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The path-integral method is used to calculate to logarithmic accuracy the general expression for the 
transition probability between stable states of a nonequilibrium system which is in interaction with a 
medium or is subjected to white noise. It is shown that in the first case the transition probability depends 
exponentially on 1/T. As an example, transitions between the states of a nonlinear oscillator in the field 
of an external resonance force are considered. The calculation of the activation energy reduces to the 
solution of a variational problem. In the most interesting extreme cases explicit analytic expressions for 
the activation energy are derived, and its dependence on the parameters of the oscillator are analyzed. 
Characteristics of the absorption of an additional weak field are investigated, and also those of the 
absorption of the main field. 

PAC3 numbers: 84.30.Nq 

Nonequilibrium systems often can have several states 
which a re  stable relative to small fluctuations. In this 
connection the problem ar ises  of determining the prob- 
ability of transitions between such states owing to rela- 
tively rare  large fluctuations, and the distribution of 
systems over states. 

One of the simplest systems of this kind is a nonlinear 
oscillator with an anharmonic term -q4 in the potential, 
situated in a field of resonance force h. As is well 
known (cf. e.g., Refs. 1 and 2) when the amplitude of the 
force exceeds some critical value h, [at which the non- 
linear frequency shift ~ w ( h , )  is of the order of the damp- 
ing r] the oscillator can be in two stable vibrational 
states with different amplitudes. On the phase plane 
there a re  foci (or nodes) corresponding to these states; 
there is also a saddle point, through which the separa- 
trix passes. If we can neglect the random action of the 
medium on the oscillator, then it is in one state or  the 
other for an arbitrarily long time. Strictly speaking, 
however, the interaction with the medium, which causes 
friction, also leads to the appearance of a random 
force. This brings about transitions between the states. 

The purpose of the present paper i s  to calculate the 
probability W of such transitions in the limiting case of 
a small random force, for which W is small in com- 
parison with r. In this case after a time -r-' the sys- 
tem comes near one of the foci on the phase plane and 
fluctuates around it for a long time. Only rarely (after 
a time -W-') does the system experience a large 
enough fluctuation so that the trajectory crosses the 
separatrix. With overwhelming probability the cross- 
ing occurs near the saddle point. After this the sys- 
tem rapidly approaches a different focus, which means 
a transition to a new stable state. Obviously the prob- 
abilities of the transitions 1 - 2 and 2- 1 a re  different, 
and their ratio determines the stationary distribution 
over the states. 

The transition between stable states of a nonlinear 
oscillator is analogous in a certain sense to the transi- 
tion of a diffusing particle through a potential barrier. 

As is well known, for small W the thing of greatest 
interest in such problems is to calculate the coefficient 
in the exponent, and the pre-exponential factor often 
needs only to  be found in order of magnitude. Here the 
transition probability between states of a nonequilibrium 
system will be calculated to logarithmic accuracy. For  
this purpose it is convenient to express W in the form 
of an integral over trajectories. The essential point 
is  that the coefficient in the exponential is inversely 
proportional to the small parameter that characterizes 
the intensity of the random force. This allows us to 
reduce the problem of calculating W to the determina- 
tion of the extremum of the coefficient in the exponen- 
tial (see Sec. 11). Actual calculations of 1nW have been 
successfully done for ranges of values of the parameters 
which correspond to various extreme cases (see Secs. 
111 and IV). 

The system considered can serve a s  a model of cer- 
tain physical objects, for example, of local or  quasi- 
local vibrations near defects in crystals in strong re- 
sonance fields, of nonlinear oscillatory circuits in 
radiophysics, and of some nonlinear optical systems. 
In such problems it is of interest to determine the ab- 
sorption coefficient of the external field. The resulting 
characteristic dependences on frequency and amplitude 
a re  examined in Sec. V. Features of the absorption of 
a weak additional field a re  also considered there. In 
particular, it is predicted that a very narrow absorp- 
tion peak may appear with width -W, owing to  induced 
transitions between foci. 

The present problem i s  actually one example of a 
large class of problems of the behavior of nonequili- 
brium systems with some stable states. The method 
used, based on the application of continuous integration, 
is rather general and can be applied to various prob- 
lems, if the transition probabilities a re  sufficiently 
small. 

