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An expression for the contour of the Compton line in the region of the maximum, and the angular 
distribution, is obtained with relative accuracy of the order of (a 2)' for photon scattering by K 
electrons. 

PACS numbers: 32.80. - t 

In preceding papers1.' we obtained the differential 
cross section of relativistic Compton scattering by K 
electrons in the zeroth order in ffZ at large momentum 
transfers to the nucleus, q >> q, and obtained the cor- 
rection of order ffZ for  small q -9, where q=mcuZ is 
the average momentum of the electron on the K shell. 
The result led to an expression for the contour of the 
Compton line (the distribution in the energy and in the 
emission angle of the final photon) with a relative ac- 
curacy of order ffZ in the region of the Compton maxi- 
mum. Upon integration over energies of the final pho- 
tons, the terms linear in ffZ drop out and the previously 
obtained1 distribution with respect to the emission angle 
of the final photon coincides with the Klein-Nishina 
formula3. To find the corrections to the Klein-Nishina 
formula it suffices to find the corrections of order 
(ff.2)' for the contour of the Compton line in the region 
of the maximum, inasmuch as the region outside the 
peak makes a contribution of the order of (cYZ)~ to the 
angular distribution.' This is done in the present paper 
for final-photon emission angles 9>> q/wl and a t  initial 
photon energies w, much larger  than the binding energy 
q2/2m. In the region of small  angles 9 s; q/w the contour 
of the Compton line and the angular distribution a r e  
described by the Schnaidt and differ by 10% 
from the Klein-Nishina formula. 

The corrections to the contour of the Compton line in 
the region of the Compton peak, up to terms of orders 
(ffZI3, a r e  determined by the small  momenta q s 7 
transferred to the nucleus. To calculate the corrections 
of order ffZ and (ffZ)' to the contour of the Compton 
line in the region of the peak, it suffices to use the 
wave functions of the initial and final electrons in the 
Furry-Sommerfeld-Maue (FSM) approximation5 and 
the Green's function of the intermediate electron with 
one Coulomb correction. This is equivalent to calcu- 
lating corrections of the order of (ffZ)' for zero-spin 
parts5 (p,) of the wave functions of the electrons in ad- 
dition to the results obtained previously.' 

To prove the foregoing we examine the diagrams1 of 
Fig. la with three intermediate and final electrons, 
Fig. l b  with the Coulomb correction to the final elec- 

FIG. 1. Feynman diagrams of the process. The shaded block 
denotes the wave function of the bound electron. 

tron, and Fig. l c  with the Coulomb correction to the 
Green's function of the intermediate electron. The 
cross  diagrams a r e  of the same order  of magnitude. 
The diagram l a  contains terms of order of unity. In 
view of the small  momentum q =p - x transferred to the 
nucleus, where n = k l  -k, and p, k,, and k, a r e  the 
momenta of the initial and final photons, the small 
angles 8 s  q/wl correspond to small  n and to small  
momenta p (x - p s; 7). At p >> q the diagram l b  contains 
terms of order  ctZ of the f i rs t  correction cp!" to the 
spinless particle of the wave function po of the final 
electron3 and terms of order  (ff.2)' of the spin correc- 
tion pi0' - qcpjl)/m, containing the principal term in 
ffZ of the function p l  (Ref. 5). In the diagram with two 
Coulomb corrections to the wave function of the final 
electron, which is not shown here, it is necessary to 
take into account only the second correction p:' to the 
zero-spin part  of the wave function of the final elec- 
tron, which makes a contribution of the order of (ffZ)'. 
The corrections cp:" and cp,'0' in the expansions of the 
functions cp, and q, in terms of ffZ (Ref. 5) need not be 
taken into account, since they make a contribution of 
the order of (ffZ)3. Thus, it suffices to use a wave 
function in the form p,+pl (the FSM approximation), 
and take into account in p l  only the first  nonvanishing 
term in the expansion in ffZ. Similar statements can 
be made also for the wave function of the initial state. 
However, this function i s  known in closed form and its 
expansion up to terms of order (ffZ)' can be carried 
out d i r e ~ t l y . ~  

At small  p s 17, all the terms of the expansion in ffZ of 
the functions q,, ql, and p 2  the Coulomb parameter 
5 = ffZE/p = q/p, must be taken into account. In this 
case, to obtain the result accurate to terms of order 
(ffZ)', i t  is necessary to take the functions p,, p,, and 
cp, fully into account. Therefore our results at p s 7 
a r e  valid accurate to terms of order ffZ, but not 

The diagram l c  differs in an additional integration 
with respect to the intermediate momentum f. The 
phase volume and the quantity f is determined by the 
behavior of the wave function of the initial state: f -q 
and d3f- q3. The integrand acquires in addition to the 
diagram of Fig. l a  a factor -ffZ/w1(q - f)'. As a result, 
at q - q, after integration, the diagram of Fig. l c  turns 
out to be of the order of d3f ffZ/wl(q - f)'- (02)' rela- 
tive to the diagram la. In the diagram l c  the wave 
functions of the electron can be taken into account in 
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the first  nonvanishing approximation in (YZ (the func- 
tions viO'). Similar arguments lead to the conclusion 
that the diagram with two Coulomb corrections to the 
Green's function of the electron is of the order of 
(aZI4 relative to the diagram of Fig. la and i ts  calcula- 
tion is unnecessary in our appro~imation.~'  

The results of the calculations with the Coulomb wave 
functions and the Green's function a r e  valid, strictly 
speaking, for single-electron ions. However, by virtue 
of the smallness of the screening for K electrons, the 
obtained results remain valid for neutral atoms. 

