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The problem of the propagation of a high-frequency noniinear ionizing surface wave in a plasma with 
permittivity c o 2 0  is considered in the normal skin-effect approximation. It is shown that the change of 
the permittivity, E, of the plasma in the wave field from positive to negative values occurs abruptly. In 
the region of positive values the permittivity and the electric field of the wave behave nonmonotonically. 
The magnitudes of the electric-field and permittivity jumps are found, and their effect on the phase 
characteristics is assessed. 

PACS numbers: 52.35.Mw, 52.25.Mq 

The study of the processes of propagation in a weakly plasma in the wave field from positive to negative val- 
ionized plasma of electromagnetic waves of sufficiently ues occurs abruptly. The magnitude of the jump is 
high power (and of frequency lying in the optical, micro- found, and i ts  effect on the phase velocity and the ex- 
wave, or any other frequency range) should be related istence domain of the surface wave i s  estimated. 
to the problem of taking into account the effect of the 

1. Let there exist a half-space, z a 0, filled by a 
ionization of the medium on the behavior of the electro- 

plasma with permittivity in zero field 0 s & s 1, and 
magnetic field. 

bordering on a dielectric (permittivity E,). Along the 
The properties of a nonlinear high-frequency surface 

wave ionizing a supercritical plasma have been studied 
by Prokopov and the present author.' Of greater interest 
from the standpoint of applications is the problem of the 
propagation of an ionizing surface wave in a transparent 
plasma (with an electron concentration in zero field, 
no, lower than the critical concentration n,=mw2/4ne2). 
This case includes a s  a particular case the problem of 
neutral-gas (no =0) ionization by a wave, which i s  a 
typical problem in the study of self-maintained gas dis- 
charges. However, theoretically, this problem is a 
more difficult problem, since the existence of a surface 
wave in such a plasma necessarily requires, a s  a re- 
sult of the nonlinear (ionizing) effect of the field, that 
the permittivity be negative in some layer of the plasma, 
i.e., that the permittivity of the plasma in the field of 
the surface wave should necessarily change its sign. 

Because of the presence in the wave of an electric- 
field component along the gradient of & that is  singular 
at the point E =O(E, - I/&) and the nonlinear coupling 
between the permittivity and the field, E = E: (IEl2), the 
transition from the region c < 0 to the region E > 0 can 
occur only abruptly, and, consequently, that solution 
to  the problem which describes the wave field should 
be constructed with allowance for this discontinuity. 
The existence of the jump of the nonlinear field was 
first  pointed out by Gurevich and ~ i t aevsk i ; ,~  and the 
properties of the jump in an inhomogeneous plasma 
a re  studied in Refs. 3 and 4. The solution of the prob- 
lem in a waveguide channel in an opaque plasma with 
allowance for the field jump is considered in Ref. 5. 

Below we construct in the normal skin-effect ap- 
proximation the exact solution to the problem of the 
propagation of a high-frequency ionizing surface wave 
in a plasma with n o s  n,. The spatial structure of the 
field is investigated, and it is shown that, in the region 
of admissible positive values, the permittivity of the 
plasma and the electric field of the wave vary non- 
monotonically. The change of the permittivity of the 

boundary of the plasma in the direction of the y axis 
propagates a surface electromagnetic wave with elec- 
tric- and magnetic-field components E{O, E,, EJ and 
H(H, O,0) respectively. The wave frequency w>> v, the 
effective collision rate. We shall neglect the dissipa- 
t ion of the wave energy; the conditions under which this 
can be done will be discussed below. 

We shall assume that the penetration depth, L,, of 
the field significantly exceeds the diffusion length L, 
and the length characterizing the redistribution of the 
density of the electrons a s  a result of their being heated 
up. Then the dependence of the plasma-electron con- 
centration n on the electric-field intensity will be 
localized. Let us choose it in the form 

n, i iz . ( lEl~E,Z)  for IEI>Eg 
for IEIGE, ' 

where n, is some characteristic concentration deter- 
mined by the ionization mechanism. The dependence 
(1.1) takes account of the possibility of the existence 
of a nonzero threshold field, E,, connected, for ex- 
ample, with the allowance for the effect of adhesion of 
electrons to neutral particles in the balance equation 
for the number of plasma p a r t i ~ l e s . ~  When the electric 
field intensity of the wave i s  less than E,, no perturba- 
tions exist in the plasma, and the behavior of the field 
i s  described by the linear problem. The field depen- 
dence of the concentration has been chosen to be quad- 
ratic for  simplicity; its complication has no effect on 
the qualitative behavior of the solution. 

