IK,) and I KO + H) , IK, + K,) and 
~K,+H+K,) ,  IK,-K,) and IKo+H-K,). Accordingly, 
the dispersion surface consists of three pairs of 
branches (for each polarization state): 6g0, i, 6go+Ks,i, 
620,Ks,i. The imaginary part  of the eigenvalue with 
i = 1 in each pair describes the anomalously weak ab- 
sorption of one of the wave fields, the other wave field 
(i = 2) is absorbed anomalously strongly. Two additional 
pairs of branches 6go,G,i a r e  shifted by iKs relative to 
6EoSi. The form of the dispersion surface follows di- 
rectly from the fact that the length of the reciprocal- 
lattice cell of the crystal with periodic displacement 
field in the K, direction is equal to  K,, and the dis- 
persion surface is periodic in reciprocal space with 
this period. Under definite conditions self-intersection 
of the dispersion surface is possible. If ?* 0, the 
eigenvalues and eigenvectors of the matrix equation (2) 
do not reduce to two-wave quantities. The largest 
changes occur when the dispersion branches intersect, 
and the perturbation ? lifts (partially o r  fully) the 
degeneracy due to the self-intersection (a similar ap- 
proach i s  used, for example, in the theory of helicoidal 
magnetic structures16). The substantial changes of the 
eigenvalues a t  small U, cause resonance effects. 

Substituting the expressions for the eigenvector near 
the point of intersection of the dispersion branches 
6ko. i and 6 $ , - ~ ~ ,  

where and a re  the eigenvectors of the ma- 
trixA,, in Eq. (2) and multiplying the left in succession 
by and go-Ks,j we obtain the system of equations 

ca, (6: ,-6) +c--=, ,v,U,=O, 
- - 

CG I V ~ + C K , - ~ , , ( ~ & - K , , - ~ )  =O. 
(3) 

We have used here the orthogonality property (relative 
to the simple scalar product rather than the Hermitian- 
scalar product) of the eigenvectors of a complex sym- 
metrical matrix 

from the condition that the system (3) have a solution, 
we get 

0 0 
6'='/r(6r, if 6r.-u.j) 

*['/'(15~,i-sZ-,.,)'+(v:,)21'". (4) 

The form of the Bloch waves D can now be determined 
by solving (3) for c. From the boundary condition on 
the entry surface of the crystal 

where q i  i s  the amplitude of the i-thBlochwave, i t  fol- 
lows17 that qi = dK6. Therefore the Bloch waves 
DK~*K,  have a noticeable amplitude only in the region 
of the intersection of the dispersion branches bKg and 
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we have 

The amplitudes of the satellites and of the Bloch waves 
46 a r e  of the same order). 

Before we discuss different concrete cases, let us 
examine the ques€ion of the validity of neglecting satel- 
lites with n >  1. The amplitudes of the latter a re  not 
small in the region of intersection of the dispersion 
branches 6 ~ :  and 6go*nKs. However, VnKs" (H' U)", the 
corresponding interval of the incidence angle A0 
- VnKsxH i s  negligibly narrow a t  1 ~ .  u,/ << 1, and multi- 
phonon processes can be disregarded. 

Figure 1 corresponds to x-ray acoustic re~onance.~-'O 
An ultrasonic wave with Ks = Ksn is excited in the crys- 
tal, and the polarization vector has a component along 
H. The eigenvalues of $ a r e  

c K x ~  ctg 1, - 
2 cos 0.  2 

where 

r sin 20, (8-0.) ctg p= - =- 
2A CX= 

and /3 i s  the complex argument. If 

( ~ K ~ = 6 ~ , , , - 6 ~ ~ , ~  is the splitting of the two-wave dis- 
persion surface and AKO, is the gap a t  the boundary of 
the band), the branches 6i0,, and 6f;o+K, intersect. As 
a result, the states with the eigenvectors 

sin (b*/2) 0 
- c ~ ( B * / 2 )  0 

Dta, l=[  ) 3 D k . + K s , z = [  cos ($*/2) ) 
, sin (8*/2) 

I(, H + K , *  

FIG. 1 .  Dispersion surface of the dynamic diffraction of x rays 
by a crystal with a periodic displacement field (for one of the 
polarization states), A-center of propagation of the plane wave 
incident on the crystal, v-groupvelocity vector, K, = K s .  

