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We consider inelastic atomic collisions that take place in the field of intense electromagnetic radiation 
and are accompanied by absorption of nonresonant photons. The cross sections are calculated for the 
excitation [H(lS) + H(1S) + o,-H(IS) + H(2S)I and charge exchange 
[H(lS) + H(1S) + 02-H+ + H -1 of hydrogen atoms in close collisions. The transition cross sections turn 
out to depend substantially on the form of the potential curves of the quasimolecule H,. We calculate 
also the two-photon ionization of hydrogen atoms irradiated by an intense laser pulse in close colliisions. 
The cross section depends little on the form of the potential curves of the quasimolecule, and an estimate 
of its value shows that collision ionization makes a contribution comparable with that of direct ionization 
even at medium densities. In the case of remote collisions, an analytic expression is obtained for the cross 
section of nonresonant transitions following adiabatic turning on the field, with account taken of the 
Stark shift of the atomic levels. 

PACS numbers: 34.50.Hc, 32.80. - t 

1. INTRODUCTION nant . 

Much attention has been paid in recent years to the 
study of the influence of intense electromagnetic radi- 
ation on the dynamics of atomic collisions. Interest in 
this group of problems is due to the possibility of using 
laser radiation to stimulate various processes that oc- 
cur in atomic collisions. Most theoretical and experi- 
mental studies were devoted to the so-called optical and 
radiative collisions (see the review by Yakovlenkol), 
which occur at large  interatomic distances, and the 
frequency of the absorbed (emitted) photon is close to 
the natural frequencies of a system of two non-interact- 
ing atoms. These processes have a clearly pronounced 
resonant character. Single-photon ionization in the case 
of remote collisions, accompanied by excitation trans- 
fer  from one atom to another, was considered in Refs. 
2 and 3, while two-photon ionization was considered in 
Ref. 4. 

In this paper we consider processes that occur in 
atomic collisions and a r e  accompanied by absorption of 
photons whose frequency differs from the natural atom- 
ic frequencies by an  amount comparable with the f re-  
quencies itself. We shall call these processes nonreso- 

We note that nonresonant excitation (detuning -1000 
cm-') was observed in .recent  experiment^,^ as well as 
binding of atoms of alkali-metal vapor into a molecule 
following collisions in a laser-radiation field. If the 
detuning reaches a value on the order of the atomic 
frequency, then the nonresonant processes occur at 
close collisions, since the close approach can lead to 
cancellation of the detuning on account of the strong 
distortion of the energy levels of the interacting atoms 
(quasimolecule). For a consistent calculation of the 
c ross  sections in the adiabatic approximation it is 
therefore necessary, f irst ,  to know the exact param- 
e ters  of the quasimolecule; second, to take into ac- 
count the motion of the nuclei along the real  rather than 
a straight-line trajectory. On the other hand, by mea- 
suring the cross  sections of nonresonant processes in 
close collisions it is possible to  obtain information on 
the parameters of the quasimolecule (the angular mo- 
menta of the transitions, the shapes of the potential 
curves). 

In the next section of this  paper we reduce the prob- 
lem in the adiabatic approximation to  a description, in 
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an external field, of a two-level quasimolecular sys- 
tem the upper level of which is  shifted and broadened 
on account of the interaction with the electronic con- 
tinuum. In Sec. 3 we investigate the case of nonreso- 
nant transitions, when the ionization of the atoms dur- 
ing the collision time can be neglected. In Sec. 4 we 
consider two-photon ionization of atoms in close col- 
lisions. The results of the calculation of the nonreso- 
nant excitation and of the charge exchange of the hydro- 
gen atoms with photon absorption, as  well a s  of two- 
photon ionization in close collisions, a re  discussed in 
Sec. 5. In Sec. 6 we take into account the influence of 
adiabatic turning on the field on the nonresonant transi- 
tion in the case of remote collisions and relatively small 
detuning. 

