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The distribution function of parametric spin waves (PSW) in a cubic ferromagnet is determined. The 
PSW distribution is a set of pairs of wave packets whose angular dimensions are determined by two 
competing mechanisms: PSW scattering, which tends to broaden the distribution and the anisotropy of 
the increment of the parametric instability, which leads to a narrowing of the packet. The stability 
conditions for, and the collective-oscillation frequencies of, the obtained highly anisotropic PSW 
distributions are determined. 
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Recently, there has been an upsurge in interest in the 
problem of the structure of the distribution function, 
n,, of parametrically excited spin waves (PSW) in k 
space. It has been found that, in the self-consistent 
field approximation, i.e., within the framework of the 
so-called S theory,',' nk is nonzero on the parametric- 
resonance surface: 

where &, is the wave dispersion law with allowance for 
the wave-wave interaction, w, is the frequency of the 
uniform external (pump) field, and S2 is a solid angle on 
the resonance surface. The distribution, N,, over the 
angles should, in accordance with the S theory, be high- 
ly anisotropic and be determined by the symmetry of the 
system. For example, in the idealized case of an iso- 
tropic ferromagnet there exists only one preferred di- 
rection: the direction of magnetization M. It i s  natur- 
al to suppose that the distribution in this case will also 
be axially symmetric . 

Having made this assumption, Zakharov, Star obinets, 
and one of the present authors computed in the S-theory 
approximation a variety of integrated characteristics 
of the PSW system-the nonlinear susceptibilities X' and 
X" , the collective-oscillation frequencies, the creation 
threshold for a second group of pairs-and ascertained 
the qualitative and quantitative agreement between the 
theory and experiments on parametric spin-wave ex- 
citation in cubic ferromagnets by the method of parallel 
pumping.' This, however, does not mean that the dis- 
tribution N, for the spin waves in this case is in fact 
axially symmetric. The point is that the integrated 
characteristics of a PSW system is not very sensitive 
to the dependence of N, on the azimuthal angle g, and 
the coefficients, Skk,, of the wave-wave interactionaam- 
iltonian a r e  such that the equations of the S theory in 
the stationary case determine an integral number, N, of 
PSW, imposing in the process the only limitation on 
the form of the dependence of N, ,, on cp: 

Thus, within the framework of the S theory, highly 
anisotropic-in cp -distributions right up to singular dis- 
tributions, e.g., in the form of a cross  made up of two 
pairs: 

o r  a regular six-pointed star:  

a r e  admissible. 

Furthermore, there is experimental evidence showing 
that the PSW distribution exhibits in some cases strong 
anisotropy in cp, and the question arises:  why does 
this happen? How can we, without recourse to experi- 
ment, know which of the distributions, N,,,, satisfying 
the integral condition (2) is actually realized? This 
problem has been investigated by ~ a k a i . '  Remaining 
within the framework of the self-consistent field ap- 
proximation, i.e., the S theory, he investigated the 
stability of singular distributions in the form of a finite 
number of pairs, and showed that, for certain relations 
between the coefficients of the Hamiltonian, the iso- 
tropic-in cp-distribution, N,, is unstable, while a dis- 
tribution of the type (3) is stable, and therefore should 
be realized in experiment. 

It can, however, be shown that the stationary distri- 
butions, (3) and (4), for a small  number of pairs and 
also the single-pair state a r e  unstable against long- 
period modulations of the pair amplitudes and phases 
within the framework of the total Hamiltonian of the 
p r ~ b l e m . ~  Consequently, the problem of the fine struc- 
ture of the angular distribution N, ,, cannot be solved 
in the S-theory approximation. 