become mixed, where /3 * i s  the value of the argument 
a t  which the dispersion branches intersect. The matrix 
element is VK: = -a. At 

we obtain from (4) 

The intersection of and 6&,-Ks,l yields two other 
eigenvalues 6+ - K, and 6- - K,. In the case of a thick 
crystal, only fields that a r e  weakly absorbed, with 
eigenvalues 6' and 6' - K,, a r e  significant. The 
imaginary part of the correction to the eigenvalues, 
which depends resonantly on K,, suppresses the 
anomalous passage of the x rays. The decrease of the 
intensity i s  described by the factor 

exp ( -Ap t )  =exp{-4n 1 m ( 6 ~ , , - 6 + ) t ) .  

It  follows from (5) that 

If A, = T[K, = Re(hPH), tangency of the dispersion 
branches], the anomalous passage of the waves propa- 
gating along the Bragg planes (6 = 6,) and making the 
largest contribution to the integrated (with respect to 
0) intensity becomes suppressed. At K, = ~e(hK,) ,  a 
resonant decrease takes place in the amplitude of the 
Bloch waves that correspond to a definite value of 
10 -0,l and propagate along normals to the dispersion 
surface a t  the corresponding propagation centers. The 
suppression factor should be averaged over the period 
of the ultrasonic os~illations. '~ Expression (6) coin- 
cides with that obtained in Ref. 10 by solving equations17 
that describe interband scattering by the displacement 
field. The real part of the correction to the eigenvalues 
gives r ise  to characteristic effects of the dispersion 
type (Fig. I),' which lead to a change, that depends on 
the phase of the oscillations, in the period of the ex- 
tinction beats in a thin crystal. When averaged over the 
period of the oscillations, this effect causes damping 
of the beats. At resonance, on the other hand, the 
depth of the oscillations, with a fundamental period 
equal to the wavelength As of the ultrasound increases 
in the refracted and in the reflected beams that a re  due 
to the presence of two weakly absorbed Bloch waves with 
different eigenvalues 6' and 6' - K,, and a r e  due also to 
the contributions from the satellites to each of these 
fields. A similar result was obtained in Refs. 8-10, 
while oscillations in a non-absorbing crystal with a 
superlattice were considered in Ref. 18. 

Figure 2 shows the section of the dispersion surface 
in the case when the wave vector of the ultrasonic wave 
with longitudinal component is directed along the dif- 
fraction vector: K, = - K,H/H. Self-intersection of the 
dispersion branches is possible for any K,. The com- 
plex gap, equal to 

lifts the degeneracy of both the real and imaginary parts 
of the eigenvalues on the boundary of the superband. 
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FIG. 2. The same as  in 
Fig. 1 at Ka = K ~ H / H .  

K. 0 -I, H+I .  H H-K, 
0 . 0  . . .  

Near the self-intersection point, the amplitudes 
/K,* K,) and IK,+ H* K,) of the plane waves increase to 
values of the order of unity. The interference of the 
waves IKJ, lKo,tK,) and ~K,+H),  ~ K , + H ~ K , )  causes 
intensity oscillations with a fundamental period A, in 
the transmitted and diffracted beams. The oscillations 
of the intensity of the diffracted beams, under condi- 
tions of the Borrmann effect a t  K,IIH, were observed in 
Refs. 4 and 5. The interpretation of the experimental 
results was reduced in Refs. 4 and 5 to the fact that the 
Borrmann effect i s  suppressed in the most deformed 
crystal sections. I t  is easily seen that in this case the 
period of the oscillations should be equal to As/2 (the 
regions of maximum deformation a r e  encountered twice 
in each wavelength). The period of the oscillations on 
the topogram4 i s  actually close to As/2, and in Ref. 5 i t  
is close to A,. This can be explained in the following 
manner. At IH Uo( << 1 the amplitude of the satellites 
a r e  not small in a narrow region of values of 8, and a 
noticeable contrast ar ises  when the waves (K, + H* K,) 
and IK,+H) interfere. With increasing E,, the con- 
trast  of the oscillations with the period &/2, which a r e  
due to interference of the waves ]KO + H + K,) and 
(K, + H - K,) increases. When the branches intersect, 
a trajectory of the wave v' appears and i s  the mirror  
image of the initial trajectory (Fig. 2). Diffraction in 
a non-absorbing crystal a t  K,((H and A, << T was investi- 
gated experimentally and theoretically in Refs. 3, 13, 
and 19. Satisfaction of the condition A, <<T makes i t  
possible to observe separately satellites of different 
orders ( I H -  u,I >> 1) on the rocking curves. In Ref. 20, 
for the same geometry of the problem and for a thin 
crystal, the ray approximation was used. Focusing of 
the wave field on the periodic displacement field leads 
to oscillations of intensity. In Ref. 20, however, the 
principal mechanism of contrast formation in the case 
of a thin crystal, namely the direct image, was not 
considered. 