Since the calculation of W to  logarithmic accuracy 
reduces to  the determination of the mean time for 
reaching some boundary in phase space, for processes 
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of the Jvlarkov type the calculation of W can also be done 
in another way, based on the application of the Einstein- 
Fokker-Planck equation (see, e.g., Refs. 3-5). This 
method is convenient if the random process is one- 
dimensional, but for many-dimensional processes (in 
particular, for the two-dimensional processes con- 
sidered here) its use is usually difficult. A special case 
of nonequilibrium systems comprises those in which 
the Einstein-Fokker-Planck equation can be solved 
exactly, for example, the Van der  Pol oscillator in the 
field of an external random But in this last 
problem, for each particular se t  of parameters there 
is  only one stable state. 

After the present paper was prepared, we learned of 
interesting mathematical work of Wentzel and Freidlin,8 
in which large fluctuations of dynamical systems caused 
by small random fluctuations a r e  considered.') In 
these papers a different method is used to  find the 
probability of reaching a point of phase space remote 
from points that correspond to stable states. Equation 
(11) of Sec. I agrees with the results of Ref. 8 (but the 
problem of nonlinear oscillators was not treated 
there.8) We note that the method of continuous integra- 
tion can evidently be more convenient for actual re- 
search on more general problem, for  example non- 
Markov cases, or  those in which the number of dy- 
namical variables is  larger than the number of inde- 
pendent components of the random force. 

1. FORCED VIBRATIONS OF A NONLINEAR 
OSCILLATOR INTERACTING WITH A MEDIUM 

Let us consider a Duffing nonlinear oscillator which 
is in a field of periodic external force and interacts 
with a gas. We shall describe the medium with a set  of 
continuous spectrum vibrations. The Hamiltonian of 
the system is 

H=Ho+H,+H.; 

I / , = ' / ,  (p2+o,2qz) +'liyqi-qh cos o r ,  
(1 ) 

k 

Here k numbers the vibrations of the continuous spec- 
trum, and for simplicity it is assumed that the inter- 
action with the medium is linear in the coordinate q of 
the individual nonlinear oscillator in question and in the 
coordinates q, of the oscillators of the medium. The 
constants y and E, a re  supposed sufficiently small that 
the renormalization of w, owing to them is small. The 
frequency w of the external force is assumed nearly 
equal to the proper frequency w,. 

For a statistical description of the motion of the os- 
cillator under consideration we must eliminate the vi- 
brations of the continuous spectrum. Solving the equa- 
tions of motion of the q,, we can express q , ( ~ )  in terms 
of q(7') and the initial amplitudes and phases A, and cp, 
which a re  random quan t i t i e~ .~  After this the equation 
of motion for the oscillator considered takes the form 

d2q/drz+o,"q+yq3=h cos or+f  ( r )  + L, 

f ( 7 )  = - eos ( o k r  + rqij. 

Here f(r) is the random force exerted by the medium 
on the oscillator, and L is an integral operator de- 
scribing the reaction of the medium and allowing for 
retardation (cf. Ref. 9). 

For  small interaction with the medium the charac- 
teristic damping time of the oscillator, r-', is much 
larger than w;' and the characteristic period of the 
medium, w;'. For the analysis of the motion of the 
oscillator in the most interesting range of times T 

>> r0 [T, =max(w;', w,')] it i s  convenient to use a well 
known averaging method (cf., e.g., Ref. 2). We change 
from the rapidly oscillating functions q (T), dq/dr to 
smoothed complex functions u,(T), u,(T) =u:(T): 

Dropping rapidly oscillating terms proportional to the 
small parameters y, c2, and using the asymptotic ex- 
pression for L at large 7, in analogy with the procedure 
in Refs. 10 and 11 for the case h =0, we reduce the 
second-order equation to a complex equation of first  
order: 

Explicit expressions for the damping r and the fre- 
quency shift P ( r ,  P - c2) a re  given in Refs. 10 and 11. 
In the derivation of Eq. (4) it has been assumed that 

It is convenient to write Eq. (4) in dimensionless 
variables: 

li=u+f, u=v(u, u') =-u sign t 

+iu(uu* sign y - 8 )  - i ( $  I 81')' sign h; 

In Eq. (5) the complex random force f =f' +if" is 6- 
correlated (for 7>> 7,): 

Equation (5), with the random force f having the sta- 
tistical properties (6) is valid also for a more general 
form of the weak-interaction Hamiltonian Hi containing 
terms nonlinear in the q,, and also when an interaction 
between the vibrations of the medium has to be taken 
into account. The only change is in the explicit ex- 
pressions for r and P.1° 

By means of the change of variables (3) one can also 
reduce to Eq. (5) the problem of the forced vibrations 
of a nonlinear Brownian oscillator in the field of an 
arbitrary random 6-correlated force j, (not necessarily 
due to thermal fluctuations): 
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The parameter a =31 B/16wSr2 in Eq. (6) is now de- 
terminedby the noise characteristic B. Actually Eq. (5) 
is the Langevin equation for a nonlinear damped oscil- 
lator. 