2. SOLUTION METHOD 

The motion of the atomic nuclei will be described 
classically. In the case of close collisions, when the 
transitions occur at distances on the order of several 
atomic units between the nuclei, this approximation is 
not obvious. Thus, for the lightest hydrogenlike atoms 
moving with thermal velocities, the deBroglie wave- 
length is close to the atomic unit. We consider only the 
case when the potential curve of the relative nuclear 
motion is not repulsive. Then, for example, when the 
hydrogen atoms come close together their relative vel- 
ocity increases by at least one order of magnitude. 
Consequently, in this case, when describing the motion 
of hydrogen a s  well a s  of heavier atoms, we can use 
the concept of classical trajectory. 

The Schrbdinger equation for two colliding atoms in- 
teracting with electromagnetic field can be written in 
the form') 

iaY (r ,  t )  la t=(H(r,  R ( t ) )  + V ( t ) ) Y  (r ,  t ) .  (1) 

Here r is  the aggregate of the electron coordinates, R 
is  the distance between the nuclei, and H is  the Hamil- 
tonian that determines the set of eigenfunctions %,(r, R) 
and terms U,(R) of the quasimolecule: 

H(r, R)Q.(r ,  R )  =U.(R)@.(r ,  R ) ,  

V(t) = -Fad [r, ~ ( t ) ] e '  ,'/2 + H.c. is  the operator of in- 
teraction with the electromagnetic wave in the dipole 
approximation, and Fa and w are the amplitude and 
frequency of the wave. The velocity of the nuclei is  
assumed to be small compared with the velocities of 
the electron motion, so that the function R(t)  varies 
adiabatically slowly. 

It is convenient to analyze the problem qualitatively 
by using the formalism of quasienergy states (QES).6 
When the interaction V(t) is turned off, the set of QES 
and of the quasienergies U, of Eq. (1) takes at fixed R 
the form 

cD,(r, R)exp( - iU . (R) ) ,  UnI(R)=U, , (R)+ko ,  k=O, -11,. . . 
The perturbation V(t) will obviously lead to transitions 
between the QES of the discrete spectrum, for which 
there exists a point of intersection of the quasienergies 
R,, and to a decay of the QES that land in the elec- 
tronic continuum. We specify a definite arrangement 
of the continuum and of the two discrete terms of inter- 

est to us, a s  functions of R. To derive the system of 
equations it is  more convenient to make the continuum 
boundary Uo(R) independent of R and reckon the energy 
from it. It is  easy to see t h 3  this can be done by re- 
placing the operator H by H -U,(R). The correspond- 
ing arrangement of the discrete terms and of the con- 
tinuum is  indicated in Fig. 1. We thus arrive at the 
problem of transitions between two quasistationary QES 
following an adiabatic change of the parameter R(t). 
Starting with the assumptions indicated above, we seek 
the solution of Eq. (1) in the form 

We note that a model that makes use of a coupling of two 
discrete states and the electronic continuum can be 
justified only in the resonance approximation. 

Substituting the function (2) in the Schr6dinger equa- 
tion (I), using the adiabaticity condition (we neglect 
terms containing 8 %,/at), and omitting, in addition, 
the rapidly oscillating terms, we obtain in the reso- 
nance approximation the following system of equations: 

I 

i i ,=V, ,  exp {i J ( ~ , - ~ ~ + m ) d t } a ~ ,  

I 

ib .=~ . ;  erp { i  J ( U r U . - w )  B}  a,, 

where 

In the derivation of the system (3) it was assumed, just 
as  in Refs. 4 and 7, that there is no coupling between 
the states of the continuum, i.e., the matrix elements 
Vvut a re  small. 

We assume that prior to the collision the atoms were 
in their unperturbed ground states. This corresponds 
to choosing the initial condition for the integration of 
Eqs. (3) in the form 

a,(--) = l ,  a*(--)=b.(--)  =O. (4) 

The condition (4) corresponds, generally speaking, to 
instantaneous turning on the electromagnetic field. But 
if  the action of the field on the isolated atoms can be 
neglected, then the cross sections of the nonresonant 
processes should not depend on the manner in which the 
field is turned on prior to the collision. 

