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A kinetic theory of the thermomagnetic force (TMF) effect has been constructed and is capable of 
accounting for the known experimental data. The TMF effect consists of the influence of an external 
magnetic field on the thermal force acting on a body immersed in a nonuniformly heated gas. To 
calculate the TMF we use an approach based on the solution of the integral kinetic equation that was 
previously proposed by the authors for investigating thermomagnetic phenomena in rarefied polyatomic 
gases. It is shown that in addition to the TMF mechanism associated with the lack of spherical 
symmetry in collisions between the gas molecules, there is a second TMF mechanism, which is associated 
with the lack of spherical symmetry in the reflection of polarized molecules from a surface. By taking the 
second mechanism into account one can explain the observed dependence of the strength of the TMF on 
the material of the body. 

PACS numbers: 51.10. + y, 51.60. + a 

1. INTRODUCTION The earlier theoretical t reatment  of the T M F ~ V ~  w a s  

I t  was  recently found that a body i m m e r s e d  i n  a non- 
uniformly heated ra re f ied  polyatomic g a s  experiences 
a fo rce  when a magnetic field is applied. Id The in- 
vest igators  measured the normal  and tangential com- 
ponents of the fo rce  that, when the field H is applied, 
ac t s  on a thin disk (of rad ius  r )  of nonmagnetic mate r ia l  
suspended i n  a g a s  between two sur faces  a dis tance 
L - 2 r  apar t  that a r e  maintained a t  different tempera- 
tures. The thermomagnetic f o r c e  (TMF) is found only 
i n  a region of intermediate  g a s  p r e s s u r e s  (when i- L,  
where 7 is the mean f r e e  path) and vanishes in  the high- 
p r e s s u r e  l imit  (as T/L -0). The s trength of the T M F  
depends on the rat io  HIP of the field s t rength to the g a s  
pressure.  In some g a s e s  (N, and CO) the s t rength of 

l imited to  the idealized case i n  which r<<i<<L. T h e  
origin of the f o r c e  w a s  sought i n  the nonspherical char- 
a c t e r  of the collisions between the g a s  molecules and 
i n  the precession of the molecules i n  the field. The  
interaction of the molecules with the walls  w a s  assumed 
to be ent i rely diffuse. The  s trength of the f o r c e  was  
related phenomenologically to the translational par t  of 
the field-dependent7 heat  flux (the Senftleben-Beenakker 
effect). That theory gave only a qualitative explanation 
of the effect; i t  could not account f o r  the observed field 
dependence (it predicted the onset  of the T M F  a t  higher 
~ / p  values than w e r e  observed), and i t  could not ex- 
plain the dependence of the T M F  on the mater ial  of the 
disk. 

the TMF depends substantially on the mate r ia l  of the A s  will  be shown below, there is s t i l l  another con- 
disk,3 but i n  other gases  (0, and NO) there is no such tribution to the T M F  effect-acontributiondue tothe 
dependence. nonspherical charac te r  of the interaction of the mo- 
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lecules with the surface-that was not taken into ac- 
count in the explanation proposed earlier. In fact, a s  
a result of the lack of spherical symmetry in the col- 
lisions between the molecules the distribution function 
for the molecules striking the surface becomes aniso- 
tropic in M (M is the angular momentum of the molecules) 
and H dependent. If the interaction of the molecules 
with the surface also lacks spherical symmetry, the 
distribution of the molecules reflected from the sur- 
face may become isotropic in M while retaining i t s  H 
dependence. As a result of such scattering processes, 
the thermal force will change when the field i s  applied. 
I t  turns out that the observed dependence of the TMF 
on the material of the disk3 is indeed associated with 
the lack of spherical symmetry in the collisions of the 
molecules with the surface. 