In the absence of the random force the complex non- 
linear equation of motion (5) has stationary solutions 
(h =0) whose amplitude is determined by the equation 

c p (  ( u l z )  =0, cp(x) -x (x  sign y-Q)a+x--p I Q  I '. 

For  values of the parameters P and O that lie within 
the region in Fig. 1 bounded by the solid curves, Eq. 
(8) has three solutions, and if the point P, 52 is outside 
this region it has one solution. Two of the three so- 
lutions a re  stable (with largest and smallest amplitude 
values lul), and the third solution corresponds to a 
saddle point. The separatrix goes through this point 
u', U"(U =u' +u") on the phase surface. 

The random force in Eq. (5) makes the motion sto- 
chastic. For a small random force the system spends 
nearly all of its time near one focus o r  another, fluc- 
tuating around it with an amplitude ( ( 6 ~ ) ~ ) " ~  which 
is much smaller than the distance between the focus and 
the separatrix. There is a very small probability of 
the occurrence of large fluctuations which lead to  cross- 
ing of the separatrix and transition of the system into a 
different stable state. 

2. GENERAL EXPRESSION FOR THE TRANSITION 
PROBABI LlTY 

Let us consider the probability density w (t,, u,; t,, u,) 
for the realization of trajectories that pass a t  time t, 
through a point u, on the phase surface within the region 
of attraction to  a focus f ,  and a t  time t, through a point 
u, near the separatrix. It is convenient to write this 
quantity a s  a continuous integral: 

Here DJ(t)=Df'(t)DP(t). The functional P determines 
the probability distribution of the random function f(t). 
As is well known (cf. Ref. 12), for  a random function of 
the type of white noise with the correlation (6) this 

FIG. 1. Region of existence of two stable states of a nonlinear 
oscillator. 
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functional is 

We a re  interested in calculating the probability (9) in 
the region of times (W/r)-l >> t, - ta>> 1 (7, - T,>> r-'), 
where W is the probability per unit time of transition 
from f to a different focusf'. Moreover, during a time 
t -  ta-1 the system arrives near the focus f and forgets 
the initial state u,. The displacement t o  the point u, 
also comes about quickly, during a time -1, from some 
point near the focus f (though it is improbable). 

Subject to  conditions to be indicated later on, in the 
range t, - t,>> 1 the transition probability (9) is expon- 
entially small. It has the small parameter a in the 
denominator of the coefficient in the exponent. Making 
the calculation to  lcgarithmic accuracy, we shall de- 
termine only the exponent and not concern ourselves 
with the pre-exponential factor, which depends only 
weakly on a. In Eq. (9), following Ref. 12, it is con- 
venient to change from integration over the random 
force, ~ f ( t ) ,  to integration over the trajectories of the 
nonlinear oscillator, Du(t). It can be seen from Eqs. 
(5) that the Jacobian for the transformation does not 
depend on a and affects only the pre-exponential factor, 
which is of no interest to us. To the accuracy en- 
visaged we also can deal in the integral over trajec- 
tories with just the main exponential factor, corres- 
ponding to the extremal trajectory. Then, in view of 
Eqs. (10) and (5), the probability (9) i s  given by 

w(t. ,  u.; tb, ub) =const.max exp ( -S /&) ,  

Here t, is the time when the large fluctuation starts,  
which shifts the system to u,; u, is a point in a small 
neighborhood of the focus flu,- ufI2 2 a); and the maxi- 
mum is taken with respect to possible trajectories and 
to t,- t, Actually there should be an integration over 
u,, with an appropriate distribution function, in Eq. 
(1 I), but this would affect only the pre-exponential fac- 
tor. 

The quantity Y(u, EZ ) in Eq. (11) can be regarded a s  the 
Lagrangian of a particle, and S, a s  its action. Since Y 
does not depend on the time explicitly, we have aS/at 
=- E, where E is the energy of the particle (cf. Ref. I), 
and the condition that S in Eq. (11) be extremal with 
respect to t,- t, reduces to  the equation 

E=j l i l z - lu (u ,  u*) IZ=O. (12) 

The probability W for transitions between states in 
neighborhoods of focif andf is given t o  within a factor 
-$ by the integral of the expression (11) over points u, 
in the neighborhood of the separatrix; in our approxi- 
mation we a re  to find the extremum with respect to u, 
in this neighborhood. Since BS/au, = aT/au, we have 

G S = ( ~ ' - V * ) G U ~ +  (u-u)dub'. 