That permittivity of the plasma which corresponds to 
the dependence (1.1) has the form 

e~[l-p(lEl~-E,Z)l  for IEIaE, 
for IEIGE,' 

where &,=I-no/n,,~,=l-vc,/rc, and 

p=(f-&.)/Eo>O, &,#O. (l.3) 

If the change in the wave amplitude over a wavelength 
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along the y axis is small, then, seeking the solution in 
the form -exp[i(hj- w t ) ] ,  we arrive a t  the following 
problem for the field in the plasma: 

V" i d b  
E l - - - b ,  E , , = - - ,  

E e d5 (1.4) 
1 d b  s-E,~+E:= ,{tp+ (dT)2) , 

where 

The field in the plasma should join the field in the 
dielectric a t  the boundary z =0: 

where c, = E(+O) is the value of the permittivity of the 
plasma at  the boundary and B2 is the field amplitude at 
the boundary of the dielectric. For the field decreasing 
with increasing distance into the interior (db/db<O), 
conditions (1.5) will be fulfilled only when &, < 0. 

Deep inside the plasma, a t  some point 5 = 5,, where 
E2 =1 and E = E,, the solution of the nonlinear problem 
should join the solution of the linear problem: 

b = b , = ~ ~  exp[- ( r l - ~ , f i f , ]  for E = E o .  (1.6) 

For a given 5, the quantity B, is determined by the 
relation 

The solution to  Eq. (1.4) that satisfies the condition 
(1.6) has the form' 

where c a s  a function of 5 is  given by the formula 

The dependence b2(&) a s  given by (1.8) is  represented 
in Fig. 1 (the curve 1) by the partly dashed, partly 
solid, curve. Here the interval -&  * =&,(I +2p)'I2< & < 0 
is forbidden (b2(& )< O), and therefore the variation of the 
permittivity in the wave field from positive to negative 
values in a continuous fashion is impossible. In view 
of this, we shall construct the solution to the problem 
for positive and negative values of E separately, and 

FIG. 1. Dependence of the magnetic field on the permittivity 
of the plasma: curve 1) b 2 ( ~ )  computed from (1.8); 2) b2(d 
computed from (3.1). 

then join the solutions, using the continuity conditions 
for the tangential components of the fields. 

2. As the solution for positive E ,  let us choose the 
solution (1.8). It is nonnegative for 0 c & c E,, and sat- 
isfies the boundary condition (1.6) inside the plasma. 

The dependence b2 ( E ) ,  (1.8), for & > 0 is nonmonotonic; 
a t  E = & +  (Fig. I), which satisfies the equation 

the derivative db2/d& changes its sign. 

I t  is not difficult to verify that 0 s &+ &, if fi G 1 +E,/ 
2q, and b2(&) decreases a s  the point Go is approached. 
When p > 1 + c0/2q and cog 0, the peak of the function 
bZ(&) lies more to the right of e,, and the region of 
positive values degenerates into the point c, .  

For a sufficiently slowed-down wave [&,(I +2p)l12 
<<6$j the solution to Eq. (2.1) that lies in the interval 
(O,c,) can be written in the form 

E+--eo[ (1+2p) /3] 'h ,  pG1.  (2.2) 

The requirement that the radicand under the integral 
sign in (1.9) should be negative reduces to the following 
inequality for  & : 

F = E { ~ E ~ - E ~ [ ~ ~ + ~ E , ( I ~ ~ )  ]+4qe0(t+p)e-q~.'(i+2pj]>0. (2.3) 

To ascertain the spatial dependence e (5), it is im- 
portant to know the location of the least value of the 
permittivity, c,, starting from which the inequality 
(2.3) will be fulfilled relative to that root, E + ,  of Eq. 
(2.1) which determines the location of the maximum of 
the function b2(&). 

If E ,  < E +  (Fig. I ) ,  then during the variation of E from 
E ,  to E,, the derivative d&/d< will change its sign a t  the 
point &+ and the permittivity will attain a local minimum 
at  5, = 5(&,,,). If & , 3 &+, then d&/d [ will be positive when 
& >E, ,  and the permittivity will increase monotonically 
into the plasma. 

