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The effect of a quantizing magnetic field on nonequilibrium fluctuations in an electron gas is investigated. 
Besides solving the fluctuation problem, the linear response of the system to an external action is 
obtained, and this yields relations similar to the fluctuationdissipation theorem. The cases of parallel 
electric and magnetic fields and of scattering of electrons by acoustic and optical phonons are considered. 
The author has shown previously that in a strong electric field such a system deviates greatly from 
equilibrium because two competing mechanisms act on the electrons: "runaway" of the electrons into the 
region of higher energies, and spontaneous optical-phonon emission that hinders the runaway. It is found 
that in strong electric fwld the fluctuations in the system are large, whereas the dependence of the 
current on the electric field is only slightly nonlinear. All this indicates, at least, that the study of the 
fluctuations is a very sensitive method of investigating nonequilibrium systems. 

PACS numbers: 72.10.Di, 72.20.Ht 

1. INTRODUCTION e q u i l i b r i ~ m , ~  and this disequilibrium is not described 
by an effective electron temperature, a s  is the case in 

Electronic fluctuations in a nonequilibrium stationary crossed electric and magnetic fields.'' 
state, which a re  produced in a semiconductor by a con- 
stant electric field, were investigated in a number of 
studies.'-' Most of them dealt with systems whose kin- 
etic behavior is described by the ordinary Boltzmann 
equation. In Ref. 6, however, the fluctuations were con- 
sidered under conditions of quantization of the motion 
of electrons in the electric field,? when the ordinary 
kinetic equation cannot be used, and i t  was shown that 
the fluctuations can be  anomalously large in that case. 
It is of interest to investigate other quantum systems 
in which one can expect new regularities of the non- 
equilibrium state. 

The present paper deals with spatially-homogeneous 
current fluctuations in an electron-phonon system sit- 
uated in parallel electric and quantizing magnetic 
fields. High-frequency fluctuations in crossed fields 
were investigated earl ier  in Ref. 8, and the method 
developed there will be used here. 

In Ref. 9, under conditions of strong quantization 
(Ew ,> 5, where w,is the cyclotron frequency a n d r i s  the 
average electron energy), the author considered the 
kinetics of electrons interacting with acoustic and op- 
tical phonons. The latter  prevent the penetration of 
electrons into the region of high energy, which takes 
place in a quantizing magnetic field if the electron scat- 
tering i s  quasielastic. It is precisely in such a system 
that we investigate in the present paper the longitudinal 
fluctuations of the current. 

In Sec. 2 i s  discussed the fluctuation problem. Var- 
ious approaches to the solution of this problem a re  
cited and the possible situations in the theory of non- 
equilibrium fluctuations a r e  analyzed. These situations 
a re  investigated in Secs. 3 and 4 for the cases of an 
electron gas in weak and strong disequilibrium under 
Landau quantization conditions. Besides solving the 

The parallel orientation of the fields is of interest be- problem of the fluctuations, we obtain the linear re- 
cause in the case when the electric field is strong the sponse of the system to the external action, and this 
electron energy distribution deviates greatly from makes i t  possible to obtain relations similar to the 
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fluctuation-dissipation theorem. In particular, i t  is 
shown that in strong electric field the fluctuations in 
the system a r e  large and their intensity exceeds by a 
factor 2 E w d 3 ~  the intensity of the equilibrium fluctua- 
tions (T is the temperature of the thermal bath, o, is 
the frequency of the optical phonons, and fio ,>> TI. 