To describe the effect one should solve Boltzmann's 
integrodifferential equation with integral boundary 
conditions a t  the walls. As the authors showed in a 
recent paper,8 the mathematical difficulties that ar ise  
when the problem i s  approached in that way can be 
avoided by employing the integral kinetic equation. In 
Section I1 we discuss the principal points in solving 
that equation by iteration for  gas pressures such that - 
Is ~ / 1 0 .  The resulting distribution function for a gas 
between two infinite surfaces makes i t  possible to cal- 
culate the thermomagnetic forces acting on the walls 
and to analyze the contributions from various collision 
processes (Section 111). Features of the TMF in a finite 
geometry a r e  discussed in Section IV, where a com- 
parison is also made with experimental results. 

2. CALCULATION OF THE DISTRIBUTION 
FUNCTION FOR A POLYATOMIC GAS IN  A 
MAGNETIC FIELD 

Let us consider a polyatomic gas in the gap between 
two infinite surfaces located a distance L apart  and 
having different temperatures To and T, such that 

1 To - T, ( AT << To. We shall consider only pressures 
such that 1 s L/10. In this case we can neglect the ef- 
fect of any molecules that fly from wall to wall without 
collision. Then if we a r e  interested in the state of the 
gas near one of the surfaces (say the lower one, at  z 
=0) we may assume for simplicity that the gas occupies 
the entire half space z >0 and that the gas f a r  from the 
surface z = 0 is held at  a different temperature than the 
gas near z = 0. Such a system is described by an in- 
tegral kinetic equation for the distribution function f ,  
which can be obtained by integrating Boltzmann's equa- 
tion along characteristics (using the boundary condi- 
tions at  the surface) and then linearizing the equation 
thus obtained. The resulting equation has the formB 

where 

Here r = (v, M), d r  = dv . dM, v is the molecular velo- 
city, S2 is the equilibrium frequency of collisions be- 
tween gas molecules, W' =W' ( r i ,  rf -r, r , )  and V 
= V(rl --I?) a r e  the probabilities for scattering of a 
molecule from a molecule and from the wall, respec- 
tively, and f, is the Maxwell distributio? for the tem- 
perature To of the wall. The operator P in (2.1) de- 
scribes the periodic change in the orientation of the 
angular momentum of the molecule a s  i t  processes in 
the field; i t  is defined a s  follows: 

a (z-zo' ] Y.: ($) A ( r )  do- + im ------ 
Uz 

where w = yH is the precession frequency (y is the 
gyromagnetic ratio of the molecule), and 8, and cp, a re  
the spherical angles specifying the orientation of the 
magnetic field. 

Equation (2.1) can be solved by iteration. I t  is con- 
venient to choose the expression for the heat flux in the 
system in the absence of a field a s  the initial function 
X0 : 

where 

Here E= mv2/2 + w2/21 i s  the energy of a molecule, 
c, and c, a r e  the heat capacities of the gas, @TIr is the 
temperature gradient in the gas far  from the wall (i. e. 
for z >>Z), WA i s  the spherically symmetric part of the 
intermolecular-collision probability, and 6T is the tem- 
perature discontinuity a t  the surface, which enters here 
a s  a parameter. 

The successive iterations can be found from the scheme 

(n numbers the iterations). Then the requirement that 
there be no accumulation of gas at  the wall is satisfied 
for each n (since the probability V is normalized). 

The solution to Eq. (2.1) constructed in accordance 
with (2.3) and (2.5) contains the unknown quantities 6T 
and (vT), (it is assumed that the difference AT between 
the temperature of the walls is given). The parameter 
6T can be evaluated in the n-th approximation by making 
use of the relation 

in which Q?' is the heat flux calculated with the function 
X ( ~ )  . If 1 AT ( << To and the surfaces confining the gas 
a r e  identical s o  that the temperature discontinuities at  
the walls can be regarded a s  equal, we have 

Sov. Phys. JETP 50(1), July 1979 Borman eta/ .  74 



It is shown below that in calculating the TMF effect, 
as  in calculating the thermomagnetic pressure effectst8 
and the Senftleben-Beenakker effectTs8, i t  is sufficient 
to consider only the first  iterated solution. 

