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Large-scale fluctuation potential and state density in doped 
and strongly compensated semiconductors 

Institute of Radio Engineering and Electronics, USSR Academy of Sciences 
(Submitted 31 March 1978; resubmitted 6 March 1979) 
Zh. Eksp. Teor. Fiz. 77, 155-169 (July 1977) 

A method is proposed for a self-consistent calculation of the large-scale fluctuation potential in doped 
and strongly compensated semiconductors with shallow impurities at T = 0. It is shown that the 
fluctuation potential can range from zero to the energy difference A between the donor and acceptor 
levels. The position of the Fermi level and the mean value of the potential P are determined. The 
potential probability density function b ( V )  is calculated in the energy interval 0 5 V <A for a degree of 
compensation 0.95 5K 1. The large-scale potential causes all the neutral donors to be on the Fermi 
level at the energy E = 0, and causes the empty donor states to spread into a band with energies from 
zero to A. The electronic states below the Fermi level arise in the case a;&d < < 1 only as a result of 
the Coulomb potential of the nearest empty donor, and in the case a imd  > > 1 they are due to 
quantization of the electron in small-radius fluctuations. The tails of the state densities of the valence and 
empty bands differ in character. The valence band has a deep state-density tail on account of the large- 
scale potential (when m,, i, ma), while the conduction-band tail is due only to the small-radius 
fluctuations, in which the quantization is significant. 

PACS numbers: 71.20. + c, 71.55.Ht 

INTRODUCTION volume of the fluctuation. The potential in the region 

An inhomogeneous random distribution of the im- 
purities in doped semiconductors violates the local 
electroneutrality and accordingly leads to the appearance 
of an inhomogeneous large-scale potential. I t  is known 
from experiment that when the degree of compensation 
is increased, the activation energy for the conductivity 
increases. The influence of a fluctuation potential on 
the electron spectrum was considered in Refs. 6-13. 
Shklovskii and B f r o ~ ' ~ - ' ~  calculated the fluctuation po- 
tential in the following manner. They considered fluc- 
tuations of arbitrary radius R under the assumption 
that the impurities a r e  uniformly distributed inside the 
fluctuation. Since fluctuations of sufficiently small  
radius cannot be screened by electrons, a "bare" charge 
appears in the region of the fluctuations, and is equal 
to qANS2, where AN = N, - N, - (zd - R), where and 
N, a re  the concentrations of the donors and acceptors 
in the fluctuation, T j ,  and a r e  the average concen- 
trations of the impurities in the crystal, and 51 is the 

of the fluctuation is in this case approximately equal to 
( q 2 / ~ ) a ~ ~ 2 .  

Assuming a Gaussian distribution for the fluctuations, 
the mean squared potential is calculated to be 

from which i t  follows that without allowance for the 
screening y diverges when R is increased. 

The characteristic radius a t  which screening comes 
into play is estimated in Refs. 10 and 11 from the fol- 
lowing considerations: since the mean squared devia- 
tion of the concentration decreases when the radius is 
increased,  AN^ = X d / ~ ' ,  it  follows that at  n 
>  AN^)"'(^ =Ha - is the average concentration of the 
electrons in the f ree  o r  impurity donor band) the elec- 
trons easily screen such fluctuations, and the latter 
make no contribution to the potential. Thus, the char- 
acteristic radius R, is determined from the relation 
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� AT)'/^ =Nd - R,, and then 

However, these estimates do not determine the fluc- 
tuation potential a t  K=N,/$ -1, for in this case y 
again diverges. In Ref. 12 was considered the case of 
a fully compensated semiconductor, and i t  was shown 
that the growth of the fluctuation potential a s  K -1 is 
stopped by screening by electrons and holes from the 
f r ee  and valence bands, respectively. Thus, y rea- 
ches i t s  upper limit - ~ , / 2  a t  K= l (E, is the width of 
the forbidden band). 