The system (3) can be further simplified by assuming 
that the second term lies sufficiently close to the con- 
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tinuum: 

m a x ( U , ( R ) - U 2 ( R f )  ( < m i n ( U z ( R ) + w ) .  

where 

In this case we can approximately assume that U,(R) 
-U,(R) +w i s  constant. We integrate by parts the 
right-hand side of the third equation of the system (3). 
The functions V,,  and a, vary slowly with time, s o  that 
we can neglect their derivatives. Substituting the re-  
sultant expression for b,(t), with account taken of the 
initial condition (4), in the second equation of (3), we 
arrive a t  a system of two equations: 

1 

i i ,=V , ,  exp { i  J ( u . - ~ . + ~ ) d t  a.  1 
idz=V,,' exp -i ( U I - U z f  w )  dt a,+azA-ialI'/2, c i 1 (6 

where the shift of the second level on account of the in- 
teraction with the continuum is 

and the broadening of the second level on account of the 
interaction with the continuum is 

dv = dU,d v/dU, takes into account the degeneracy of 
the continuum. 

In the case of terms that do not depend on the time, 
the obtained system of equations coincides with the 
equations of Ref. 7. We note that the system (6), with- 
out indication of the condition (5) for i ts  validity, was 
used in Ref. 4 in an investigation of remote collisions 
between atoms. 

The total ionization probability is given by 
t 

W ,  ( t )  = Jdvl b,lz= j l a2 ( t )  Ia r ( t )d t ;  (7 -- 
where the amplitudes satisfy the normalization condi- 
tion 

l a , ( t )  j2+la , ( t )  I 2 + w z ( t )  = I .  (8 

Following the phase transformation 

the system (6) reduces to 

where 

~(~)=u,(R(~))+A(~)-u,(R(~))-u. 

In the vicinity of the intersection point t,, 6(tw) =0, 
we solve the system (9) in an approximation similar to 
that of Landau and Zener, i.e., we assume V,, and I' to 
be constant, and 6(t)  = (t - t, )d6(tw)/dt. After elimin- 
ating the amplitude a,, the system (9) reduces to the 
Weber equation8 

d l  (t .)  z= t-t,-------- -- 
d l  (l:T/dl I [ di I 'I' e x ~ (  3 

ilV,212 n=--. 
d l  ( t , )  l d t  

The general solution of this equation can be represented 
in the form of a linear combination of two parabolic- 
cylinder functions: 

y=C,D,(-z) +C,D -,,-, ( i z ) .  

Using the initial condition (4) we get 
CI=O, ICZIP=i~z exp(- inn!2) .  

If we use the asymptotic form of the function D -, - ,(iz) 
a s  t - *, then we can obtain the following expression 
for the probability of exciting the second state after 
passing through the intersection point: 

Iaz ( t )  1 2 = ( 1 - P ) e x p { - ~ ' ( t - t " ) } ,  (10) 

where 

Joining together the function (10) to the solution of the 
system (6) fa r  from the intersection point, where there 
a r e  no transitions between the states, we get 

Substituting (12) in (7), we obtain the probability of 
ionization after passage through the intersection point: 

w , ( t )  = ( I - - P )  ( f - j ( t ) ) .  (13) 

The probability of remaining in the first  state can be 
determined for example, by using the normalization 
condition (8), from which it follows that 

Ia,lz=P. (14) 

We note that the shift A is relatively small. Therefore, 
with sufficient acouracy, the intersection point, R, is 
determined from the condition U,(R,) =U,(R,) +w, and 
we can put in the denominator of the exponential (11) 

d6(t,)/dt-u(R)d(U,-U,)/dR, (15) 

where v(R) is the radial velocity of the relative motion 
of the nuclei. 

3. NONRESONANT TRANSITION IN  CLOSE 
COLLISIONS 

We assume that the ionization during the time of mo- 
tion in the transition region can be neglected, i.e., I?T 
<<I (T is the characteristic time of motion between the 
term-intersection points). Putting I' = O  in (10) we ob- 
tain the transition probability after passage through the 
intersection point. The probability of remaining in the 
initial state is determined a s  before by (14). 