It is convenient to carry  out the investigation of the 
positions of the roots of Eqs. (2.1) and (2.3) and, con- 
sequently, of the sign of F(&) a s  a function of the pa- 
rameters p and q after solving these equations for q. 
Let us first  consider the case when &, + 0 and p < 1 + E,/ 

217. The analysis shows that in the region of variation 
1 s q <  "0, which is characteristic of a surface wave, we 
always have 

For example, for P =4X10-2 and E ,  =1, a s  q varies 
within the interval 1 "q< "0, the roots c ,  and & + vary in 
the intervals 

0.334<emG0.362, 0 . 55<~+<0 .6 .  

Since db/ds> 0 in the interval (&,,&+), we have, ac- 
cording to (1.9), that 

5+=5 ( e + )  ( 6  (ern)  =Lm, 

and therefore the plasma having a positive permittivity 
in the wave field will be concentrated in the region of 
space 5, -( 5<m. Here & will vary nonmonotonically in 
space; a t  the point 5, it will have a minimum equal t o  
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FIG. 2. The spatial structure of the field and the permittivity 
in the positive-value region: curve 1) the permittivity E ;  2) the 
electric-field component EL; 3) the magnetic field b. 

E ,. At the point f = l+,db/dc =O. The magnetic field 
decreases with increasing distance into the plasma, 
having a point of inflection a t  f = 5,. 

An investigation of the behavior of the modulus of the 
normal component of the electric field a s  a function of 
f shows that E, has the point f, a maximum equal to 

This value of E m  is a t  the same time the maximum val- 
ue of the modulus, E =(E: + E ~ P / ~ ,  of the electric-field 
vector of the wave, since the tangential component, E ,,, 
of the electric field vanishes a t  = 5,. 

Figure 2 shows the qualitative behavior of c ( b )  (the 
curve I), the magnetic field b(f) (the curve 2), and the 
normal component, E, (g), of the electric field (the 
curve 3). 

The transition of c from the region of positive into 
the region of negative values will occur when the wave 
amplitude increases from the point f = f +  in space, and 
therefore in the plane (b2,c) the jump of c into the reg- 
ion of negative values should be accomplished from the 
point c,. Thus, the value c +, which is a root of Eq. 
/2,1), is  the positive limit of the jump of the permittivity 
of the plasma. Notice that Eq. (2.1) is similar to  the 
equation obtained in Ref. 3 for the limit of the jump in 
the region of negative E .  

3. We shall seek the solution to the problem in the 
region of negative values in the form 

where C i s  for the present an arbitrary constant. We 
find the value of this constant and the largest negative 
permittivity value & -, which is the second limit of the 
jump, from the continuity conditions for the tangential 
components of the fields: 

where b+ is the magnetic-field value given by (1.8) for 
E = & + .  

As a result, we obtain 

C =  (2q-E-)E+ [E.' (1+2p)-e+"-[~o'(1+2p)-e-zl, (3.3) 
(211-8,) e- 

E- ( 1 - b +  (I-e.)qb+' x + ( I - e  
-= 
E+ 2.: I[.--] &+ 

It can be seen that C is negative together with C,. It is  
not difficult to verify that in the region of variation -* 
<E Q c -  we have 

Figure 1 shows the b2(&) dependence a s  given by (3.1) 
for C given by (3.3) (the curve 2). The arrows in the 
same figure indicate the direction of variation of the 
field in crossing the jump. 

For  a sufficiently slowed-down wave (29>> & + ,  c -), we 
find from (3.3) and (3.4) that 

The magnitude of the permittivity jump in this case is 
equal to  

The normal component of the electric field and, a s  a 
result, the modulus of the electric field of the wave 
undergo an abrupt change in value when the permittivity 
changes its sign. In this case 

It i s  easy to verify that in the region of negative E the 
field in, and the permittivity of, the plasma decreases 
monotonically with increasing f. 

The solution to the problem in the c,# O,p > 1 + &,/29 
case, when the maximum of the function b2(&) lies to 
the right of E,, can be constructed in completely similar 
fashion. In this case the region of positive values of 
the permittivity degenerates into the point c,. The jump 
into the region of negative values then occurs directly 
from the point c ,. To find the constant C from (3.1) and 
&-, we should replace c - and b2, in (3.2) by C, and b: 
from (1.6) and (1.7). As a result, we obtain 

For  sufficiently large values of 9, the magnitude of 
the permittivity jump is given by the formula 

If the permittivity of the unperturbed plasma &,- 0, 
then the quantity b, given by (1.6) tends to zero, and the 
solution has the form 

The region of admissible c values that satisfy the 
inequality Eq 3 0 is the semiaxis & 0. The electric 
and magnetic fields and the permittivity of the plasma 
decrease monotonically with increasing distance into 
the plasma. For  c - 0 

and, consequently, the field will vanish in the unper- 
turbed plasma if the threshold field in the ionization law 
(1.1) is equal to zero. 