From our point of view, the angular distribution, 
N,,,, of the parametric spin waves over the azimuthal 
angle cp is determined by the competition between two 
weak factors that a r e  neglected in the S theory for the 
axially symmetric situation. On the one hand, we have 
the weak crystallographic anisotropy in cubic ferromag- 
nets, which tends to contract the PSW distribution N, 
to a singular state in the form of the cross  (3) if the 
magnetization M is oriented along a fourfold symmetry 
axis (Ml1(100)), or to  the six-pointed s t a r  (4) if M is 
oriented along a threefold axis (~II(111)). On the other 
hand, there a r e  the processes of scattering of the PSW 
by each other and by small random inhomogeneities and 
defects, which tend to smear  out and make the param- 
etric-wave distribution N, isotropic. Here, a s  before, 
the total PSW number, N, is determined by the S-theory 
relation 
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where y is the PSW-damping constant, p =h2/h: i s  the 
pump power expressed in units of i ts  threshold value, 
and So is determined by the relation (7) for  m = 0. 

In the present paper, in 02, we determine the PSW 
distribution function N, , ,  in homogeneous cubic ferro- 
magnets in which the dominant isotropicizing factor 
is the scattering of the PSW on each other. We show 
that, for M(~(Ioo), the PSW distribution has the form 
of a smeared cross  made up of two pairs, (2.5), with 
finite 0 and cp widths: 

Here the numerical coefficient d is determined in terms 
of the Fourier harmonics of the coefficients of the pair- 
interaction Hamiltonian, S(cp - cp'): 

k is  the wave vector of the PSW, v =  aw,/ak is their 
group velocity, and the small parameter 6 character- 
izes the deviation of the symmetry of the problem from 
the axial symmetry in cubic ferromagnets. 

For MII(111), the PSW distribution has the form of a 
smeared s tar  formed by three pairs [see (2.10) below], 
the expressions for A e= AO* and Ap = Ap* being differ- 
ent from (6): 

In the case when the magnetization is oriented along 
a twofold symmetry axis (~11(110)), there gets excited 
beyond the parametric instability threshold one 
smeared-out pair with widths, A 8- = A0' and AP- = Acp+, 
given by the formulas (6). Such a state does not satisfy 
the condition (2), obtained in the S theory for isotropic 
ferromagnets; a s  a result, i t  exists in a narrow super- 
criticality region determined by the cubic anisotropy: 

At p > p- there is excited in the equatorial plane (i.e., 
in the O =  n/2 plane) a second group of pairs oriented at 
right angles to the first  group, i.e., there is excited a 
cross with characteristic widths given by (6). Esti- 
mates of (6) show that, for high-quality yttrium-garnet 
(YIG) single crystals with a Q-factor kv/y - lo3  for 
spin waves, in the 3-6-dB supercriticality range, which 
is a typical range for experiment, and for MI\ (loo), the 
smearing of the wave packets with respect to the polar 
angle is no longer so small: he= lo-', which i s  5-10". 
It is more difficult to estimate the width of the dis- 
tribution over cp; for the attenuation anisotropy i s  not 
known. For M11(100), we have from symmetry argu- 
ments 

To the quantity y, may contribute, for example, the 
Kasuya-LeCroy p r ~ c e s s e s , ~  which do not disappear in 
the long-wave limit. It may be inferred that the ratio 
y,/y, is roughly estimated by the dimensionless param- 
eter characterizing the cubic anisotropy, i.e., by H,/ 

4nM ~ 0 . 0 5 .  Then it is not surprising that 6 turns out to  
be not too small. while Acp turns out to  be comparable 
to AO. These estimates agree qualitatively with the 
experimental results obtained by Bakai et al.' in high 
quality YIG single crystals: A0 = 5" and Acp = 5". 

In 03 we show that PSW scattering by random inho- 
mogeneities gives r ise  to additional broadening of the 
packets to the values 

Here y,,, [see (3.2) below] is the characteristic frequen- 
cy of scattering of the spin waves on the defects, z = 2 
(3) is the number of wave pairs in the cross  (star), and 
Kc 1 is a factor characterizing the difference in the 
scattering of a normal and an anomalous correlator. 
For a single pair (z = 1) the angular dimensions of the 
packet a r e  smaller than (10) by a factor of y,,,/y [see 
(3.8) below]. 