The electromagnetic field is assumed to be linearly 
polarized, s o  that the matrix element V,, in (11) can be 
represented in the form 

Vtz=F~d,,  cos 0 /2 ,  (16) 
where dl, a s  the matrix element of the operator of the 
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electron dipole moment between the states 1 and 2 of 
the quasimolecule, and 0 i s  the angle between the quasi- 
molecule axis and the field intensity F,. 

The probability of remaining on the i-th term after the 
j-th passesthrough the intersection point R ,(i, j = 1,2) 
is determined, according to ( l l ) ,  (14), and (15), by the 
relation 

where 

The interaction (16) in the numerator of expression (18) 
leads to repulsion of the adiabatic quasienergy terms at 
the point of their intersection. 

The angle 0;') i s  connected with the angle c p j i ) ,  which 
is determined from the classical equations of motion of 
a particle having a reduced mass M in a central field: 

R.1 

where 

R: is the classical turning point. The angles 8;" and 
40:" a re  connected by the relation 

eos 0;" =cos a sin do + sin a cos cp,'O sin a, 
which follows from Fig. 2. The radial velocity v(R,)  at 
the intersection point i s  given by 

v(R.)  =[2(Mv2/2+U1 (a) -U,(R.) -Muo2b2l/2R.')/M1', 

where vo i s  the initial velocity of the relative motion of 
the nuclei and b i s  the impact parameter. 

The probability of the transition after double passage 
through the intersection point can be obtained from the 
for mula 

The cross section for inelastic collision with absorption 
(emission) of a photon i s  determined by multiplying the 
probability (19) by the impact parameter and integrating 
with respect to the value of this parameter up to  b,, 
and over all the directions in the plane perpendicular 

to vo (see Fig. 2): 
In bmax 

a= j dp J ~b db. 
0 0 

The upper limit b,, i s  obtained from the condition that a 
turning point appear in the region R 2Rw in the case of 
motion in the field Ul(R), i.e., from the condition that 
the radial velocity v(R) vanish. We note here that we 
a r e  considering the case when no bound or  quasibound 
motion states a r e  produced when going over to the po- 
tential curve U,(R). 

If the angle a between the directions of the initial vel- 
ocity of the relative motion of the nuclei and the field Fo 
is not fixed, the cross section (20) must be averaged 
over all the angles: 

6 = J adaln. 

The rate constant of the process i s  obtained by averag- 
ing over the Maxwellian distribution of the velocities: 

k'=(ud) .  

A regime that i s  linear in the field intensity i s  ob- 
tained if Sjo<<l in the exponential of (18). In this case 
the expression for the transition probability (19) simp- 
lifies to 

w=s:" +s?"'. (22) 

The cross section (20) i s  given, after integration with 
respect to the angle j3, by 

n 2 ~ 0 2 1 d , . l ' T  bdb 
a =  [sin2 a(cos2 d:) +cosZ cp:' ) 

ZldAlJldRI u(H) 

from which, in particular, it follows that u(a) = u(n - a). 

We note that if single-photon ionization from the up- 
per state of the quasimolecule is possible, a s  proposed 
in Sec. 2, then I'T-sf and the ionization of the quasi- 
molecule during the collision time cannot be neglected 
in the nonlinear regime. 

4. COLLISIONAL IONIZATION 

We consider the case when the collisional ionization 
is significant, i.e., I' TZ 1. Assuming a double passage 
through the intersection point, we represent the ex- 
pression for the ionization probability in the form 

where rl,, i s  the time of motion between the intersec- 
tion points over the first and second terms. The ioni- 
zation .cross section ui during the time T of the action 
of the laser pulse i s  determined in the same manner a s  
the cross section of the nonresonant transition (20), in 
which W (19) was replaced by W,(T): 

&= j d p  *Twi (TI b db. 
Q 0 

(23) 

We consider the regime of ionization saturation in 
collision, i.e., we assume that I'T>>~ for T intervals of 
the order of the time of motion between the intersection 
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point and the time of action of the laser pulse. As fol- 
lows from (12) and (13), in this case the ionization 
probability is  equal to the probability of excitation of 
the second level in the absence of broadening of the 
latter. After double passage through the intersection 
point, the ionization probability is  determined by the 
formula 

In Sec. 5 we shall be interested in the case of ionization 
of the quasimolecule through two intermediate states 2 
and 2', when there exists also an intersedion point 
RL >R,  of the ground term and the term 2'. 