In addition, Shklovskii and Efros" considered the in- 
fluence of a small-scale potential on the position of the 
Fermi  level in a strongly compensated semiconductor. 
The point is that the donor state can be substantially 
lowered because of a random approach of two donors 
to within a short  distance, and the lowering of the Fermi  
level on account of the small-scale potential can be- 
come comparable with y, but the maximum lowering 
must not exceed 4E,, where EB is the donor ionization 
energy. 

To analyze the large-scale potential in "pure form," 
the present paper deals with a doped semiconductor 
with shallow donors, when E, <<y. The difficulty in the 
calculation of the large-scale potential l ies in the non- 
linearity of the screening of the fluctuations at  low tem- 
perature. We take into account the screening nonlin- 
earity at  zero temperature, determine the position of 
the Fermi  level, the probability density of the poten- 
tial, and accordingly the state density of the local ten- 

t e r s  in the f ree  and valence bands for  a compensation 
degree K in the range 0.95 < K -C 1. 

2. THE POISSON EQUATION AND THE CONCEPT OF 
SCREENED AND UNSCREENED FLUCTUATIONS 

We consider a doped and compensated semiconductor. 
We assume that the doping is weak, that the impurity 
bands do not overlap the f ree  and valence bands, and 
that the temperature is low enough s o  that the electrons 
and holes a r e  mainly on impurity levels. In this case 
the fluctuation potential is determined by a Poisson 
equation of the form 

where Nd(r) and N,(r) a r e  the concentrations of the 
donors and acceptors at  each point of the crystal, while 
the third and fourth terms in the right-hand side of (1) 
determine respectively the concentrations of the elec- 
trons on the donors and of the homes of the acceptors; 
A =Ed - E,, where Ed and E, a r e  the positions of the 
donor and acceptor levels, respectively. The origin 
of the potential V(r) was chosen such a t  at  V(r) = 0 the 
donor level passes through the Fermi  level. 

We ascertain f i rs t  of all the possible limits of the po- 
tential V(r), meaning the limits of the spectrum for the 
donor states. Obviously, the maximum potential occurs 
in the region of large albeit low-probability fluctua- 

tions, in which Nd - N, > 0, (large fluctuations-large 
radius and large Nd - N,), while the maximum potential 
occurs in large fluctuations with Nd - N, < 0. In the 
central region of sufficiently large fluctuations the 
screening should give r i s e  to electroneutrality. We 
call these fluctuations screened, and the value of the 
potential at  the electroneutrality points can be easily 
determined from the condition p = 0, where p is de- 
termined by the right-hand side of (I), 

Accordingly, unscreened fluctuations a r e  called those 
for which there is no electroneutrality at  the center. 

I t  follows from (2) that a t  the electroneutrality point, 
a s  T -0, we have 

V = O  if N~-N.>o, V - A  if N~-N.<o ,  (3 

from which i t  is seen that the potential in the system 
varies in the interval 0 -C V(r) a A and accordingly the 
donor impurities spread out into a band with energies 
from 0 to A relative to the Fe rmi  level. The acceptors 
spread into a band with energies from -A to 0. At the 
points where V= 0, the donor level passes through the 
Fermi  level; the charge density p = 0; the concentration 
of the neutral donors is nd(r) =Nd(r) - N,(r); the con- 
centration of the neutral acceptors is p,(r) = 0. At the 
points where V=A the acceptor level passes through 
the Fermi  level; the charge density p = 0; the concen- 
tration of the neutral donors is nd(r) = 0; the concen- 
tration of the neutral acceptors is p,(r) = N,(Y) - Nd(r). 

At the points where O< V(r) <A, a s  follows from (11, 
nd(r) = 0 and p,(r) = 0, and the charge density is 

Thus, a t  zero  temperature the Poisson equation takes 
the form 

4nqZ 
V 2 V ( r ) = - [ N d ( r ) - N , ( r ) I [ l - O ( - V ) - O ( V - A ) ] ,  (4) 

e 

where 

It is seen from (4) that the nonlinearity of the screening 
of the potential at  zero  temperature acquires a jump- 
like character. At potential values O< V<A there a r e  
no electrons o r  holes, and the screening length is in- 
finite. At V= 0 and V= A, onthe other hand, the screen- 
ing length vanishes jumpwise. 