For a shift of the point u, along the separatrix 6ub/v 
=62cg/v*; therefore, in view of Eq. (12), S 
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= - I Z E  - vlav-'6ub If the point u, shifts in the direction 
of the saddle point, then v-lbu, > 0, and consequently 
among the trajectories ending on the separatrix the 
extremal ones will be those that go through the saddle 
point us. At this point u =0, and according to  Eq. (12) 
a particle near it moves slowly (t,- t ,-  m for ub-us). 
In the neighborhood of the saddle point small variations 
from the extremal trajectory become important, having 
a probability -+ of taking the system across the separa- 
trix in a time At - 1. Therefore, to accuracy up to the 
preexponential factor we can write W in the form 

The condition for applicability of Eq. (13) is  the in- 
equality 

Equation (11) can also be derived from the results of 
Ref. 8. We note that the method used here,  of changing 
a continuous integral over random forces into one over 
random variables, can also be used to consider large 
fluctuations in more complicated systems. 

For the 6-correlated random force considered here 
the characteristic parameter for its intensity appears 
in the expression (13) for the transition probability only 
a s  the factor 1/a in the exponent. In the case of a non- 
linear oscillator interacting with a medium, we see 
from Eq. (6) that a -T, i.e., the transition probability 
depends on 1/T (the activation energy being QkT/a). 
This result holds also for other subsystems interacting 
with a medium and described by a kinetic equation. 

3. TRANSITION PROBABILITIES WITH A 
RELATIVELY LARGE FREQUENCY MISMATCH 

In the expression (13) for the transition probability 
the quantity Q depends only on the dynamical charac- 
teristics of the subsystem. In the present case of a 
nonlinear oscillator, according to Eqs. (5) and (13) Q 
is a function of two dimensionless parameters, P and 
51. For any specific values of @ and 51, Q can be calcu- 
lated by numerical solution of the Euler equation for 
the variational problem (13), (12). In limiting cases 
explicit analytic expresisons can be obtained for 
Q (P, 52). This can be done if 1521 >> 1 or  if the values of 
P and G are  close to the critical values and lie near the 
point K in Fig. 1. These respective limiting cases a re  
considered in this section and the following one. 

Since two stable states of the oscillator exist only for 
M > 0, and Q does not depend on the signs of y and h, 
we shall from now on suppose that y > 0, I2 > 0, h> 0. In 
the case 52 >> 1 it is  convenient to change from u, u* to 
real variables x ,  y and from t  to a new time t': 

(from now on differentiation with respect to t' will be 
denoted with a dot). In these variables the expressions 
(13) for Q and (12) for E take the form 
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and the extremal trajectories a re  described by the fol- 
lowing Euler equations: 

Fquations (17) contain linear and quadratic terms in 
the small parameter E.  In the Appendix a self-similar 
solution of these equations is found by means of asymp- 
totic perturbation theory (in the range of times t' - & - I )  

with proper allowance for  the "nonstandard" situation- 
degeneracy of the "fast" motion. The first-order (in &) 
corrections a re  determined from a secular equation 
which is found by considering second-order terms. The 
result for the quantity Q, which determines, according 
to Eq. (13), the transition probability, is given by the 
expression (A.13) in the form of a quadrature. It can 
be represented in analytic form for small P. According 
to Eqs. (A.13), (A.15) the values Q, for the transition 
from focus fl (which corresponds to the smaller ampli- 
tude of the oscillations) and Q, for that from focus fa 
a re  given by the formulas 

Here the constant 5 can be expressed a s  a quadrature 
of an elliptic integral, 5 ~ 0 . 9 8 .  If the parameter /3 is 
not small (but, a s  before, c 1), Q, and Q, can be 
calculated numerically from Eqs. (A.ll) and (A.13). 
The results of such calculations a r e  shown in Fig. 2 
[the curves (18) a re  shown with dashed lines]. From 
Eqs. (13), (A.13), and (18) and from Fig. 2 we see the 
dependence of the factor Q / a  in the exponent on the 
parameters of the oscillator. Q/a  depends on the ex- 
ternal field only through the parameter P-h2/16wlS; 
Q, decreases monotonically with increasing field, and 
Q, increases. The frequency mismatch 6w occurs in 
both l j  and Si; for fixed B we have from Eq. (A.13) Q 
-16~1. For  r<<6w the damping parameter r drops out 
of the expression for Q/a  altogether. In the present 
case E <<I the quantity q / a  is proportional not only to 
a-'>>I, but also to &-'>>l. 