We denote by Qjl) the probability of remaining in the 
ground state after passing through the point RL ( j  = 1,2). 
We then obtain for the probability of ionization in the 
saturation regime, after double passage through each 
of the intersection points, the following expression: 

where Qjl) is determined by Eqs. (17) and (18), in which 
the parameters of the term 2 must be replaced by the 
parameters of the term 2' of the quasimolecule. 

5. CALCULATION OF THE EXCITATION, CHARGE 
EXCHANGE, AND IONIZATION OF HYDROGEN 
ATOMS 

By way of example we consider close collisions of 
hydrogen atoms. The numerical values of the terms of 
the quasimolecule H, and of the dipole moments of the 
transition were taken from Ref. 9, in which the wave 
functions of the quasimolecule were constructed in the 
form of expansions in the complete system of the func- 
tions of the molecular ion g. The infinite system of 
homogeneous algebraic equations for the expansion co- 
efficients was terminated in a self-consistent manner 
to suit the specified calculation accuracy. As a result 
it was possible to obtain the wave functions and the 
terms of both the ground of several excited states of 
the quasimolecule, by diagonalizing a matrix of finite 
order. Figures 3 and 4 show the terms and dipole mo- 
ments of the electronic transitions of the quasimolecule 
H, , needed for our calculations and obtained by this 
method, as  functions of the internuclear distance R. 

FIG. 3. Terms of the quasimolecule Hz, with account taken of 
the repulsion between the nuclei, a s  functions of the internucle- 
ar distance. On the right is indicated the free-atom state into 
which the given quasimolecular term goes over. 

FIG. 4. Dipole moments of the transitions of the quasimole- 
cule Hz, calculated for the terms indicated in Fig. 2. 

A. Excitation and charge exchange 

Using the results of section 3, we obtain the cross 
sections of the nonresonant excitation and charge ex- 
change of hydrogen atoms with photon absorption: 

For the excitation process, the states 1 and 2 a r e  the 
ground state X ' C ~  and B"C= terms of the quasimole- 
cule, while the charge exchange process these states 
are the ground and B'C: terms (see Fig. 3). 

Estimates of the parameter Sji) (18) show that a re- 
gime linear in the field intensity is  observed for hydro- 
gen atoms that collide at thermal velocities up to fields 
-lo7 V/cm, and the cross sections reach at these inten- 
sities -10 a.u. (-3x lo-'' cm2). In the considered tran- 
sitions, the energy of the absorbed photon is -10 eV, so 
that single-photon ionization from the states of the qua- 
simolecule is possible. As noted in Sec. 3 in this 
case the ionization can be neglected only in the linear 
regime. Calculation of the probability by formula (19) 
does not make it possible therefore to determine the 
transition cross section in the nonlinear regime, but 
shows that a correct allowance for the angular depen- 
dence leads to a vanishing of the exponential decrease 
of the cross section. In fact, the vanishing of cosOji) 
in (18) a t  a certainvalue of the impact parameter keeps 
the cross section (20) from decreasing exponentially 
with increasing intensity of the laser radiation. In par- 
ticular, at an intensity Fo = 5 x lo8 V/cm the cross sec- 
tion levels off and begins to decrease weakly only in 
fields -lo9 V/cm. We indicate that in Ref. 5 no de- 
crease of the cross section of nonresonant excitation of 
rubidium and cesium atoms was observed up to the 
maximum intensity attained in the experiment. It fol- 
lows from our estimates that a similar effect will be 
observed also in collisions of hydrogen atoms, but at 
laser-field intensities higher than in the experiment of 
Ref. 5. 