According to Refs. 10 and 11, the lack of spherical 
symmetry in the scattering of moleculesfrom molecules 
and at the surface is small and the probabilities Wand 
V can be written in the form 

where Wo and Vo a r e  independent of the molecules' an- 
gular momenta, and v and & a r e  small parameters-the 
asphericity parameters-that specify the magnitudes of 
the deviations from spherical symmetry (v2, E'- 

With the aid of (2.6), we can express the func- 
tion x'", obtained a s  described above, a s  well a s  the 
temperature discontinutiy, a s  ser ies  in powers of the 
asphericity parameters: 

where the subscripts 0,1,2, .  . . indicate the terms of 
the zeroth, first, second, . . . degree in the asphericity 
parameters, the f i rs t  degree terms being proportional 
to v o r  E ,  the second degree terms to v2 o r  vc, etc. 
The field dependence of the large-scale fluxes in the gas 
(not associated with angular-momentum transport) 
appears only in the second approximation in the asph- 
ericity parameters and is determined by the function 
Xi1' (the explicit form of this function is given in Ref. 
8). The field dependence of 6T also appears in the sec- 
ond approximation. 

3. FORCES ACTING O N  INFINITE SURFACES 

We have the following expression for the forces per  
unit a rea  acting, for example, on the lower surface 
(at z =0) :  

(the k, a r e  the components of theunit vector normal to 
the surface). In the case of spherically symmetric in- 
teractions (V = E = 0) only the component of the force 
normal to the surface differs from zero, and for i t  we 
obtain 

Here r= (v, M'), dr=4rrdvMdM, and 

The quantity ( F T  + ~ z r )  in (3.2) is due to the fact that the 
walls a re  held at different temperatures and represents 
the thermal force (TF) acting on the surface. The con- 
tributions F ;  and F{ to the T F  a r e  associated with the 
mean temperature gradient in the gas and with the tem- 
perature discontinuity a t  the surface, respectively. 

The field dependence of the force appears only in the 
second approximation in the asphericity parameters. 
Following Ref. 8, we retain in the expression for X2' 
only terms corresponding to polarization of the molecules 
far  from the wall (where-z >>a such that the distribution 
function depends on the directions of v and M only through 
the combination1' [v][M]' (here [aIm represents the ir- 
reducible tensor of rank m constructed from the com- 
ponents of the vector a). Then in accordance with (3.1) 
and (2.7) we obtain the follwoing expression for the field 
dependent part  of the force: 

P:l.w= - J ~ v ~ f ~ a ~  Oo - imo 

8 0  Oo2 + m z o z  
~,,,fii,dr, 

r 'co  (3.4) 

Q,' + imo 
x vlkoo(rl -+ r)6;Jdr', 

QoPP + mZwZ 

We have used the following notation in (3.4): 

The primed quantities in (3.4) represent the correspond- 
ing functions of the argument r'. 

The terms F? (S = 1,2,3) in expression (3.4) for the 
TMF a r e  due to the presence of a temperature gradient 
in the gas near the surface and a r e  related, respective- 
ly, to the following collision processes: 1) incidence on 
the wall of molecules whose distribution is isotropic in 
M but depends on H (as a result of the lack of spherical 
symmetry in the intermolecular collisions); 2) spheri- 
cally symmetric reflection of such molecules from the 
surface: and 3) aspherical reflection from the surface 
of molecules polarized a s  a result of intermolecular 
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collisions in the gas. The quantity F~~~ in (3.4) r e p  
resents an additional contribution to the component of 
the TMF normal to the surface, associated with the field 
dependence of the temperature discontinuity. 

I t  can be shown that a calculation of the T F  and TMF 
acting on a small flat specimen immersed in the gas 
and whose size 7 is small as compared with the mean 
free path i ( s o  that the molecules reflected from i ts  
surface will not affect the distribution of the incident 
molecules) leads to expressions (3.2) with F:= 0 and 
(3.4) with F4TY=0. Thus, the terms F: and F4"' as- 
sociated with the temperature discontinuity a re  due to 
the size of the wall and take into account (through 6T) 
the effect of the interaction of the molecules with the 
surface on the distribution of the incident molecules. 