The ratio of the probabilities wI and w, for finding the 

FIG. 2. Dependence of Qi and Q2 on /3 for f2 >> 1. 
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system at  the focif, andf, is given by [Eq. (13)]: 

To logarithmic accuracy, as Fig. 2 shows, for Po- P 
>>a~(&=0.013) we have w,<<w, =I, and for B-  Po>> a& 
we have w, <<w2 =I. In the region IP - POI -a& the two 
probabilities a r e  of the same order of magnitude. 

Special consideration has been given to the case P 
E c2 << 1 (while P - c2 + c5/4 3 0). It can be shown that in 
this case 

X2=(P-~2) /&2+B/4 ,~<<1;  for X<<E =@/2<<1, t1=2/3. 
It can be seen that EQ, depends on !3 and on the ratio of 
the two small  parameters B and x (for x - 0 the second 
focus merges with the saddle point and disappears). 

4. TRANSITION PROBABILITIES NEAR THE 
CRITICAL POINT 

Analysis of the Euler equations (1 7) and calculation 
of Q can also be simplified for values of the parameters 
P = PC =8/27,51=51, =3l h, which a r e  near the point K in 
Fig. 1. If P=P, and 51 =a,, the two nodes and the saddle 
point all coincide, and according to Eqs. (5) and (15) 
they a r e  a t  x ,  = - 1 /6Ih, y , = - 1 /21r2. For  P -PC and 51 
=a, the distance between the nodes is small  and it is 
convenient to introduce new variables: 

In these variables the expression (16) for Q takes the 
form 

3 " 
Q = -min j  [ ( & - L ) 2 + ( ~ r - ~ ) ' ] d t ' ,  

4 0 

4)'2 v vxr 
+ - y , Z - y , 3 - x , P y l  - -+.- 

3 312 12 

Since for P=&, 51 =ti, the distance between the nodes is 
-v'h<<l, on the extremal trajectories x,, y, a r e  also 
-gh. Analyzing the Euler equations for the problem 
(21) for small v and using the law of the conservation 
of energy (16), we can show that the characteristic time 
is proportional to v. Owing to  this, in the Euler equa- 
t ions 

the terms with I, or y, a re  of order flh, and those 
with 2 ,  or 9 ,  a r e  of order v&. Therefore in the formula 
for 6 the terms -$I2 and -v must be se t  equal to  zero, 
s o  that we can express x, =- y,/3Ih +. . . in terms of y, 
with accuracy to  terms -v. Substituting this expres- 
sion for x, in Eq. (22) and considering that 6 -11 - vSh, 
5% -1, -77% - Y, we find that 2 ,  = 5 +O(vZ). Then from 
the law of conservation of energy 

we get for x, =- yl/3lk 

where 

(in the region of existence of two nodes near the point 

K, A &). The expression JI , =* I j  01,) can also be de- 
rived by solving Eq. (22) with perturbation theory in- 
cluding t e rms   and not using the conservation of 
energy. 

The motion from the node to the saddle point is de- 
scribed by the solution with 8 ,  = - i f .  Substituting it 
in Eq. (21) and considering that 2 ,  = 5, we get 

Here z ,  and zf denote the middle root and one of the 
extreme roots of the given cubic equation and deter- 
mine the amplitudes of the oscillator a t  the saddle point 
and a t  the nodes. The parameter lies in the interval 
- 1 Q A s  1. The function F ,  (A) for the transition from 
the node f, (with the smallest amplitude) increases 
monotonically with i from the value F,(-1) = 0 to  F,(1) 
= 9/4 [F, (0) = 3/41 and F, ( i )  = F, (- A). 

It can be seen f rom Eq. (23) that a s  the critical point 
is approached the activation energy falls off a s  v2 
- (51 - 51,)2. For  i > O  we have Q, >Q,;  that is, the state 
is  more probably near the nodef,, while for A< 0 it is 
more probably nearf,. Therefore the line @ =Po on 
which the two states a r e  equally probable is given for 
51 =a, by the condition A =0, and by (20) 

$o=P.(I-V/tv). 

Using this result for the section of the curve Po(51-2) 
with 51 = 51, and the previously obtained value of Po for 
51-I - 0, and also the monotonic nature of the dependence 
of Po on a", which i s  intuitively obvious, we can get 
the interpolated curve of Po(51-2) shown by the dashed 
curve in Fig. 1. 