I t  should be noted that the Poisson equation (4) is 
actually valid also in the case of strong doping (neg- 
lecting the degeneracy energy), when the donor and 
acceptor impurity bands merge respectively with the 
f ree  and valence bands, in which case A = E, in Eq. 
(4). 

The qualitative band picture in a semiconductor 
with an inhomogeneous impurity distribution is the 
following. Whereas, for  example, in the case of a 
homogeneous semiconductor the Fe rmi  level passed 
through a donor level and the state density of the donor 
and acceptor centers constituted two 6 functions 
[N,(E) = g d 6 ( ~ )  and N,(E) =Na6(E +A)], now the donor . 
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and acceptor centers become smeared out into bands 
of width A and with state densities Nd(E) =Ndg(E) and 
N,(E) =R,,Y(E +A), where B(E) is the probability den- 
sity of the potential and must be calculated. 

In addition, the semiconductor vacuum level also bends 
in accordance with the fluctuation potential. Since the 
contact phenomena, and in particular the work function, 
are  determined by the position of the mean value of the 
vacuum level of the semiconductor relative to the Fermi  
level, i t  can be stated that the bottom of the conduction 
band and the Fermi level, and accordingly the position 
of the neutral donor, drop lower relative to the vacuum 
level by an amount equal to the average value of the 
potential V .  This means that in a doped and compen- 
sated n-type semiconductor the electron affinity and the 
work function increase by 7, and accordingly in a p- 
type semiconductor these quantities decrease by 7. 

3. MEAN VALUE OF THE POTENTIAL 

The mean value of the potential, by definition, is 

We assume that the impurity fluctuations have a Gaus- 
sian distribution, just a s  in an ideal gas, and the con- 
centration of the impurities inside the fluctuation is 
homogeneous, so  that the distribution function takes the 
form 

f (x) =n-"~eexp [ -  (~-.r,)~], (5 

where 

The fluctuation potential will be calculated a s  follows. 
We choose all  the fluctuations of radius R,  in which the 
difference of the donor and acceptor concentrations i s  
equal to a certain value Nd - N,. Thepotentialwithinthe 
fluctuation, a s  follows from the Poisson equation (4), 
is in the case of spherical symmetry 

V ( r )  =a,+a,?+a,r-I for R,<r<R, 

where 

Ri is the radius of the sphere a t  the center of the fluc- 
tuation inside which an electroneutrality region can 
occur. 

To determine the parameters at ,  as, and R, i t  is 
necessary to join the solution (6) together with the po- 
tential outside the fluctuation. We average the poten- 
tial outside the fluctuation over all possible config- 
urations that surround the fluctuation with given value 
of Nd - N,. The potential a t  a certain point located a t  
a distance R from the considered fluctuation is rep- 
resented in the form 

V ( r )  =E+cp(r), 

where E is a random quantity that is distributed in ac- 
cordance with the probability density functiong(E), of 
the potential and p(r) is a certain regular function that 
characterizes the correlation properties of the poten- 

tial and is determined by the fact that the fluctuation in 
question, with a certain charge Q, is located a t  a dis- 
tance r from this point. Then the average potential a t  
this point is equal to 

and p(r)  is determined by the averaged Poisson equa- 
tion 

x f(Nd(r'))f(N,(r'))DNd(rr)DN,(r')B(E)dE. (7) 
Here f(N,(rl)) and f@,(rf)) a r e  the probabilities of the 
appearance of the configurations Nd(rf) and N4(rf). 
Recognizing that there is no correlation in the distri- 
bution of the impurities in (7) and that the potential a t  
the given point is independent of the impurity concen- 
tration at the same point (the later is due to the non- 
local connection between the potential and the free- 
charge density), we obtain for zero temperature 

We have obtained a rather obvious equation that char- 
acterizes the screening of an external field in a semi- 
conductor with distributed density of the donor and ac- 
ceptor states. Thus, the screening of the potential that 
is produced by the considered fluctuation is taken into 
account exactly inside the fluctuation (screening occurs 
only if the potential reaches values V= 0 and V=A), 
while outside the fluctuation i t  is taken into account in 
terms of the averaged Poisson equation (8), which de- 
termines a certain effective screening radius. 