If the field E, i s  nonzero, then there gets excited in 
the region of unperturbed plasma a traveling-along the 
y axis-electrostatic wave of constant amplitude equal 
to E,: 
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H=E,=O, E,=E, exp {i ( h y - o t ) ) .  (3.8) 

In respect to the structure of the field, this wave is 
equivalent to a plasma wave, but the characteristics of 
its propagation a re  determined not by the thermal mo- 
tion of the electrons, but by the characteristics of the 
propagation of the nonlinear field. In this sense, this 
wave is, a s  it were, an intermediate wave between an 
electrostatic, and an electromagnetic, surface plasma 
wave. 

The Eqs. (3.2), which constitute joining conditions for 
the fields a t  the jump point, determine only the ratio 
& -/&, and C a s  functions of Eo and q, and a re  insufficient 
for the unique determination of the values of & +  and c-. 
For  this purpose, we need to know the solutions in the 
regions outside the region of the jump. Analysis of 
these solutions and the joining of them with the aid of 
the conditions (3.2) enable us to eliminate the arbi- 
trariness,  and make the solution to the problem unique. 

4. The dispersion equation for the wave can be ob- 
tained from the boundary conditions (1.5), with b2(&)  
given by the formula (3.1). It has the following form: 

This equation determines the phase velocity of the 
wave a s  a function of the permittivity of the plasma a t  
the E ,  boundary (and, a s  a result, of the wave ampli- 
tude), the ionization-law parameter p, and the quanti- 
ties E ,  and &,. 

The existence domain of the surface wave is deter- 
mined by the condition s, s qca. If (&,( >> &, (strong 
field), then q = E , ,  and the phase velocity of the wave 
is close to the velocity of light in the dielectric. The 
values of the permittivity E ,  a t  which the phase velocity 
of the wave vanishes (q -a )  a re  given by the equation 

Il ( E ~ - E , )  e,e,'- (e,'+eZ2) 
X [ E . ~ ( I + ~ ~ I ) - ~ , ~ + C I = O .  (4.2) 

Since a surface wave does not exist in a plasma with 
only a positive permittivity, there should exist a cer-  
tain threshold field necessary for the creation a t  the 
boundary of a negative permittivity. The strength of 
this field and the permittivity values determined by it 
a re  given by Eq. (4.2) a s  functions of the parameters 
Eo, E,,  and P . 

Figure 3 (curve 1) shows the c, dependence of the 
threshold permittivity of the plasma at  the boundary for 
p<< 1, A surface wave exists in the region of Jell values 
higher than the boundary value for  the given c,. The 
same figure (curve 2) shows the dependence of the 
threshold permittivity a s  found from the analogous 

FIG. 3. Threshold values of the 
permittivity of the plasma at the 
boundary: curve 1) according to 
(4.2); 2) according to the solution 
of Ref. 1. 

FIG. 4. The phase velocity of the wave: curve 1) E,= 1 (accord- 
ing to the solution of Ref. 1); 2) &,= 1; 3) &,= 0; 4) the linear 
theory. 

equation of Ref. 1, an equation which i s  certainly not 
applicable in the case of positive c values, since it is  
constructed from a solution that does not take account 
of the jump in, and the existence of a region of positive 
values of, the permittivity. 

In Fig. 4 we show the dependence of the phase velocity 
of the wave on the value of the permittivity of the plas- 
ma at the boundary for  different values of E,: c , = 1 
(the curve 2) and co = O  (the curve 3). We show in the 
same figure for comparison the dependence of the phase 
velocity of the wave a s  computed from: a )  the formulas 
of Ref. 1 for &, =1 (the curve 1 )  and b) the linear theory 
(the curve 4). I t  canbeseen that, qualitatively, all the 
curves behave in like manner; they a re  only shifted 
differently along the (&,I axis a s  a result of the difference 
in the threshold values (the threshold permittivity value 
in the linear theory is &, = C, =- 1). 