5. FEATURES OF THE ABSORPTION COEFFICIENTS 
OF A STRONG FIELD AND AN ADDITIONAL WEAK 
FIELD 

The dynamical characteristics of a nonlinear oscil- 
lator must have specific features for relations between 
the field h and the frequency mismatch 8o such that P 
=Po an3 the probabilities w, and w, of the stable states 
a r e  comparable. In this region there a r e  changes both 
of the absorption coefficient of the strong resonance 
field h and of the absorption coefficient of an additional 
weak field. In our analysis of these effects we shall 
consider the case in which the time of observation is 
much larger than the transition t imes W;,' and W,;' and 
that there is no h y s t e r e ~ i s . " ~  

The power I drawn from the strong field is given by 
2 

"T )=-muh x w j  Im utf i. 

(-1 

where m is the generalized mass of the oscillator. The 
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imaginary part of ulf, a t  the focus f , (i = 1,2) can be ex- 
pressed in terms of luf,I2 by equating v(u,u*) to zero 
in Eq. (5). After this we get for the quantity p =%/hZ, 
which determines the absorption coefficient, the value 

where I u ~ , ) ~  a r e  roots of the cubic equation (8). 

Equation (24) enables us to follow the dependence of 
p on 6 w and h. In the region F = Po with a relatively 
small change of the parameters the quantity in paren- 
theses in Eq. (24) changes sharply [exponentially rapidly 
in accordance with Eq. (19)] from Iuf,I2 to luf,12 (or vice 
versa). Furthermore the curve of p a s  a function of h 
must show a somewhat smeared out kink, and on both 
sides of this p (h) falls off monotonically, if Po* bZ-,. 

Besides the absorption of the strong field at the fre- 
quency w it can be of interest to study the absorption 
of an additional weak field h' a t  a different frequency 
w'. To  determine the corresponding quantity p '  
= 2Zf/hfZ in the resonance region I wf - wl - I  w - w,l we 
can insert a term h'cosw't in Eq. (2)and solve Eq. (4) 
with the term in h' included, linearizing it with 6u, 
-h'. Then 

According to Eq. (25), the spectrum of p1($2') consists 
of two partial spectra k i ,  which a r e  comparable in in- 
tensity for 0 - Po. The structure of the spectra pi(S2') 
is determined by the values of l ~ , , \ ~ .  For ( ~ ~ ~ ) ~ > 1  the 
spectrum ~ i ( 5 l ' )  has two maxima separated by a mini- 
mum, at which pi < 0, i.e., the weak field is strengthened 
a t  the expense of the strong field (but the absorption 
integrated over the frequency $2' is  positive and equal 
to rm/2r). If I ufil >> 1 (then A; >> 1) the widths of the 
peaks a re  smaller than the distance between them by 
about factors A,. 

In the region 1 w' - L I  -W2, +W,,, besides the absorp- 
tion (25) a term 17.' becomes important; this term is 
due to transitions between the foci which a re  induced 
by the weak field. It can be shown that 

The absorption c'(w') has a very sharp maximum (of 
width much smaller than the characteristic width r) 
in the region $2' =00 w' - wl <s: r), and is exponentially 
small outside a narrow region P = O .  If there is a q 3  
term in the Hamiltonian of the oscillator, the mean 
dipole moments of the stable states a re  different and an 
analogous peak of relaxation type appears a t  low fre- 
quencies w' 2 W,, +W2,. These questions will be con- 
sidered in more detail elsewhere. 

The writers a re  grateful to A. Yu. Tkhorik for help 
in making the numerical calculations. 

APPENDIX 
I t  is convenient to  construct the asymptotic solution 

of the equations (17) by starting from functions X, Y 

which satisfy the equations 

since, in zeroth approximation in E , x =X and y = Y is 
a solution of Eq. (1 7) and makes the large terms in Eq. 
(16) cancel. The equations (A.l) have the form of 
Hamilton's equations for a particle executing a one- 
dimensional finite motion with the Hamiltonian g. This 
motion i s  periodic with frequency w(g) -1 and is de- 
scribed by functions periodic in the phase q:  

X=X(g,  r p )  =X(g ,  rp+2n), Y = Y ( g ,  $1 = Y ( g ,  rp+2n), 
g=const, $=w ( g ) .  

In what follows we look for  a solution of Eq. (17) (for 
E # 0) in the form x =X(g, i ) ) ,  y = Y(g, #), supposing, how- 
ever, that g and $ - o (g) depend on the time. Actually 
this amounts to  a well known (cf ., e.g., Refs. 2,13) 
transition from x, y to variables g, +, one of which 
changes slowly with time (g -E). We introduce the 
auxiliary functions A and B by means of the equations 

The functions A and B do not depend on 2 nor on 4 
- w(g) because the extremal trajectories in the phase 
space x, y a r e  not self-intersecting. 