It follows from (3.2) and (3.4) that the T F  and TFM 
are  independent of the pressure p a t  high enough pres- 
sures  (F- (l/L)noaT, where no is the equilibrium par- 
ticle density). As the pressure falls  the TF and TMF 
decrease, the extent of the decrease being described by 
the terms of order (Z/L) '~~AT in (3.2) and (3.4). 

4. COMPARISON WITH EXPERIMENT 

In the experiments reported in Refs. 1-4, the in- 
vestigators measured the force acting on a thin disk 
suspended in a gas in the gap between two surfaces 
that were held a t  different temperatures (the plane of 
the disk was perpendicular to the temperature gradient 
vT). The strength of the TMF was determined by 
measuring the deviation of the disk from i t s  equilibrium 
position in zero field observed when the magnetic field 
is applied. Disks of aluminum foil and paper of radius 
r_' 1 cm were used, and the disks were a t  a distance of 
L= 1 cm from the surfaces. The measurements were 
made at gas pressures such that T/L-  10-'-1. 

In examining the experimental results one must take 
account of a number of phenomena associated with the 
finite size of the disk. First ,  one must take account of 
the fact that forces act on both sides of the disk. It can 
be shown that the total force on the disk is twice the 
force acting on one side of i t  (the thickness of the disk 
is neglected) provided the scattering probabilities W 
and V a re  invariant under space inversion. 

Second, since there is gas on both sides of the disk, 
the experimental p dependences of the T F  and TMF 
should differ a t  high pressures from the corresponding 
dependences given by (3.2) and (3.4). Indeed, in the 
limit T/L -0 the disk is in a "continuous medium"; then 
the pressure will be isotropic and the T F  and TMF will 
vanish. For large disks (Y>> n, a s  Einstein noted long 
ago,i2 thermal forces can act only in edge regions of 
size -I. Then the observed T F  and TMF should be pro- 
portional to r/p. Such behavior of the T F  was observed 
experimentally for i / y s  0.01. l3 I t  is clear that a s  the 
pressure decreases @/Y increases) the actions of the 
molecules incident onto the disk from opposite sides 
become independent. Experiment s h o ~ s ~ * ~ * ' ~  that the 
thermal force is proportional to 9, beginning at T/Y 
- 0.05 and is only weakly pressure dependent in the 
range 0.05 5 $T 1. Hence we may suppose that under 
these conditions one can correctly describe the TF  and 

TMF by calculating the force acting on the other side. 
Thus, i t  is clear that although to calculate the T F  and 
TMF correctly at higher pressures one must solve a 
complicated problem that would take into account the 
coupling of the gas volumes on the two sides of the disk, 
one can use the formulas (3.2) and (3.4) obtained above 
in a narrow pressure interval in which T/L- 0.1. 

Still another feature of the e p r i m e n t a l  situation con- 
s is ts  in the fact that when y- L the transport of heat in 
the gas around the edge of the disk affects the tempera- 
ture profile near the disk's surface. As a result, this 
case differs from the case r>> L in that the tempera- 
ture discontinuity a t  the surface of the disk may be 
small. This conclusion is confirmed by experiment. AS 
was shown in Ref. 13, the dependence of the TF  on the 
nature of the gas is best described by the product F 

- Xtrana (X trans is the translational part of the heat con- 
ductivity of the gas and m is the mass of a molecule). 
In calculating the contribution F; (see Eq. (3.2)) to the 
TF  (assuming that no = const and, for simplicity, that 
Vo represents specular-diffuse reflection) we may as-  
sociate F; with the translational part of the heat flux 
and obtain F~-X,,,, &. At the same time, since the 
discontinuity (6T)o in (3.2) is associated with the bal- 
ance of the total heat flux, we have F ~ - x & .  Thus, 
the dependence of the TF  on the nature of the gas can 
be accounted for if the temperature discontinuity a t  the 
disk be neglected. 