It is significant that for  

the distribution N, is almost isotropic along the equa- 
tor. The means that, in the case of ( l l ) ,  when the de- 
crement y,,, is still small compared to y, the cubic an- 
isotropy can be neglected, and the behavior of the PSW 
is fully described by the isotropic-ferromagnet approxi- 
mation used in previous i n v e s t i g a t i ~ n s . ' . ~ ~ ~ ~ ~ ~  

In 04 we determine the spectrum of the collective 
oscillations of the found highly anisotropic states of a 
PSW system with near-random wave phases within a 
packet. It is shown that the character of the collec- 
tive oscillations is insensitive to the ansiotropy of the 
PSW distribution. In particular, the expressions for  
the collective-oscillation frequencies 

(A i s  the collective -oscillation mode number) coincide 
in form with the corresponding expressions obtained 

for  the isotropic-with respect to the axial 
angle -PSWdistributions. The difference lies only in 
the expressions of S[A]  and T [ X ]  in terms of the matrix 
elements S,,, and T,,, [see (4.3) below]. Thus, if the 
condition 

S [ h ] ( 2 T [ h ] + S [ h l ) > O  (14) 

is fulfilled, then ImQ; < 0, ImQ, < 0, and the anisotropic- 
with respect to cp-PSW distributions obtained in 52.3 
a r e  stable. 

5 1. THE BASIC EQUATIONS 

The classical Hamiltonian function of the 

H=J orataka d k + ~ , , + H d , , + H ~ , , ,  (1.1) 

includes the interaction of the waves with the pump, 
1 

HD = 1 ( h  exp(-io,t) Vtat.a-k'+c.c.) dk, (1.2) 

their interaction with the static inhomogeneities (de- 
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fects, impurities, etc.), h t ( Q ) = 2  j {ITnl,2312N(Q,)N(Q2)N(Qs) 
Hdrl= J g t k ~ ~ t ' ~ k * b k ~ ~ 6  (k-k'-k") dk dk' dk", (1.3) 

+ T ~ ~ , ~ ~ T A , T ~ X ' ( Q ~ )  [N(Qz)X(Qa)+Z(Qa) N(Qs) I} 
and their interaction with each other X 6 (k+kl-k2-k,) dQl 09, dQ,, 

For the study of the fine structure of the PSW distri- 
bution, we use a system of equations obtained from 
(1.1)-(1.4) with the aid of the diagram techniques of 
Refs. 9 and 10, and generalizing the basic equations of 
the S theory: 

Here N(Q) and I;@) a r e  the values of the normal, nkw, 
and anomalous, ukw, correlators, integrated over the 
frequency and the modulus of the wave vector: 

N (Q)  - j nt.k2 dk do ,  Z (62) = jok.k2 dk d o .  

Here c is the defect concentration, gkkt characterizes 
the two-magnon scattering on a single defect in accor- 
dance with (1.3), $2, and a, a r e  the angular coordinates 
of k, and -k, on the resonance surface, and the T,, ,, 
a r e  the coefficients of the interaction Hamiltonian (1.4). 

As can be seen from (1.5), the PSW a r e  concentrated 
in the region of the minimum of vn. Near the minimum 
the quantity v i  can be expanded in a series:  

In cubic ferromagnets 

All the remaining quantitiesin (1.5)-the group velocity, 
and, consequently, v,=y. We shall assume the aniso- vn,  the decrement r,, and the mass  operators n ,, @ ,, and 
tropy with respect to cp to be slight (i.e., that v,/y= 6 

@, a r e  evaluated a t  the point Q= (8, cp) on the resonance 
surface eel), but important: v,>>v,. The case v,eev, is not of 

particular interest, since in this case the anisotropy 
op/2=6ik=~k+ Re Z.. leads only to the modulation of the previously-studied 

The total PSW-damping constant r, is expressible in the isotropic solution with a small  modulation index of the 

usual manner in t e rms  of I;,: order of vf/v:. It can be seen from the expressions 
(1.5) and (1.12) that, in all  the cases in which @, and 

rn=-lm Zn-~n+yde,(61) +r, , . , (Q),  (1.6) \kn can be regarded as constants within the limits of the 

where y, is the decrement of the intrinsic PSW damping, width of the PSW packet, the angular dimensions of the 

arising a s  a result of the interaction of the PSW with the packets with respect to 8 and cp a r e  given by the for- 
mulas thermostat formed by the thermal SW, the phonons, 

etc., y,,,(Q) is the two-magnon damping constant, and AB=Y,/Y, A(pcvo/v,= Ael6. (1.13) 
y,, (0) is the contribution to  the decrement from the 
PSW-PSW scattering processes. In the following section we investigate the PSW dis- 

tribution in a homogeneous ferromagnet (@ ,,, >>b ,,,), 
The quantity n, has the meaning of a total PSW pump: when the scattering of the PSW on each other predom- 

inates. 
no=p,+nd., (n) +n,,, (a). 