We shall derive equations for the functions A and B 
whose solution in zeroth order in (: contains an arbi- 
t rary  function. It will be determined in such a way that 
in the higher orders of perturbation theory A and B 
will contain no terms secular in $. 

In Eq. (A.2) let us express 2 and P in terms of 8 ,  
4 and use the identity 

Then 

Q=Eo[ ( A - X )  Y , - ( B - Y ) X o ] ,  $ = W + E O [  (B-Y)X, - (A-X)  Y,]  (A.4) 

[here and in the following formulas w = w (g)]. 

Differentiating the expressions (A.2) with respect to 
time by using Eqs. (A.4) and substituting in Eq. (17), we 
get equations for the functions A and B: 

Substituting Eq. (A.2) in the equation (16) for E, we can 
find an additional relation betweenA and B, which is 
one of the integrals of the equations of motion (A.5) with 
a constant corresponding to  E =0: 

2gyA-2gxB=e[ ( A - X ) Z + ( B - Y ) Z - X Z - Y Z ] .  b.6) 

In first  order in & the right members of Eqs. (A.5) and 
(A.6) a re  equal to zero. Using Eq. (1.6) and one of the 
equations (A.5) and taking into account the relations 
(A.2) between X * ,  Y+ and g,,g,, we can find a general 
integral of the corresponding linear partial differential 
equation which contains one arbitrary function F(g): 

AO=F(g) Y,, BO=-F(g) X,, 

A=AVfeA', B=Bo+eB'. 
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The function F(g) can be determined from the condition 
that the second order terms in &A and c B  not contain 
terms secular in r), i.e., that these terms remain 
small al l  the way up to times t' - E >> (u-' (g) - 1. In 
the second approximation we must replace A and B 
in the right members of Eqs. (A.5) and (A.6) with A0 
and B0 from Eq. (A.7). Expressing B' in terms of A' 
by means of Eq. (A.6) and substituting in the first  of 
the equations (A.5), we get a linear equation for A': 

FIG. 3. 

p=-y -I[~-IA P 0 '  g+ E-'A+~($-~)-A]+~XX(Z~XY,)-'R, (A.8) 

R=(AO)'+ (Bo)'-2AoX-2BoY=F (g) (X,2+Y,z) -2F(g) (XYq-YX,) . 

Here 2 and 4 a re  determined by Eqs. (A.4) and (A.7). 

Equation (A.8) can be solved by the method of varia- 
tion of the arbitrary constant D =D(g, q): 

aD 
Af=D(g, 9)  Y,, o - = P. 

39 
(A.9) 

The periodicity of X and Y in J ,  makes all  the terms in 
P periodic. To assure that A' contains no terms secu- 
lar  in J,, according to Eq. (A.9) we must have P =0, 
where the bar indicates the average over J ,  from 0 to 
2n. The expression (A.8) for P can be put, after some 
long manipulations using Eqs. (A.4), (A.7), and (A.3), 
into the form 

The explicit form of the function Z is not needed, since 
i t  drops out in the averaging over q. Then the condition 
P = O  reduces to a simple equation for R ,  and the solu- 
tion is R =cw(g). 

Near a focus g,,g, - 1  g - gf l lk ,  where gf is the aalue 
of g at  the focus, and c(gf)+O. Therefore in order for 
B' to  remain finite near the focus, according to Eq. 
(A.6) [where the right-hand member is equal to CR 
+O(c2)] the constant c must be equal to zero. 

From the formula (A.8) and R it follows that 

It can be seen from this that the condition R = O  leads to 
two possible values of F and thus to two values of g in 
Eq. (A.4): 

According to Eqs. (A.7) and (A.2) the solution El = O  
describes motion in the absence of the rtndom force 
from the saddle point to the focus: sign kl =- sign(gl 
-gf), since according to  Eqs. (A.3) and (A.ll) 

I t  is obvious that the second solution F2 satisfies the 
boundary conditions (1 3); this solution corresponds 
to motion from the focus to the saddle point. Further- 
more according to Eqs. (16), (A.2), (A.7), and (A.12) 

the quantity Q in Eq. (13) is given by 

1 I' 1 *' m2 
Q=? J F Z ( X , ~ + Y ~ ) ~ ~ , = - J - ~ ~ .  E om, 

0 

Here g, is the value of g at  the saddle point, and in 
changing to  the integration over g Eq. (A.12) was used. 