Figure 5 shows the dependence of the excitation and 
charge-exchange cross sections of hydrogen atoms in a 
regime linear in the field intensity on the internuclear 
distance at which intersection of the terms takes place. 
No averaging over the Maxwellian distribution was car- 
ried out, and the velocity vo was assumed equal to the 
thermal velocity. In our case the cross section has at 
any rate a weak dependence on the initial velocity, for 
when the atoms come close together the change of the 
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the quasimolecule. 

FIG. 5. Cross sections for the excitation (solid line) and 
charge exchange (dashed) of the colliding hydrogen atoms, as 
functions of the term intersection point R in the regime linear 
in the field intensity. 

quasimolecule term energy greatly exceeds the kinetic 
energy of their relative motion at room temperature. 

The dependence of the cross sections on the frequency 
can be obtained if one knows the connection between the 
intersection point and the frequencies o, and o, of the 
excitation and charge exchange, respectively; this con- 
nection is given in Table I for the R ,  interval repre- 
sented in Fig. 5. 

Let us dwell briefly on an analysis of the obtained 
curves (see Fig. 5). The maximum near the point 1.4 
a.u. for the excitation cross section is connected with 
the minimum, at this point, of the X term of the H, 
molecule, while the maximum at the point 1.8 a.u. i s  
connected with the minimum of the B' term in its vic- 
inity. For the charge-exchange cross section the first 
maximum vanishes and is offset by the abrupt decrease 
of the slope of the term of the excited state and by the 
increase of the dipole moment of the transition (see 
Figs. 3 and 4). 

Analyzing the experimental data on the frequency de- 
pendence of the cross sections of the nonresonant tran- 
sitions we can thus obtain information on the structure 
constants of the quasimolecule. 

B. Ionization in the saturation regime 

We calculate now the cross section of two-photon ioni- 
zation of the hydrogen atom from the ground state in the 
saturation regime, with the atoms colliding at thermal 
velocity v,. The frequency o is chosen such that the 
intersection point RL of the ground term X1zf and the 
term B " C ~  of the quasimolecule H, be of the order of 
several atomic units. At such a frequency there exists 
also an intersection point R<RL of the ground term and 
the term B'B: (see Fig. 3). Consequently, in our case 
the ionization proceeds via two intermediate states of 

TABLE I. Dependence of the term intersection 
point on the frequency of the absorbed photon 
for excitation and charge exchange of colliding 
hydrogen atoms. 

Using formulas (23) and (24), and assuming the terms 
of X, B, and B' to be respectively the states, 1, 2, and 
2' (see Sec. 4), we can calculate the ionization cross 
section. To realize the saturation regime, the field 
intensity F,  i s  assumed to be lo-' a.u. (5X 10' V/cm). 

Table 11 lists the cross section a, averaged over the 
angle a between the field intensity and the initial vel- 
ocity of the relative motion of the nuclei, for several 
values of the frequency o. As seen from the table, the 
cross section depends little on the frequency, and con- 
sequently on the position of the term into section points 
(on their form), in contrast to the excitation and the 
charge-exchange cross sections calculated in the re- 
gime linear in the field intensity for the same frequency 
interval. The weak frequency dependence of the cross 
section is due both to the nonlinear regime and to the 
interference of the contributions made to the ionization 
by the two intermediate levels of the quasimolecule H,. 
Naturally, this conclusion need not necessarily be 
drawn for collisions of other atoms. 

From the known value of the cross section we can es- 
timate the number of ions produced per unit volume and 
per unit time, Ni =n2voF, (n is the density of the atoms). 
If f i  -100 a.u., then at a density n -lo2@ cmm9 (pressure 
2 1 Torr) the yield of ions due to the collisions becomes 
comparable with the yield of the ions due to direct two- 
photon ionization of the isolated hydrogen atoms. With 
decreasing field intensity the collisional polarization 
will make a contribution comparable with the direct 
ionization even at lower particle densities. The effect 
will be observed at least up to intensities such that the 
single-photon ionization of the excited state of the quas- 
imolecule manages to take place completely within the 
collision time. The reason is that the probability of the 
direct two-photon ionization decreases like F: , where- 
a s  the probability of the transition of a quasimolecule 
into an excited state increases like F: in the linear re- 
gime and depends little on the field intensity and the 
saturation regime. 