The differential cross  section, summed over the 
polarizations of the photons and electrons take at small 
q - q with allowance for the correction terms of order 
(q/ml2 and ( ~ 2 ) '  [no expansion in the parameter 5 is 
carried out a t  p q, and the terms of order  (q/m)' and 
(a.2)' should be discarded], the form 

Here r ,  = a/m is the classical radius of the electron, 
a=q2+q2,  t=aZ&/p ,  Np=e  l 2 r ( l + i ( ) ,  I ~ , 1 ~ = 2 n 5 /  
(1 - em2"), r(x) is the Euler gamma function, &(c,) is 
the energy of the final (initial) electron, w,(w,) is the 
energy of the scattered (incident) photon 

In formula (4) we have put m = 1 and introduced the 
(4 ) 

notation 

The terms linear in q (with account taken of the cor- 
rections made in Refs. 1 and 7) coincide with our 
earl ier  results.' 

The distribution in energy and photon emission angle 
(the contour of the Compton line) is obtained from (1) 
by integrating with respect to q and v: 

do o l o , e  do -=--. 
d o ,  dt xp dx dp ' (5) 
o , +  eo=oz+e,  eo=m(l-a2Z2)"*, ~ = ( m ~ + ~ ' ) ' / . ;  

- - -- - 

do 16 do , (p )  
-=--- 

x2+qZ+2px 

dr. dp 3 dp (x2+qz)' 2 ~ r l  

~eredu,(p) /dp is the c ross  section for scattering by 
the f ree  electron. 

The expressions for y ,  and y, a r e  unwieldy, although 
they can be obtained analytically from (1). We there- 
fore do not present them here and obtain these coeffi- 
cients in formula (6) by numerical integration. 

Formula (6) is valid accurate to terms of order  
(aZ), near the Compton maximum x 2 q. Far  from the 
maximum, the principal term in a Z  can be obtained 
from formula (19) of Ref. 2. At small  p 5 :, the princi- 
pal term of the distribution coincides with the formula 
from Ref. 4 [see also formula (35b) in Ref. 11. 

The term linear in x in (6), which drops out on going 
to the angular distribution (after integration with re- 
spect to the photon energy o, o r  with respect to p), 
leads to a shift of the maximum of the Compton linesvg 
by an amount Ax - qz/m relative to x = 0 (or by Aw, 
-q2/m relative to w, = om). Terms  of order  x2/m2 and 
(aZ), in (6) lead to a shift of the maximum by an 
amount -q4/m3. TO calculate the shift of the maximum 
Aw, it is necessary to take into account the dependence 
of du,/dp and x on w,.' As a result we obtain for the 
principal term of the shift of the Compton line 

A o ,  = -- 
12m m u ,  

Here Aw,= w:=- w,, w, =mwl/(m +w,(l - t ) )  is the 
frequency of the photons scattered through an angle 
3 by the f ree  electrons, w:".is the frequency cor- 
responding to the maximum intensity of the photons 
scattered from the K shell through an angle 3, and the 
quantities f,, f,, and f, a r e  defined in (61, where we 
must put w, = w,. 

In the nonrelativistic case q<< LO,<< m and P >> 77, 
formula (7) simplifies to 

At w,>> & and p >> q we have 
E-m 38-4m A", =-- 1 " '""" { a. 3 ~ - 2 m  12m m 

The next term -q4/m3 of the shift of the maximum can 
be obtained from (1) and (6) by numerical integration. 

The width of the Compton peak is determined from 
(6) by the condition Ax-% In terms of the variable w2 
and at a fixed angle 3, this condition takes the form 
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FIG. 2. Dependence of the width of the Compton line Amz on 
the scattering angle at wi = 100. 

where we must put w, = w, in the calculation of p. The 
width Aw, of the Compton contour changes when the 
scattering angle changes in the following manner: 
1) Aw2-q2/m at  9-q/w, ( p  s q), 2) A@,-q at 9-m/w,, 
3) A@,- qw,/m at 9 - ( m / ~ , ) ' / ~ ,  4) Aw, -q  at 8 - 1. The 
dependence of Aw, on the angle 8 at w, = 100m is shown 
in Fig. 2. In the nonrelativistic case, the question of 
the width of the Compton line was considered by 
Sommerfeld8 and by Dymond.lo 