Using the definition (A.ll) of m, and rn, and the 
formulas (A.2) for wX* and wY$, we can write the 
quantity rn2/oml in the form 

Here R2 =X + P, and the double integrals a r e  taken 
over the region bounded by a trajectory g(X, Y) =const. 

Explicit expressions for m2/wa1 can be obtained for  
small  P. For  c2 << p<< 1,  using the expression (16) for 
g, we have from (A.l): gfl =qtg, =- gf, =pk (the po- 
sitions of the foci and the saddle point a r e  shown in 
Fig. 3). Near the focus f, the trajectories g ( X ,  Y) 
=const for p<< 1 close to a circle of radius given by R2 
= I -  2g1k (see curve 1 in Fig. 3), and nearf, they a r e  
horseshoe-shaped, going around the circle R =1 (see 
curve 2 in Fig. 3). For  trajectories 1 and 2 we get 
from Eqs. (A.14) and (16), respectively, the formulas 

i ~ e  are very grateful to Yu. L. ~aletski:, who pointed out to 
us the papers of Ref. 8. 
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Nonresonant transitions and ionization of atoms in slow 
collisions in a laser field 

M. Ya. Agre and L. P. Rapoport 
Voronezh State Universiry 
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Zh. Eksp. Teor. Wz. 77, 74-86 (July 1979) 

We consider inelastic atomic collisions that take place in the field of intense electromagnetic radiation 
and are accompanied by absorption of nonresonant photons. The cross sections are calculated for the 
excitation [H(lS) + H(1S) + o,-H(IS) + H(2S)I and charge exchange 
[H(lS) + H(1S) + 02-H+ + H -1 of hydrogen atoms in close collisions. The transition cross sections turn 
out to depend substantially on the form of the potential curves of the quasimolecule H,. We calculate 
also the two-photon ionization of hydrogen atoms irradiated by an intense laser pulse in close colliisions. 
The cross section depends little on the form of the potential curves of the quasimolecule, and an estimate 
of its value shows that collision ionization makes a contribution comparable with that of direct ionization 
even at medium densities. In the case of remote collisions, an analytic expression is obtained for the cross 
section of nonresonant transitions following adiabatic turning on the field, with account taken of the 
Stark shift of the atomic levels. 

PACS numbers: 34.50.Hc, 32.80. - t 

1. INTRODUCTION nant . 

Much attention has been paid in recent years to the 
study of the influence of intense electromagnetic radi- 
ation on the dynamics of atomic collisions. Interest in 
this group of problems is due to the possibility of using 
laser radiation to stimulate various processes that oc- 
cur in atomic collisions. Most theoretical and experi- 
mental studies were devoted to the so-called optical and 
radiative collisions (see the review by Yakovlenkol), 
which occur at large  interatomic distances, and the 
frequency of the absorbed (emitted) photon is close to 
the natural frequencies of a system of two non-interact- 
ing atoms. These processes have a clearly pronounced 
resonant character. Single-photon ionization in the case 
of remote collisions, accompanied by excitation trans- 
fer  from one atom to another, was considered in Refs. 
2 and 3, while two-photon ionization was considered in 
Ref. 4. 

In this paper we consider processes that occur in 
atomic collisions and a r e  accompanied by absorption of 
photons whose frequency differs from the natural atom- 
ic frequencies by an  amount comparable with the f re-  
quencies itself. We shall call these processes nonreso- 

We note that nonresonant excitation (detuning -1000 
cm-') was observed in .recent  experiment^,^ as well as 
binding of atoms of alkali-metal vapor into a molecule 
following collisions in a laser-radiation field. If the 
detuning reaches a value on the order of the atomic 
frequency, then the nonresonant processes occur at 
close collisions, since the close approach can lead to 
cancellation of the detuning on account of the strong 
distortion of the energy levels of the interacting atoms 
(quasimolecule). For a consistent calculation of the 
c ross  sections in the adiabatic approximation it is 
therefore necessary, f irst ,  to know the exact param- 
e ters  of the quasimolecule; second, to take into ac- 
count the motion of the nuclei along the real  rather than 
a straight-line trajectory. On the other hand, by mea- 
suring the cross  sections of nonresonant processes in 
close collisions it is possible to  obtain information on 
the parameters of the quasimolecule (the angular mo- 
menta of the transitions, the shapes of the potential 
curves). 

In the next section of this  paper we reduce the prob- 
lem in the adiabatic approximation to  a description, in 
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