In accordance with what was said above we shall f i rs t  
assume for simplicity that the temperature discon- 
tinuities at the surfaces of the disk a r e  small and shall 
se t  F ~ ~ ' = O  in (3.4). As is shown below, Eq. (3.4) can 
then be used to calculate the field dependence of the 
TMF within the experimental errors .  It turns out that 
6T at the surface of the-disk need be taken into account 
only a t  lower values of L/Y. 

Let us calculate the TMF (FT" + FTM) associated with 
the lack of spherical symmetry in the collisions be- 
tween the molecules. We shall use the model expres- 
sion introduced in Ref. 10 for the probability for inter- 
molecular collisions, in which the dependence of W, on 
the mutual orientation of the relative velocity of the 
molecules (g) and their angular momenta is represented 
by the Legendre polynomial Pz. We shall assume the 
spherically symmetric interaction with the wall to be 
specular-diffuse with the diffuseness factor a. The 
integration over and rJ  in (3.4) can be performed 
approximately under the assumption that the collision 
frequency no [Eq. (2.4)] varies only weakly a s  v and 
M vary but remain close to their thermal values. In 
the case of nonparamagnetic linear molecules, we ob- 
tain, in accordance with (3.4), the following expressions 
for the changes in the normal force acting on the disk 
when the field H = (H,, 0,O) is applied: 

F=P,TM+FZTN, 
b = AF," = c, ( 2  - a )  -- El' 105,' 
+ 7 AFZI = $ (2 - a )  [- t --r], 1 + 4E, 

Here AF: and AE a r e  the changes in the components 
parallel and perpendicular, respectively, to V T  of the 
normal force on the disk, F: is the component of the 
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tangential force on the disk transverse to VT (F:'= 0 
when H = 0), = c i ~ / p ,  AT and L a re  the temperature 
difference and distance, respectively, between the sur-  
faces limiting the gas, (6T), is the temperature dis- 
continuity a t  these surfaces (6T = 0 a t  the disk), and the 
quantities ci and C[ (Ici 1 - $) can be calculated if the 
dependence of W on 2 and M' is known. Similar cal- 
culations for NO (it must be understood that in the case 
of a paramagnetic gas the integration over r in (3.4) 
includes a summation over a variable associated with 
the projection of the spin onto the direction of the total 
angular momentum of the molecule) also leads to Eqs. 
(4.1). In view of the dependence of w on @, however, 
the parameter ci will have a different value for NO than 
for a nonparamagnetic gas. 

To calculate the TMF associated with the aspherical 
reflection of polarized molecules from the surface 
(F3TM), we must have an expression for the probability 
Vi for scattering of the gas a t  the wall. We shall use 
the expansion of Vi in spherical functions of the vectors 
v', M', v, M, and k:" 

V,(vf, M' + v, M; k)= lvklexp - - pa (u", WZ,  vz,  P) As,  ( 3g 

Within the framework of a semiphenomenological ap- 
proach to the description of the TMF we can obtain a 
model expression for V1 by retaining the necessary 
number of terms in (4.2) and evaluating the expansion 
parameters by comparison with experiment. We note 
that in accordance with (3.4) and (3.5) only those terms 
of expansion (4.2) for which l2 = 0 contribute to F:~. 
When speaking of the use of some term {(ljli)jl, (liO)l{, I,) 
in (4.2) we mean automatically to imply that the expres- 
sion for Vl also contains the term {(llli)jl, (01~)1~,13} 
symmetric to i t  (as required by the reciprocity theorem). 
Below we shall use model expressions for the prob- 
ability for scattering a t  the surface obtained fromstudy 
of the effect of the field on the heat flux in a Knudsen 
gas. "* 