Thus, collisional ionization in an intense electromag- 
netic field makes a substantial contribution to the total 
number of produced ions even at medium densities of 
the colliding atoms. 

6. REMOTE COLLISIONS. ADIABATIC TURNING ON 
THE FIELD 

In the case of remote collisions, the terms of the 
quasimolecules can be constructed analytically, and the 

TABLE 11. Dependence of the cross section of two-pho- 
ton ionization of colliding hydrogen atoms on the laser- 
radiation frequency in the saturation regime. The table 
lists also the internuclear distances at which excitation 
of the quasimolecule takes place (term intersection 
points). 
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motion of the atoms can be regarded a s  linear, R =b 
+v, t. The ensuing simplifications make it possible to 
take into account the influence exerted on the noninter- 
acting atoms (prior to the collision) of an intense elec- 
tromagnetic field that is turned on adiabatically. It 
suffices for this purpose to consider transitions between 
the QES of the atoms. 

Choosing the atomic QES constructed in Ref. 10 a s  the 
basis, we take into account the dipole-dipole interaction 
in the Hamiltonian (1) by perturbation theory. As a re- 
sult we obtain the following expression for the quasi- 
energy term in second order of the interatomic inter- 
action and in F, 

U = E . + E ~ + ~ ~ , +  UI., 

where 
Ud=a.(o)  ab(U)  (1-3 cost 0)Fo2/2R3 

i s  the energy of the induced dipole-dipole interaction, 
U, =C, /R6 i s  the energy of the van der Waals interac- 
tion, E, ,b = Ea ,b - a, , b ( ~ ) f i / 4  i s  the quasienergy for differ- 
ent atoms a and b with account taken of the Stark shift of 
the energy levels En, ,  , and cya,,(o) is the dynamic po- 
larizability of the atoms a s  calculated in Ref. 10. 

Assume that the collision causes the atom b to be ex- 
cited and to go from state 1 into state 2, and the sys- 
tem absorbs at the same time k photons. We introduce 
the resonance detuning A, =Ek2) -Ejl) - kw. We con- 
sider the case of a weak laser field, when the Stark 
shift i s  much less than the detuning: 

If we put A, -10'-lo3 cm-l, then the condition (25a) i s  
satisfied for alkali-metal atoms up to fields -lo5 V/cm, 
and condition (25b) is satisfied up to fields -lo7 V/cm, 
when R > 10 a.u. 

A formula similar to (18) can be obtained for the pa- 
rameter S. The matrix element of the operator of the 
configuration interaction, which leads to repulsion of 
the quasienergy levels, is calculated in the perturba- 
tion-theory technique for degenerate QES," i.e., it i s  
taken over the configuration space and is averaged over 
the period of the field with a weight exp(ikwt). As a 
result, the first term that does not vanish a s  a function 
of the field turns out to be proportional to F!. Using 
Eqs. (20) -(22) and recognizing that in the case of 
straight-line motion we have b,,=R, , and that 

we get 
a=0=8n'R.~l V ~ ~ Y , ' Y ~  IC;"-C:~' I v,, 

where Vk i s  a composite matrix element of order k of 
the configuration-interaction operator and of the dipole 
moment, Ckl) and Ck2) a r e  the Van der Waals constants 
for atoms interacting in the ground and excited states. 

The term intersection point R , is defined by 

from which it i s  seen that when both conditions (25) a r e  
satisfied the intersection point does not depend on the 
field intensity and the cross section i s  proportional to 
the k-th power of the field intensity. When the Stark 
shift of the atomic levels it is taken into account [the 
condition (25a) is violated] the intersection point turns 
out to depend on the field intensity. This leads to a 
nonlinear dependence of the cross section on the inten- 
sity even at k = 1, on account of the adiabatic turning on 
of the field. 

"We use in this paper the atomic system of units. 
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