We proceed now to calculate the concrete form of the 
potential inside and outside the fluctuations. For  flu- 
ctuations with Nd -N4> 0, the solution for V(r) in the 
approximation where the potential density is constant 
near zero energy, neglecting the hole density, takes 
the form 

Joining together the solutions (9) and (6) andcharging 
over to the dimensionless variables x, xo, and 5 = r / ~ ,  
we obtain the potential inside the fluctuation for Nd - N, 
> 0: 

V(C) -o ,  o<t<c, 

where 

and C1 is determined from the equation 

for fluctuations with Nd - N, < 0 (x < 0), neglecting the 
hole density in the right-hand side of (8), the solution 
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for the potential inside the fluctuation is 

for  

i > E > t , = [ l f  (A-Y)/r.z,", X I ' " ;  

V ( 5 ) - A  for O<6<6.. 

We now calculate the average concentration of neutral 
donors a t  the Fermi level. As follows from (10) and 
(l l) ,  the neutral donor concentration in the fluctuation, 
referred to the volume of the fluctuation, is 

The average concentration of the neutral donors is 
obtained by averaging (13) over the distribution function 
(5 

This expression is written in the approximation 
rd>>R, and below we obtain the limits of applicability 
in this approximation and, where important, we indi- 
cate the results of allowance for the screening of the 
potential outisde the fluctuation (the screening inside 
the fluctuation is taken into account exactly, as before). 

We obtain analogously an expression for the average 
concentration of the neutral acceptors, 

- 
where x2 =xl(A - V ) m .  Substituting (14) and (15) in the 
electroneutrality condition 

Rd-fla-iid+jin=o, (16) 

we obtain 

qexp~- ( X - . T ~ ) ~ I ~ X -  j - (';I.) e x p [ -  ( x + x . ) z l d ~ = ~ ~ ~ ~ ~ o .  (17) 

Equation (17) determines 8 as a function of x,-the 
radius of the fluctuations It follows from 
(17) that in the case of complete compensation (K= l ,xo 
= 0) we have xi =xa, whence we obtain 

At a degree of compensation K < 1, when y, << A, the 
parameter x2 >> 1 and the second integral in (17) can be 
neglected. This means that a t  7, <<A the number of neu- 
tral acceptors is negligibly small compared with the 
neutral donors. In this case i t  follows from (17) that 
a t  x0 <<I we have 

V B  ( q z / e )  [Bn (fld+m.) R ] ' ~ = ~ J ? .  (19) 

At x o > l  we get from (17) 

where o (x) is the error-function integral. I t  follows 
from (20) that with increasing fluctuation radius, in the 
region xo > 1, the mean value 7 tends rapidly (expon- 
entially) to zero. 

A computer solution of (17) shows that 7 has a t  

FIG. 1. Mean value of the potential as a function of the fluctu- 
ation radius. 

xo =XO, and xi =xi, (xoc = 0.027, xi, = 0.84), a maximum 
equal to 

A more accurate expression for 8, with allowance for 
the finite value of the screening radius Y, is 

The dependence of 7 on the fluctuation radius is shown - 
in Fig. 1. As seen from Fig. 1, V has a maximum. 
We make use of the method of optimal fluctuations, pro- 
posed by Lifshitz. s We assume that the decisive role 
is played by fluctuations with a radius corresponding to 
xo=xoc. From the equation xo=xoc we determined the 
radius and the optimal fluctuations R,: 

Comparing 7 and R, with the values of y and R, ob- 
tained by Shklovskii and ~ f r o s , "  we see  that 7 practi- 
cally coincides with y, and R, in our case differs by a 
factor a$L3 = 0.09. 