Let us first  consider the TMF acting on aluminum and 
paper disks in O2 and NO. Since the paper surface has 
a porous filamentary structure, the reflection from the 
paper surface should evidently be fully diffuse as a 
result of the complete averaging over the escape di- 
rections and orientations of the molecules. We shall 
therefore assume that the asphericity parameter c 
vanishes for the paper surface, so  that we have F:" 
= O  in (3.4). Assuming that the A1 surface is coated 
with a layer of chemisorbed oxygen and noting that the 
scattering probability is determined primarily by the 
composition of the adsorbed layer," we shall assume 
that the principal terms in the expansion (4.2) of the 
probability for scattering NO and O2 molecules from 
the A1 surface a re  those with 1; = 1. l4 In this case, a s  
is not difficult to see, we again have FSTM=O. 

Thus, in NO and 02, the TMF should not change when 
a paper disk is substituted for the aluminum one, and 
Eqs. (4.1) should correctly give the field dependence 
of the TMF in NO. Indeed, in these gases (but not, for 
example, in N,) the observed TMF remains practically 

FIG. 1. The TMF in NO vs H/p. The experimental points 
were taken from Ref. 4 and were measured at various gas 
pressures for which i//r - 0.1: The points 0, 0, 0, and + were 
measured with an aluminum disk, and the points V and & with 
a paper disk. 

unchanged on substituting the paper disk for the alu- 
minum one. The experimental points in Fig. 1 (taken 
from Ref. 4) show the H / p  dependences of hF:, AE, 
and F: for NO a t  T/Y- 0.1. The figure also shows the 
theoretical dependences according to (4.1) (for suitable 
choice of the values of the parameters cl and c:). The 
observed agreement between the theoretical and experi- 
mental results indicates that the TMF in NO and O2 is 
due to the deviations from spherical symmetry in the 
collisions between gas molecules. 

We note that the observed agreement also confirms 
the assumption that the temperature discontinuity a t  the 
surface of the disk is small. The term in (3.4) associ- 
ated with 6T (i. e., F:~) contributes only to the TMF 
component normal to the surface. Taking this term in- 
to account, therefore, changes the value of the ratio 
F~+/AF" and only worsens the agreement with experi- 
ment. 

Let us consider the TMF in Nz and CO. For these 
gases only the normal component of the TMF in a field 
H parallel to VT has been measured. In N2 and CO 
(though not in NO and Oz) AF"  increases when the paper 
disk is replaced by an aluminum one (in N2 it  increases 
by a factor of 1.7-see Fig. 2). We note that the T F  
and TMF have similar dependences on the spherically 
symmetric interaction with the wall (in the case of 
specular-diffuse interaction the strengths of the T F  [Eq. 
(3.2)] and the TMF [Eq. (3.411 a r e  proportional to 2- a). 
No change in the T F  on altering the material of the disk 

FIG. 2. The TMF on aluminum and paper surfaces in N2 vs 
H / p .  The full curves represent Eq. (4.4) with c3/c1 = 0 . 7  for 
aluminum and c3 = 0 for paper. The experimental points were 
taken from Ref. 3 and were measured at various gas pressures 
for which w-0 .1 .  The dashed curve represents the theory of 
Ref. 6. 
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has been observed. lY We may therefore asser t  that the 
dependence of the TMF on the material of the disk is 
associated with nonspherical scattering from the sur- 
face. 

We shall assume that the principal term in the prob- 
ability for scattering of N2 and CO molecules from the 
chemisorbed oxygen coating of the A1 surface is the 
{(11)1, (20)2,2} term. " Then for the change in a field 
H parallel to VT of the force normal to the surface, 
corresponding to the contribution F:' in (3.4), we ob- 
tain 