2. THE FLUCTUATION PROBLEM 

At the present time there a r e  two quite general ap- 
proaches to the solution of the problem of fluctuations 
in a nonequilibrium electron gas: the method of mo- 
ment~ '* '*~ and the method of Langevin extraneous 
s o u r ~ e s . ~ * ~ * ~ ~ ~  That these two approaches a re  equiva- 
lent to the case of low-frequency fluctuations was dem- 
onstrated in Refs. 11 and 12. The Langevin method, 
however, is more convenient. Thus, for example, i t  
does not require a special generalization to the case 
of high-frequency fluctuations, if one s t a r t s  from the 
equations of motion for Heisenberg operators, of the 
type5v8v8 a$z,.." The latter, as shown in Ref. 5, makes 
i t  possible also to introduce in a unified manner the 
extraneous sources into the equations for the fluctuat- 
ing quantities Of,,= aa,.- (p$,,), both in cases when 
the usual kinetic equation i s  valid,5 and in cases when 
i t  i s  necessary to use i t s  quantum analogs.Bs8 

Before we proceed to the calculation of the fluctua- 
tions of the current in a quantizing magnetic field, we 
point out some characteristic features of such prob- 
lem s. 

We consider the equation for 

which is general enough to illustrate the possible situ- 
ations'"* 

where j,(t) is an extraneous source of fluctuation; 6 ~ ( t )  
are fluctuating fields, which a r e  assumed specified in 
the solution of (2) and in the general case, after finding 
the current fluctuations, a r e  determined from Max- 
well's equations; f,= (p:a,). For low-frequencies 
(lie <<a we have 

LVa-' (6E,', 6 f.') -L.8fv-, 

LVff =o, 

where (3) i s  the kinetic equation. 

As seen from (2), in the general case i t  is necessary 
to solve a system of equations of type (2) for the quan- 
tities (bf,bf,.) and (bfj,,), since it i s  not the extraneous 
sources which a re  known, but their correlators (ij,.). 

However, when low-frequency fluctuations are  con- 
sidered, the situation simplifies (as i t  does also in a 
number of  case^^*'*^ when (2) reduces to an algebra 
equation in bf), and equation (2) takes the form 

Then, using the fact that in the absence of electron- 
electron collisions we have12 

we obtain an equation fo r  a quantity that describes fully 
the fluctuations in a nonequilibrium electron gas inter- 
acting with a thermal bath: 

where N i s  the number of particles 

Equation (6) was obtained in Ref. 2. In the present 
paper we shall use both (2) and (6). The former is 
used for when the constant electric field i s  weak and the 
fluctuations of the symmetric part  of the distribution 
function can be neglected and the latter will be  solved 
in the case of appreciable disequilibrium of the elec- 
tron subsystem (strong electric fields). 

We proceed now to an investigation of the spatially 
homogeneous electron-phonon system situated in par- 
allel electric E=(o, 0, E) and a quantizing magnetic H 
= {0,0, H) fields. We consider here the longitudinal- 
current density fluctuations 

6L -- 4--z p,Sfv, 
V m  " 

(8) 

where V i s  the volume of the crystal (hereafter V =  I), 
and e and m a r e  the charge and effective mass  of the 
carr iers ,  whose energy dispersion i s  assumed to be  
quadratic and isotropic. We note that all the results 
can be easily generalized to the case of anisotropic 
effective mass. 

It is clear that the main problem i s  to find the fluctua- 
tions bf, of the distribution function from Eq. (2). A 
similar equation was obtained in the case of crossed E 
and H field in  Ref. 8 by linearizing the Heisenberg 
equation of motion for  the operator a$,,, over the fluc- 
tuating quantities bf and 6E, and we shall not stop here 
to derive a similar equation, presenting only the opera- 
tor LF with allowance for the pecularities of our pres- 
ent problem (the phonon subsystem is assumed to be  in 
equilibrium) : 

where 

^ " ( 6 f V ) =  {w?+ (o)6fv-wv?:+ ( (d )6 fv* ) .  V.P 

v'.q .a 

The index a, just a s  in Ref. 9, denotes the type of 
phonon, acoustic and unpolarized optical, and 

wz* ( o )  = w,:, (q, a )  *w,: (q, a), 

where N,, is the Planck distribution function of the 
phonons. The symbols not defined here and below can 
be obtained in Ref. 9. 