Figure 3 shows the Compton-line contours calculated 
by formula (6). The region beyond the maximum of 
the contour was calculated by means of our general 

which takes into account only the principal 
terms of the expansion in ffZ. At small  angles 9, in 
accordance with the Schnaidt formula, the Compton 
maximum is decreased because of the factor 5 26e-4 
~ 0 . 4 ,  and the width of the Compton line is shortened 
in terms of the variable w,(Aw,-q2/m). In addition, 
an appreciable part  of the contour goes outside the 
physical region at small angles 8. In the limit of small  
ffZ the boundary of the physical region (9 =0) at p - 0 
is x =q2/2m, i.e., by virtue of P*c - 11 half of the maxi- 
mum goes outside the limits of the physical region. 
With increasing Z, the fraction of the contour that goes 

out of the physical region increases because of the 
positive shift of the maximum (7). This explains the 
apparent decrease of the width of the contour of the 
Compton line with increasing Z, which was observed by 
Spitale and Bloom," wherein w, -17, and therefore the 
region of small  angles 9 q/w,- 1. The infrared growth 
of the cross  section as w,- 0 should, according to 
theoretical calculations, s tar t  at smaller w, than given 
in experiment.', 

Integrating formula (5) with respect to the energies of 
the secondary photons we obtain the distribution with 
respect to the angles of the final photons: 

The function f(w,, 9) for arbitrary w, and 8 was ob- 
tained by numerically integrating formula (5). At small 
9 q/w, the angular distribution is determined by in- 
tegrating the Schnaidt formula4 over the photon energies 
w,. Plots of the angular distribution against the angle 
9 and the experimental data of Refs. 12-17 a r e  shown 
in Fig. 4. We note that allowance for terms of order 
(aZ)' at Z 2 50 changes significantly the values for the 
angular and energy distributions of the photons obtained 
by us in Refs. 1 and 2 in the principal approximation 
in a Z  (the difference for 2 = 70 is approximately by a 
factor of two), thus greatly improving the agreement 
between the formulas obtained in the present paper and 
the experimental data. 

Integration of formula (10) with respect to the emis- 
sion angles 9 leads to a total cross  section for the 
Compton scattering with relative accuracy of the order 
of (0.21~. The region of small  angles 9 s q/w,, for 
which (10) is  not valid, makes a contribution of the 

FIG. 3. Contour of Compton line for mi =320 keV. The arrow 
notes the position of the free Compton line, the dashed line 
shows the limit of the physical region. a) Form of the contour 
for different Z for a scattering angle 60". b) Contour for scat- 
tering by holmium (Z= 67) for scattering angles 20" (curve 1) 
and 140" (curve 2). The experimental points for the angle 140" 
were taken from Ref. 11. 

FIG. 4. Angular distribution of the photons in scattering of a 
beam of quanta of energy 662 keV by K electrons of tin, gold, 
and lead. Experimental points: A-from Ref. 12, .-13, 0- 
14, 0-15, 0-16, A-17. 
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Coulomb lines. 

FIG. 5. The function F ( w i )  in expression ( l l ) ,  which deter- 
mines the correction to the total cross section. 

order of ( ~ 2 ) ~  to the cross section: 

o(O1)=oo(O1) [ l+(aZ)2F(0f) I.  (11) 

A plot of the function F(w,), obtained by numerical 
integration, is shown in Fig. 5. At very large w, >> m 
the function F tends to the limit 

F(ol) +l11 2-5/l,+0(1/ln ( 2 o J m ) ) .  

We note that the correction of order (02)' in the angular 
distribution (10) and in the total cross  section (11) does 
not vanish with increasing w,. 

' ' B ~  virtue of the influence of the wave functions of the initial 
and final electrons, the Coulomb parameter ( =  (YZE/P in the 
expansion of the Green's function of the intermediate electron 
appears in the amplitude of the Compton effect on a bound 
atomic electron only starting with diagrams that include three 
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The Faddeev equations are solved in the adiabatic approximation, using separable potentials. The cross 
sections for dissociative attachment of electrons to diatomic molecules are computed on the basis of the 
obtained solutions, and a comparison with the experimental data is carried out. 

PACS numbers: 34.10. + x, 34.80.G~ 

INTRODUCTION 

In this paper we consider the collision of a light parti- 
cle of mass m, with a bound system of two heavy parti- 
cles (reduced mass m,, >>m,) on the basis of the Fad- 
deev equations.' The adiabatic approximation in this 
problem consists in the use of the solutions of the 
Faddeev equations for m,,-- - to compute the cross  
sections. If we represent the interaction of the particle 
m, with each of the heavy particles in accordance with 
the model of zero-range potentials (ZRP), then f o r  m,, 

- - the Faddeev equations for the problem in question 
admit of an exact analytical solution, which has been 
found by Drukarev.' 

In the present paper we show that the Faddeev equa- 
tions in the adiabatic approximation also possess an 
exact analytical solution in the case when the interac- 
tion of the particle m, with each of the heavy particles 
is represented by a separable potential. 

As a specific example, we consider the reaction in- 
volving the dissociative attachment (DA) of an electron 
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