However, there is a limitation on the radius of the 
fluctuations. We have a right to use a Gaussian dis- 
tribution and the Poisson equation (1) only under the 
condition that the selected volume contains a large num- 
ber of both donors and acceptors. Since nd >>Nm, this 
limitation follows from the requirement that the num- 
ber of acceptors in a fluctuation of radius of R, be > 1 
(strictly speaking, >> 1). It follows from this condition 
that 

1-K<2xo.. (24) 

From the inequality (24) we find that only a t  K > lCl 
=0.95 does the mean value satisfy Eq. (22). In 
addition, (22) is valid only at K< K2, where K2 is de- 
termined from the equation y, = A : 

~ , - 1 - 7 2 ~ m d ( q ' / ~ A )  '. (25) 

At K >  K, the value of-vis close to A/2 (Fig. 2). 

I t  should be noted that the method of optimal fluctu- 
ations is valid, strictly speaking, only for an exponen- 
tially sharp maximum. As seen from Fig. 1, the maxi- 
mum is not sharp and the applicability of this method 
is not obvious in this case. Therefore to assess  the 
accuracy of the applicability of the method, the value 
of 7 was calculated in the next order of approximation, 
namely: the fluctuation of radius R is broken up into 
two concentric regions of equal volume, in each of which 
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FIG. 2. Mean value of the potential as a function of the degree 
of compensation. 

the concentration is assumed already to be arbitrary. 
A numerical solution of the obtained equations yields 
r=0.252 y,; we note that Eq. (17) yields T=O. 251y,, 
from which we see  that allowance for  the inhomogeneity 
inside the fluctuation changes the value of 7 only in the 
third significant figure. 

Thus, i t  can be stated that the approximation wherein 
the impurity distribution is uniform inside the fluc- 
tuation yields sufficiently good accuracy when 7 is cal- 
culated. 

4. PROBABILITY DENSITY OF POTENTIAL 

In this section we calculate the probability density 
p(E) of the potential for energies 0 -C E A. We intro- 
duce the potential density for a fluctuation with radius 
R and concentration N,- N,: 

In dimensionless variables x, xo, and 5 Eq. (26) takes 
the form 

where ~ ( 5 )  is taken from Eqs. (10)-(12). By averaging 
(27) over the distribution function f b )  we obtain the 
probability density g(E, xo) of the potential for  fluctu- 
ations of the radius xo: 

The limits of integration with respect to x in (28) a re  
determined from the equation E = Vb, xo, I )  under the 
condition that 5 can vary from 0 to 1. From the equa- 
tion V(x, xo, 5) = E, where V(5) takes the form (12) (with- 
out the third term in the square bracket), we obtain for 
5 : 

It also follows from (12) that 

Substituting (29) and (30) in (28) with allowance for (27), 
we get 

where x3 = (E - i7)/y#e'3. For energies E >> 7 in (31), 
the integrand has a sharp maximum and the integral is 
evaluated by the saddle-point method 

3'Ix exp[ - (Z ,+X~)~]  
96% 20) = 2v/.ysoz,"xa~. (x + ) 'I. - . 

a Zo 

It follows from (3 2) that a t  E >> P the radius of the optimal 
fluctuations corresponds to the minimum of the expres- 
sion x3 +xo. Minimizing the latter with respect to xo we 
obtain 

and for f (E) we get 

The argument of the exponential for the tail of the 
probability density of the potential in (33) practically 
coincides with the analogous quantity obtained in Ref. 
11. I t  is interesting that 7 characterizes both the mean 
value of the potential and i t s  variance [(see (33)]. 

For  energies near 7 we can confine ourselves in (31) 
to a fluctuation scale with R =R,(xo =xo,), and we obtain 
for H E )  

0 6 E-V 
p ( E )  " &UP v 

[(T)2] . 
I t  is seen from (34) that the maximum of 9(E)  is a t  

the level E = 7 (Fig. 3). 