Introduction of the extraneous sources j,(t) is des- 
cribed in Refs. 5, 6, and 8, and we shall only indicate 
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here that j ,  agrees in form with the expression 

(He, is the Hamiltonian of the electron-phonon interac- 
tion), in which the operators have the t ime dependence 
of the noninteraction particles. 

Finally, both Eq. (2) and the results of the next sec- 
tion a re  valid for arbitrary frequencies that are  not 
multiples of the cyclotron harmonics: 

where Ti,, is the characteristic frequency of the elec- 
tron-phonon collisions. 

3. WEAK FIELDS. ARBITRARY FREQUENCIES 

To calculate the fluctuations of the current i t  i s  ne- 
cessary to know the antisymmetrical point % of the 
fluctuation of the distribution function 6 c ,  which can 
be  easily obtained by neglecting an Eq. (2) for 6 c  the 
fluctuations of the symmetrical part  of the distribution 
function. This can be done if the constant electric field 
is we&': 

Here 

Ao, SH 1 z = - -  
2 CE lac' 

where 7, is the average energy relaxation time, i7 is the 
average electron velocity, S i s  the speed of sound, 2 i s  
the magnetic length, and I,, is the mean f ree  path of the 
electron at H =  0. 

In the field region defined by the inequality ( l l ) ,  the 
first  term in the operator L, can be omitted, then rec- 
ognizing that in the case of strong quantization we have 
Iq,I << l q I l  and I q , 1  << I q , 1  relative to the parameter 
E1l2/(fiwJ'lz we can neglect the dependence of the cor- 
responding quantities on q, in q,,, we obtain for 6f ~'" '  
an algebraic equation that agrees in  form with Eq. (13) 
of Ref. 6. This equation can be easily solved and en- 
ables us to find the conductivity o: and the correlator of 
the extraneous current @gw, and consequently to solve 
the problem of the linear response and of the fluctua- 
tions in the situation under consideration. 

The formal agreement of the equations for 6f,, in the 
present paper and in Ref. 6 enables us to write down 
immediately an expression for the conductivity: 

and for the correlator: 

where 

At high frequencies, formulas (12) and (13) go over into 
the corresponding expressions of Ref. 8. 

It is easy to show that under thermodynamic equili- 
brium 

i.e., the fluctuation-dissipation theorem holds. 

4. STRONG FIELDS, LOW FREQUENCIES 

As already mentioned, a strong electric field parallel 
to the magnetic field makes the electron subsystem 
deviate strongly from e q u i l i b r i ~ m . ~  Greatest interest 
attaches therefore to the investigation of the fluctuations 
in just this case. 

According to (7), (8), and the identity 

the current-density correlator i s  equal to 

where 

yve = Cp.'G,. (17) 

For high-frequency fluctuations (fiw << 3 the quantity 
.J;' is determined from the equation (see (6)) 

where 

(J, is the current density and n is the electron con- 
centration). 

For frequencies bounded by the inequality 

wcrnin (T~-', Q=), (19) 

(this is precisely the frequency region to be considered 
henceforth) the left-hand side of (18) coincides with the 
kinetic equation (3), which was solved by the author 
earlier.g When solving (18) in the frequency region in- 
dicated by the inequality (19), we shall therefore pay 
principal attention only to the difference between the 
solution of (18) and the kinetic equation (3) which was 
solved in Ref. 9. 

We assume that the electrons occupy only the zeroth 
Landau level, and also assume that w,> w,. The sep- 
arate two energy regions, & < fiw, and & > fiw,, in which 
scattering by acoustic and optical phonons predom- 
inates, respectively. Then Eq. (18) in the second 
region takes the form 

where 

We recall that the notation not defined in the present 
section is taken from Ref. 9. The distribution function 
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fb,) for p,Q -Po is the solution of the homogeneous 
equation (20) and is equal to13 

from Maxwellian, and takes in the f i r s t  region (&<tiw,,) 
the formg 

Equation (20) is easily solved, and i t s  solution is where C is a normalization constant and 

where C, i s  a constant (see below). 
In the second region (&>tiw,) the symmetrical part  of 

the distribution function (21) decreases rapidly over a 
lengthg 

€ I =  (E1/ELZ) hao, (29) 

To solve Eq. (18) in the f i rs t  region, we use the cus- 
tomary procedure: we subdivide yb,) into a symmetri- 
cal part y(&) and antisymmetrical part  ya@,). Since 
Eq. (18) differs from the kinetic equation only in the 
right-hand side, we write down immediately the solu- 
tion 

so long a s  

EtE' .  