A comparison of the curves in Fig. 2 and the curves 
1 )  and 2) in Fig. 4 shows that the phase characteristics 
of the wave depend quite weakly on the details of the 
spatial structure of the field in the plasma, which is 
explained by the relatively small magnitude of the jump 
in & and the relatively small c, values. This fact can 
be used to construct approximate solutions. 

In conclusion, let us discuss the conditions under 
which we can neglect the dissipation of the surface-wave 
energy. 

The requirement that the ratio v / w  be small  is  not 
sufficient fo r  this purpose, since dissipation mecha- 
nisms connected with spatial dispersion (collisionless 
damping, transformtaion into a plasma wave in the plas- 
ma-resonance region) a r e  possible in the case of sur- 
face waves. 

The collisionless damping can be neglected if the 
phase velocity, v,, of the wave exceeds the thermal 
velocity, v,, of the electrons and the depth, L,, of 
penetration of the field into the plasma exceeds the 
mean free path, i.e., 

On account of the sharp increase in the phase velocity 
v, and the penetration depth L, in the vicinity of the 
threshold value of the permittivity (L;' =kl~,1' /~),  the 
conditions (4.3) will be fulfilled if 

Using the results of Refs. 4 and 1, we can write the 
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relative change that occurs in the flux density of the 
wave over a unit length along the propagation direction 
a s  a result of the conversion of the wave into a plasma 
wave in the region of the jump in the form 

This ratio is  small under the conditions of the inequali- 
ty (4.4). 

The obtained solution can be used to construct a more 
complexsolution-of the type of a plasma facula (layer) 
in an unbounded plasma with c, > 0-having even two 
jumps. Treating the z = O  plane a s  a middle plane, and 
seeking the solution that describes the decreasing field 
for lzl -a, we arrive on account of the symmetry of 
the problem to a solution of the surface-wave type. 
However, the dispersion properties of such a wave 
( m > q *  E,,) will now be determined by another factor: 
the law of conservation of the wave-energy flux along 
the axis of the facula: 

Introducing the effective skin depth 

where B, is  the amplitude of the field a t  z =0, we obtain 
for a sufficiently large wave amplitude1 

so = L E : ~ ~ ~ A ,  
2n 

where A does not depend on the wave amplitude. 
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inhomogeneous magnetic field 

V. V. Zheleznyakov, V. V. Kocharovski, and VI. V. Kocharovski 

Institute of Applied Physics, USSR Academy of Sciences 
(Submitted 21 December 1978) 
Zh. Eksp. Teor. Fiz. 77, 101-1 13 (July 1979) 

The linear interaction of waves in the region where the geometrical-optics approximation is violated is 
analyzed qualitatively on the basis of the Budden-Kravtsov equations that describe the propagation of 
the electromagnetic waves in a smoothly inhomogeneous magnetoactive plasma. It is shown that the 
interaction sets in when the polarization of the geometrical-optics waves is substantially altered over the 
spatial period of the beats between these waves. Conditions are obtained under which the efficiency of the 
interaction is characterized by a single parameter whose form can be established without solving the 
equations that describe this phenomenon. The plasma-parameter regions in which the interaction is the 
most effective at a specified scale of the inhomogeneity of the magnetic field are determined. The exact 
solution of the standard problem that describes the linear interaction in plasma layers of the transition 
type is analyzed. 

PACS numbers: 52.35.Hr, 52.40.Db 

The study of the sources of cosmic radio emission ordinary and extraordinary waves to  differ substantially 
calls for an exact account of those changes that the from those expected in the geometrical-optics appraxi- 
emission undergoes in the plasma located on the path mat ion. 
from the source to the observer. Because of the weak If the polarization characteristics of the radiation ' 

inhomogeneity of the electron density and of the mag- source a r e  known, then the parameters of the cosmic 
netic fields in the cosmic plasma (over scales com- 
parable with the wavelength), these changes can usually 

plasma in the interaction region can be evaluated from 
the observed polarization that is produced a s  a result 

be described in the geometrical-optics approximation, of the linear wave transformation. Diagnostics of this 
s o  that it is rather a simple matter to take them into type uncovers new possibilities of studying the plasma 
account. However, if the emission passes through near the earth and between the planets by reception of 
regions where the geometrical-optics approximation radiowaves from spacecraft. It is of interest also for 
does not hold, the situation becomes much more com- the study of processes in a laboratory plasma. 
plicated: a linear interaction ar ises  between the waves 
and causes the amplitude and phases of the emerging In a tenuous plasma (w,<< w, where w, i s  the plasma 
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