For  energies E >> v, the value 9 (E) was calculated 
accurate to the pre-exponential factor, owing to the 
presence in (32) of an exponentially sharp maximum 
with respect to R. 

With decreasing E, the accuracy with whichg(E) is 
calculated decreases, and a t  E <<? we can no longer 
confine ourselves to only one fluctuation scale. On the 
other hand, the smaller E the larger the role assumed 
by the small scale of the fluctuations and, on the other 
hand, the small-radius fluctuations a re  themselves in a 
random potential produced by the surroundings. Here, 
however, we have a mitigating circumstance. In the 
limit of small fluctuation radii, the probability of finding 
the potential V produced by the environment in the 
region of the fluctuation is by definition equal to p(V), 
s o  that we can obtain an equation for p(V). 

The potential in the region of the fluctuation with 

FIG. 3. Probability density of the potential at 0.95 < K < K2, 
where K2 is determined from (25). 
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random boundary condition takes the form ation intervals 0 c V c A, and with a distribution function 
H v ) ; ~ ,  = ~ z & / q Z m  is the Bohr radius; AN = Nd - N,. 

The average state density WE))  at the energy level 
E is determined by the number of fluctuations inwhich 
any one of the energy levels from (41) coincides with E: 

where V is a random function having a distribution func- 
tion b(v), and 

E ~ =  ( i - ~ / y . z  x )  ". (36) 

Just  as in Sec. 3, we calculate the average concen- 
tration of the neutral donors. The reduced concen- 
tration of the neutral donors in  fluctuations with bound- 
ary  potential V with concentration x is equal to 

The summation over a finite number of excited levels 
in  (42) is connected with the charge limitation that can 
be expressed in  the form 

Averaging (37) over the distribution functions B(V) and 
over f (x)  we obtain the average concentration of the 
neutral donors and substituting i t  in the electroneutrality 
equation, we obtain an integral equation for  B(V): 

Z<Q, 

where Z is the number of electrons on m excited levels 
(z= 1/3m3 + 2mZ + 11/3m + 2), and Q is the charge of the 
fluctuation (Q = 4 / 3 n ~ ~ A ~ ) .  For  small  radii an impor- 
tant role in (42) is played by the behavior of v(V) near 
V= 0, s o  that we can confine ourselves to the approxi- 
mation of constant probability density of the potential 
near V= 0, after which we get I t  follows from (38) tha t9  (V= o ) - ~ ' ~ / Y ~  and in the 

limit as xo -0 we have near V= 0, 

9 ( V )  =16V2/y,S. 

x ( exp ( -EANZ)  AN, 
A N d E )  

It should be noted, however, that we a r e  not justified 
in decreasing the fluctuation radius to zero, since, on 
the one hand, for radii less  than the mean distance be- 
tween particles the Gaussian distribution (5) is no longer 
valid, and furthermore the Poisson equation (4) is like- 
wise not valid because the charges a r e  discrete; on the 
other hand, a t  small scales the quantization assumes 
an important role. Nonetheless, we shall deduce from 
(38) that the decisive role in the behavior of B(V) near 
zero is played by small fluctuation scales and i t  is 
necessary to ascertain here which scale is more sub- 
stantial. 

where AN,(E) is determined from the equation 

and AN,(E) is equal to 

Changing over to the variable x = ( R 3 / & ) ' 1 2 ~ ~ ,  we get 

Without allowance for quantization, i t  was found that 
the fluctuation potential can vary only in the range from 
zero to A. The quantization should cause the potential 
in the fluctuation to become negative, so  a s  to make 
possible a t  least one state with energy E 0. We write 
down once more the potential in a fluctuation with a 
random boundary condition 

where x,(E) = ( R 3 / ~ d ) ' 1 z ~ ~ , ( ~ ) .  Expressing the radius 
R of the fluctuation in terms of X,(E = 0) k,(E = 0) 
=aB(4~512~~1z) ' t (2 /3  n +  I)'), we arrive a t  the following 
expression for (N(E)): 