Figure 3 shows the section of the dispersion surface 
in the case when the wave vector 

couples a Bloch state with definite e *  with a state cor- 
responding to 0 = e,, 

The intermixed states a r e  

FIG. 3. The same as in 
Fig. 1 at K, =K&- K H H / H .  

sin ($*/2) 

0 - 1 

with eigenvalues 

CKXH b' 
6",,=--ctgT. 

2 cos 0. 

we obtain with the aid of (4) 

where 

The absorption coefficient of the Bloch wave %O+Ks,i 
described by the imaginary part 6- i s  smaller than the 
absorption coefficient of the wave %,,,, and tends, 
when the displacement amplitude i s  decreased to the 
minimum value possible for a perfect crystal, pos- 
sessed by a Borrmann wave field a t  8 = e,. Conse- 
quently in this case the acoustic field enhances the 
Borrmann effect (scattering into a state corresponding 
to 0 = 8, takes place). The amplitude of a weakly ab- 
sorbed field i s  

Thus, in analysis of the diffraction of x rays by a 
crystal with a superlattice reduces to consideration of 
different cases of self-intersection of a dispersion sur- 
face which i s  periodic in reciprocal space with a period 
K,. Three effects a r e  produced in this case: change of 
the absorption (suppression o r  enhancement of the 
anomalous passage), appearance of new trajectories of 
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the wave field in the crystal, and resonant amplifica- 
tion of the oscillations of the intensity of the diffracted 
and transmitted beams with the fundamental period As. 

The author thanks V. I. Nikitenko for a useful dis- 
cussion of the work. 
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field 
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A theory is developed for a single ring interferometer (SQUID) having a finite contact with L and placed 
in an external static magnetic field He.  Numerical methods are used to study the nonlinear-equation 
solutions that yield the distributions of the field in the ring and inside the contact. The obtained solutions 
are investigated for stability, and the stable and unstable configurations are determined. The free energies 
of the different states are obtained. The points of equilibrium transition from one state to another are 
found, as are the boundaries of the hysteresis region. The dependence of the field Hi inside the ring on 
the external field He is plotted at different values of the width L of the contact and of the area a of the 
internal opening of the ring. In the limiting case of small widths ( L  < < I), and also in the case of strong 
fields (He > > I), analytic formulas are obtained. The general expression for the self-induction coefficient 
of the ring interferometer is found. A comparison is made with the results of other studies of this subject. 

PACS numbers: 85.25. + k 

1. INTRODUCTION 

We consider in this paper the problem of penetration 
of an external static magnetic field into a superconduc- 
ting ring that is closed by a Josephson junction of finite 
width L (see Fig. 1). The external magnetic field He 
is directed along the z axis perpendicular to the plane 
of the figure. It is assumed that the superconductor has 
an infinite length along the z axis (cylinder with cuts 
along L). It is obvious that all the quantities in the plane 
of the barrier depend in this case only on the angle co- 
ordinate x(0 c x s L). 

The distribution of the field and of the current in a 

Josephson barr ier  of finite width i s  described by the 
nonlinear e q ~ a t i o n l - ~  

d2rq/dz'=sin cp, (1) 

where the density of the current through the barrier is 
j(x)= s i n p b )  and the magnetic field i s  ~ ( x )  =dp/dx. 
(The quantity p(x) is called the phase difference of the 
superconductor order parameter.) 

FIG. 1. Schematic view of 
a ring SQUID in an exter- 
nal field. 
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