where the parameters c3 and c j  (lc3 ( - vc) can be cal- 
culated if the dependences of the probabilities W and 
Vi on 3 and M' are  known. We note that taking account 
of the additional terms {(00)0, (20)2,2}, {(00)0, (10)1, I}, 
{(11)0, (20)2,2}, and others that occur in the expressions 
for the probabilities for scattering of N, and CO mo- 
lecules from oxygen-coated surfaces" does not result 
in any change in expression (4.3). For the scattering 
of molecules from a paper surface we assume, a s  a 
above, that E = 0 and correspondingly that F:~ = 0 in 
(3.4). Assuming for simplicity that c i  =ci, we obtain 
the following expression for the TMF in N2 and CO in 
accordance with (4.1) and (4.3): 

moreover, c3 = 0 for a paper disk and c3 # 0 for an al- 
uminum disk (here the factor 2 - a in (4. l )  is absorbed 
in the parameter ci). The ratio c3/cI can be deter- 
mined from the experimental value of the ratio of the 
effects for aluminum and paper at saturation: 

(APL ) NI-AII ( A F & ~  ) Nz-paper "1.7. 

As a result, we have c3/cI =O. 7. We evaluate the pa- 
rameters ci and c i  by equating the values of ( A F ~ ~ ~ $ ~ ~ - ~ ,  
and (H/P)~ ,~  (the value of H/p for which [:/(I + 5: )  
= 1/2) corresponding to Eq. (4.4) to the experimental 
values. The resulting field dependence of AF" is shown 
in Fig. 2 by the full curves and agrees with experiment 
within the experimental errors.  Similar agreement is 
also found for the TMF in CO. 

It follows from what has been said that in the case 
of a paper disk the TMF in N2 is due to the lack of 
spherical symmetry in the intermolecular collisions, 
while in the case of an aluminum disk, for which c3/ 
ci = 0.7, about 60% of i t  is due to molecular collisions 
and 40% is related to the lack of spherical symmetry 
in the reflection of molecules from the surface. 

Comparison of the TMF in N2 with experiment also 
confirms the assumption adopted above that the tem- 
perature discontinuity a t  the surface of the diskis small. 
Since the temperature discontinuity is determined from 
the condition for heat flux balance near the wall, the 
field dependence of 6T should be close to the field de- 
pendence of the heat flux. '*'O Hence we can write the 
following approximate expression for the contribution 
F? to the effect: 

where t4 =c; H/P, and c i  is known from studies of the 

FIG. 3. The component of the TMF in N, normal to the sur- 
face vs H / p .  The full curve and the open experimental points 
are the same as in Fig. 2 (r/L EJ 1). The dashed curve repre- 
sents Eq. (4.5) and the theory of Ref. 6. The black circles are 
experimental points measured with the disk shifted to such a 
position that r/f,,,, EJ 3.5 (Ref. 3). 

Senftleben-Beenakker effect. To be able to compare 
the positions of the curves on the H/P axis we have 
normalized the theoretical and experimental dependences 
plotted in Fig. 3 to the corresponding saturation values. 
The dashed curve on Fig. 3 represents Eq. (4.5); it ob- 
viously lies to the right of the experimental curve. 

A more realistic analysis using the experimentally 
knowni5 Knudsen corrections to the Senftleben-Beenak- 
ker effect shows that the H/p dependence of A F ~  is 
shifted somewhat farther to the right than the dashed 
curve in Fig. 3. This, however, only strengthens the 
assertion made above. 

The temperature discontinuity at the disk surfaces 
becomes significant only a t  larger values of Y/L. Thus, 
when the disk was displaced so far toward one of the 
surfaces that the ratio of the radius of the disk to the 
gag between the disk an! the nearer surface became 
Y/L = 3.5 (instead of Y / L  = 1 a s  in the experiments cited 
above) the AF" vs  H/p curve was observed3 to shift to 
the right (see Fig. 3). Under the assumption that in 
this situation 6T at  the surface of the disk facing the 
shorter gap differs from zero, the theoretical depen- 
dence will be a linear combination of expressions (4.4) 
and (4.5). In this case the resulting curve will lie be- 
tween the full and dashed curves in Fig. 3 and will ob- 
viously agree with exgeriment if the ratio c4/cI is 
suitably chosen. 