The las t  inequality imposes an upper bound on the elec- 
t r ic  field and allows us to confine ourselves to the f i rs t  
region in the  calculation^.^ 

and 
As seen from Eqs. (16) and (23), i t  i s  necessary to 

calculate the quantity d,/de. In the considered electric- 
field interval we have &, << &, <<fiw, and X, = 26y (tiw,,). 
Then, recognizing that9 F,=  1, neglecting terms of 
order Z/EW, in (24), and using the condition (26) in the 
form where 

(2m)*l., X, ( e )  = z, ( e )  de, T ( e )  = -- e" 
Am. ' 

4 

we get 

Here 

F ( E )  i s  the symmetrical part  of the distribution function 
and Fo(&) is the solution of the homogeneous equation 
(18).' The constants C,, y(tiw,,), and &, a r e  determined 
from the condition that the function y b )  be continuous 
a t  the point p,= -Po and from the condition that the 
number of particles be  constant 

where 

€if,--o. (2 6) 

Thus, formulas (16), (22)-(26) solve the fluctuation 
problem in the case of low frequencies. We note that if 
the electric field is weak (see (11)) then we obtain the 
corresponding result of the preceding section for the 
frequency region indicated in (19). 

Substituting now (31) in  (23) and neglecting the last  
term in yo@) and the terms x,(&) that result from it  
(their smallness i s  determined by the ratio r(Z)/r, 
= A w p ~ S ~ / . 5 ~ ) ,  we obtain from (16) the current-density 
correlator: 

We proceed now to consider fluctuations in strong 
electric fields. The strong-field region is defined by 
the inequality 

Z<e. (27) 

where 

In this case, as shown in  Ref. 9, the electron subsystem 
turns out to be in strong disequilibrium. The reason i s  
that when the electron moves along the magnetic field We calculate now the fundamental measured quantity- 

the noise temperature the quasielastic scattering by the acoustic phonons does 
not ensure effective dissipation of the energy acquired 
by the electrons from the electric field, and in electric 
fields that satisfy the inequality (27) the behavior of the 
electrons is determined essentially by spontaneous 

for which, a s  we see, we must know u,W. 

emission of optical phonons. The energy distribution In this section we investigate low-frequency fludua- 
tions, and u,O is simply the differential conductivity of the electrons in this situation differs significantly 
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In our case, however, i t  i s  more convenient to calcu- 
late o, (since b,  depends on E) by solving the problem 
of the linear response, i.e., i t  is necessary to find 6f, 
from Eq. (18) in which the right-hand side is replaced 
by 

-etiE,"af,/ap,, 

a procedure obviously similar to that used to obtain 
y(p>. We therefore write down the solution directly: 

and obtain from Eq. (8) an expression for a, (in the 
same approximation as (6~:)~) : 

where J, is given by Eq. (33). 

For the characteristic parameters of the system we 
have J, << J, and u = 2/3. Taking the latter into account 
we get from Eqs. (32) and (35) a noise temperature 

(8 = T at  equilibrium). 

This result can be qualitatively explained by intro- 
ducing, in accordance with Price,14 the electronic- 
subsystem "temperature" T,, equal to T under dynamic 
equailibrium and to at5 in  the nonequilibrium case. 
H e r e a =  2 a n d T , = 2 i i w ~ f i o o  ( a = 2 / 3 i f  H=O). As 
shown by Price," if H =  0 the transverse noise temper- 
ature is approximately equal to  T,. The current fluc- 
tuations along the electric field contain an additional 
contribution due to the fluctuations of the symmetrical 
part  of the distribution function, and i t  i s  this which 
leads to the quantitative difference between the long- 
itudinal noise temperature and T, in a strong electric 
field. 