0) 2 ( n i l )  (n+2)  x;,s(o) ( N ( E ) > = - -  
2 (a ,  N d ) ' / ~  ( z l ,n+ l )  "I6 

n=o 

Expression (39) is the potential energy for the electron 
in the region of the fluctuation, and takes the form of a 
spatial oscillator. For a spatial oscillator, V(r) 
=(1/2)mw2r2 the energy levels arei4 The physical meaning of the parameter x,(E = 0) con- 

s is ts  in the following: in a fluctuation with concen- 
tration x=x,(O) and radius R, the number of levels 
having energy E s 0 is equal to n + 1. With this a s  a with wave functions 
starting point we can transform the charge limitation 
Z<Q to the simple expression 

where a = (mw/~)"~ ,  and with a degeneracy multiplicity 
(n + 1) .(n + 2). For the potential (391, with allowance 
for (40), the position of the energy levels takes the form 

Minimizing (46) with respect to x,(O), we obtain the 
optimal radius that makes the maximal contribution to 
the state density a t  the energy level E. -The maximum 
of (46) turns out to be at 

1 
E.(V,  AN, R )  =V-2n - R2AN - - ( a d ~ ) " ( & ~ + l ) ] ,  (41) 

where V is a random large-scale potential with vari- 
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and the optimal radius Ri is 

It is seen from (49) that the optimal radius Ri turns out 
to be larger than the average distance between the 
impurity charges only a t  a i n d >  1, and only in this case 
is the foregoing analysis correct. From (47) with ac- 
count taken of (49) i t  follows that at  practically any 
realistic doping the inequality (47) is satisfied only at  
m = 0, s o  that i t  can be stated that the main contribution 
to the state density is made by the ground state in each 
fluctuation, and we can retain in (46) only the term with 
n = 0, after which we get for (N(E))  

The total number of states below the Fermi  level N, a 0 
is determined by integrating &(El) over all the energies 
below E = 0: 

Substituting (51) in the electroneutrality equation 
NE, ,=  (1 -K)Rd, we obtain 

and the state density a t  the Fermi  level, a s  follows 
from (51) and (52), is 

In the case of weak doping (dNd < 1) there exists an im- 
purity band in which the radius of electron localization 
on the impurity center is smaller  than the average dis- 
tance between the impurities. In this case the donor 
level becomes smeared out below the Fermi  level a s  a 
result of the Coulomb potential of the nearest  empty 
donor, and the characteristic smearing energy is 
= 4EB. 

The state density at  the Fe rmi  level can in this case 
be estimated a t  

Now, knowing &(E = 0)), we can compare the effective 
screening radius (9) with a characteristic fluctuation 
radius R, from (23): 

It follows from (55) that a t  practically all realistic 
degrees of doping and compensation we have rdzRc, 
after which we get from V for (22) 

If e) from (9) o r  V(C) from (lo) and (12) a r e  expres- 

L A 
~ ( £ 1  N(E) 

FIG. 4. State density in doped and compensated semiconduc- 
tor: curve 1-for donor centers , 2 -acceptors, 3 -conduction 
band, 4-valence band; a) straight-band approximation, aimd 
<<I, b) 0.95<K<K2, aBRd<<l, c) K = l ,  a iRd>>l .  

sed in terms of the potential a t  the center of the fluc- 
tuation, and if the product [w) - v][V(r = 0 )  - V ]  is 
averaged over 9(V) then, by definition, we obtain the 
correlation function K,(r), which takes the form 

(R./2r) exp (I-r/R,) [v-7'1 4t  r>R. 
~ / R . ) ' I  [F-v2] at rGR. ' (57) 

from which we see  that a characteristic fluctuation 
radius R, from (23) is in fact the correlationradius, and 
correlation exists in the potential, despite the total 
absence of correlation and the distribution of impurities: 

<AN(r+r,) AN(r,) >= (fld+R.) i3(r). 