The calculations presented above show that if the in- 
teraction between the molecules o r  between a molecule 
and the surface is not invariant under space inversion 
[for example, for 0,-Au (Ref. 14)], thermomagnetic 
forces having opposite directions on opposite sides of 
the disk may arise. These forces a r e  also described 
by the general expression (3.4). Such forces could not 
be detected in the experiments reported in Refs. 3 and 
4 because of the symmetry of the transducer employed. 
To measure such forces one might, for example, use 
a sensitive disk whose surfaces differ from one another. 

"AS i s  well known, such polarization i s  basic for a nonuni- 
formly heated diatomic gas. 7*'0 
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Large-scale fluctuation potential and state density in doped 
and strongly compensated semiconductors 

Institute of Radio Engineering and Electronics, USSR Academy of Sciences 
(Submitted 31 March 1978; resubmitted 6 March 1979) 
Zh. Eksp. Teor. Fiz. 77, 155-169 (July 1977) 

A method is proposed for a self-consistent calculation of the large-scale fluctuation potential in doped 
and strongly compensated semiconductors with shallow impurities at T = 0. It is shown that the 
fluctuation potential can range from zero to the energy difference A between the donor and acceptor 
levels. The position of the Fermi level and the mean value of the potential P are determined. The 
potential probability density function b ( V )  is calculated in the energy interval 0 5 V <A for a degree of 
compensation 0.95 5K 1. The large-scale potential causes all the neutral donors to be on the Fermi 
level at the energy E = 0, and causes the empty donor states to spread into a band with energies from 
zero to A. The electronic states below the Fermi level arise in the case a;&d < < 1 only as a result of 
the Coulomb potential of the nearest empty donor, and in the case a imd  > > 1 they are due to 
quantization of the electron in small-radius fluctuations. The tails of the state densities of the valence and 
empty bands differ in character. The valence band has a deep state-density tail on account of the large- 
scale potential (when m,, i, ma), while the conduction-band tail is due only to the small-radius 
fluctuations, in which the quantization is significant. 

PACS numbers: 71.20. + c, 71.55.Ht 

INTRODUCTION volume of the fluctuation. The potential in the region 

An inhomogeneous random distribution of the im- 
purities in doped semiconductors violates the local 
electroneutrality and accordingly leads to the appearance 
of an inhomogeneous large-scale potential. I t  is known 
from experiment that when the degree of compensation 
is increased, the activation energy for the conductivity 
increases. The influence of a fluctuation potential on 
the electron spectrum was considered in Refs. 6-13. 
Shklovskii and B f r o ~ ' ~ - ' ~  calculated the fluctuation po- 
tential in the following manner. They considered fluc- 
tuations of arbitrary radius R under the assumption 
that the impurities a r e  uniformly distributed inside the 
fluctuation. Since fluctuations of sufficiently small  
radius cannot be screened by electrons, a "bare" charge 
appears in the region of the fluctuations, and is equal 
to qANS2, where AN = N, - N, - (zd - R), where and 
N, a re  the concentrations of the donors and acceptors 
in the fluctuation, T j ,  and a r e  the average concen- 
trations of the impurities in the crystal, and 51 is the 

of the fluctuation is in this case approximately equal to 
( q 2 / ~ ) a ~ ~ 2 .  

Assuming a Gaussian distribution for the fluctuations, 
the mean squared potential is calculated to be 

from which i t  follows that without allowance for the 
screening y diverges when R is increased. 

The characteristic radius a t  which screening comes 
into play is estimated in Refs. 10 and 11 from the fol- 
lowing considerations: since the mean squared devia- 
tion of the concentration decreases when the radius is 
increased,  AN^ = X d / ~ ' ,  it  follows that at  n 
>  AN^)"'(^ =Ha - is the average concentration of the 
electrons in the f ree  o r  impurity donor band) the elec- 
trons easily screen such fluctuations, and the latter 
make no contribution to the potential. Thus, the char- 
acteristic radius R, is determined from the relation 
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