We emphasize also that a t  thermodynamic equilibrium 
the fluctuation-dissipation theorem establishes the 
equivalence of the fluctuation problem and the linear- 
response problem. The fluctuation-dissipation-type 
equation obtained in the present section is not universal 
and is obviously an independent source of information 

on the nonequilibrium processes that occur in semi- 
conductors. Thus, for example, the current fluctua- 
tions turn out to  b e  much more sensitive to  scattering 
mechanisms than the electric conductivity: the in- 
tensity of the fluctuations increases with increasing 
electric field by 2tiod3T times (tiw,>> T), whereas the 
current-voltage characteristic exhibits only a weak 
nonlinearity. 

I am grateful to P.M. Tomchuk, and A.A. Chumak for 
valuable remarks. 

 ere 4 (a,) are  the operators of creation (annihilation) of an 
electron in a state v. The index v will henceforth denote the 
Landau representation {n, p,, p>. This, however, does not 
limit the general character of Eqs. (1)-(6). 

''We note that in the language of the kinetic equation the condi- 
tion (11) determines the field interval in which the symmetri- 
cal part of the distribution function is ~axwel l ian?  

'v. L. Gurevich, Zh. Eksp. Teor. Fiz. 43, 1771 (1962) LSov. 
Phys. JETP 16, 1252 (1963)l. 

'v. L. Gurevich and R. Katilyus, Zh. Eksp. Teor. Fiz. 49, 1145 
(1965) [Sov. Phys. JETP 22, 796 (1966)l. 

'~h. M. Kogan and A. Ya. Shul'man, Zh. Eksp. Teor. Fiz. 56, 
862 (1969) [Sov. Phys. JETP 29, 467 (1969)l. 

's. V. Gantsevich, V. L. Gurevich, and R. Katilyus, Zh. Eksp. 
Teor. Fiz. 57, 503 (1969) [Sov. Phys. JETP 30, 276 (1970)l. 

'P. M. Tomchuk and A. A. Chumak, Preprint Inst. Fiz. Akad. 
Nauk Ukr. SSR, No. 9, 1971; Ukr. Fiz. Zh. 18, 1625 (1973). 

6 ~ .  S. Rozhkov and P. M. Tomchuk, Zh. Eksp. Teor. Fiz. 72, 
248 (1977) [Sov. Phys. JETP 45, 130 (1977)l. 

'E. 0. Kane, J .  Phys. Chem. Solids 12, 181 (1959). 
8 ~ .  M. Tomchuk and A. A. Chumak, Ukr. Fiz. Zh. 18, 1822 

(1973). 
9 ~ .  S. Rozhkov, Fiz. Tverd. Tela (Leningrad) 21, 23 (1979) 

[Sov. Phys. Solid State 21, 13 (1979)l. 
'k. F. Kazarinov and V. G. Skobov, Zh. Eksp. Teor. Fiz. 42, 

1047 (1962) [Sov. Phys. JETP 15, 726 (1962)l. 
" ~ h .  M. Kogan and A. Ya. Shul'man, Fiz. Tverd. Tela (Lenin- 

grad) 12, 1119 (1970) [Sov. Phys. Solid State 12, 874 (1970)l. 
"s. V. Gantsevich, V. L. Gurevich, and R. Katilius, Zh. Eksp. 

Teor. Fiz. 59, 533 (1970) [Sov. Phys. JETP 32, 291 (1971)l. 
"B. Magnusson, Phys. Status Solidi B 52, 361 (1971). 
I4p. J. Price, in: Fluctuation phenomena in solids, ed. R. E. 

Burgess, Academic Press, 1965. 

Translated by J. G. Adashko 

90 Sov. Phys. JETP 50(1), July 1979 S. S. Rozhkov 