Knowing the probability density of the potential, we 
can calculate in the quasiclassical approximation the 
state densities of the f ree  and valence bands. For  ex- 
ample, for the case  a ind>> 1 the state density in the 
conduction band is 

and taking (52) into account we have for E 2 0 

No ( E )  =3 R d l - K )  

It follows from (58) that the quasiclassical state density 
is practically joined together with W(E))  from (53). 

The state density in the valence band is determined by 
the relation 

Substituting in (59) the value of 9(V)  from (33), we ob- 
tain a deep tail of the state density of the valence band: 

The distribution of the state density is a compensated 
semiconductor is shown in Fig. 4. 

The author is deeply grateful to V. B. Sandomirskii 
for constant interest  in the work, and to I. M. Lifshitz, 
A. L. Efros, and B. I. Shklovskii for  critical remarks. 
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The effect of a quantizing magnetic field on nonequilibrium fluctuations in an electron gas is investigated. 
Besides solving the fluctuation problem, the linear response of the system to an external action is 
obtained, and this yields relations similar to the fluctuationdissipation theorem. The cases of parallel 
electric and magnetic fields and of scattering of electrons by acoustic and optical phonons are considered. 
The author has shown previously that in a strong electric field such a system deviates greatly from 
equilibrium because two competing mechanisms act on the electrons: "runaway" of the electrons into the 
region of higher energies, and spontaneous optical-phonon emission that hinders the runaway. It is found 
that in strong electric fwld the fluctuations in the system are large, whereas the dependence of the 
current on the electric field is only slightly nonlinear. All this indicates, at least, that the study of the 
fluctuations is a very sensitive method of investigating nonequilibrium systems. 

PACS numbers: 72.10.Di, 72.20.Ht 

1. INTRODUCTION e q u i l i b r i ~ m , ~  and this disequilibrium is not described 
by an effective electron temperature, a s  is the case in 

Electronic fluctuations in a nonequilibrium stationary crossed electric and magnetic fields.'' 
state, which a re  produced in a semiconductor by a con- 
stant electric field, were investigated in a number of 
studies.'-' Most of them dealt with systems whose kin- 
etic behavior is described by the ordinary Boltzmann 
equation. In Ref. 6, however, the fluctuations were con- 
sidered under conditions of quantization of the motion 
of electrons in the electric field,? when the ordinary 
kinetic equation cannot be used, and i t  was shown that 
the fluctuations can be  anomalously large in that case. 
It is of interest to investigate other quantum systems 
in which one can expect new regularities of the non- 
equilibrium state. 

The present paper deals with spatially-homogeneous 
current fluctuations in an electron-phonon system sit- 
uated in parallel electric and quantizing magnetic 
fields. High-frequency fluctuations in crossed fields 
were investigated earl ier  in Ref. 8, and the method 
developed there will be used here. 

In Ref. 9, under conditions of strong quantization 
(Ew ,> 5, where w,is the cyclotron frequency a n d r i s  the 
average electron energy), the author considered the 
kinetics of electrons interacting with acoustic and op- 
tical phonons. The latter  prevent the penetration of 
electrons into the region of high energy, which takes 
place in a quantizing magnetic field if the electron scat- 
tering i s  quasielastic. It is precisely in such a system 
that we investigate in the present paper the longitudinal 
fluctuations of the current. 

In Sec. 2 i s  discussed the fluctuation problem. Var- 
ious approaches to the solution of this problem a re  
cited and the possible situations in the theory of non- 
equilibrium fluctuations a r e  analyzed. These situations 
a re  investigated in Secs. 3 and 4 for the cases of an 
electron gas in weak and strong disequilibrium under 
Landau quantization conditions. Besides solving the 

The parallel orientation of the fields is of interest be- problem of the fluctuations, we obtain the linear re- 
cause in the case when the electric field is strong the sponse of the system to the external action, and this 
electron energy distribution deviates greatly from makes i t  possible to obtain relations similar to the 
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