Here P ,  is the self-consistent part of the pump, and i s  $2. THE BROADENING OF THE DlSTRlBUTlON OF 
the part that figures in the S theory',': THE PARAMETRIC WAVES AS A RESULT OF THEIR 

P.=~v.+ S n . - ~ ( Q r )  dQf.  SCATTERING ON EACH OTHER 

The quantity v, in (1.5) characterizes that portion of In the case of slight anisotropy the PSW distribution 

the damping not compensated for by the pump: on the resonance surface comprises of a se t  of long 
s t r i ~ s  with h a  >>A 8. stretched alone the eauator. - 

(rn7- I I I ~ ~ ~ ) ' " .  (1.8) ~ h e i e f o r e ,  in' analking the distribution over 8, we can 

The mass operators @, and Q, a r e  reminiscent of the assume the distribution over cp to be isotropic. The 8 

arrival term in a kinetic equation; they consist of two distribution is analyzed under this assumption by one 

parts: of the present authors in Ref. 10, where it is shown that 

In the S-theory approximation %, = 9, = 0. For not too 
high supercriticalities and not too intense scattering by Integrating (1.5) over 8 with allowance for (2.1), we 

the inhomogeneities, we can neglect the renormaliza- obtain an equation for the determination of N,: 

tion of the vertices in the diagrams for the mass opera- 4ny2N. (Im s,,) 2N.r2 dq' N,= J ~ ~ , ~ d ~ ~ ~ 8 ,  N . = - ~ J .  
tors, and thereby close Eqs. (1.5): kuv, Isin(q-q') l ' 

(2.2) 

( l . lO) The quantity ;, is slightly greater (by not more than a 
Q~. , (Q)=c  I Igp..IzNn~ dQ', Y ~ . , ( P )  = c j  gnn.gii.b(Q')dP'; factor of two) than v,, and depends on the specific struc- 

1147 Sov. Phys. JETP 49(6), June 1979 V. S. L'vov and V. 6. Cherepanov 1147 



ture of the 0 distribution. In deriving Eq. (2.2), we 
used, a s  before," the fact that all  the PSW lie in a nar- 
row belt around the equator, and that (2(52)1 =N(52). In 
cubic ferromagnets only the coefficients So and S,, of 
the Fourier-series expansion, (7), of S(cp - cp') a r e  non- 
zero. Therefore, 

Im S,.-ASsin 2(cplcp1). 

For ~11(100) we seek the solution to  Eq. (2.3) in the 
form of a smeared-out cross: 

The function F(q)  satisfies an equation that follows 
from (2.2), (2.4): 

It is different from zero in the interval -a s cp s a and 
normalized in it to unity. In this interval we can cancel 
out F, in Eq. (26) and differentiate the resulting equa- 
tion twice with respect to cp. As a result, we obtain 

kc. az F ' = ---------A \?," 

3vIz~,kv 1+2vlzq' /~~" 
\ y 2 ( ~ ~ ~ ) z  dqz  I C ~ ~ ( A S N ) =  (I+V,~~J~/V,~)"= ' (2.7) 

Substituting this function into (2.6), we find a : 

It can be seen that in the region I cpl < a the function F ,  
changes by not more than 10%. For 1 > a the function 
F, falls abruptly to  zero. The quantity 3,, which de- 
termines through (2.8) the width of the broadening of 
the PSW packet with respect to  cp, can be determined 
from the normalization condition, (2.5), for F,: 

This expression coincides up to  an unimportant numer- 
ical coefficient with the expression (2.1), which was ob- 
tained for the isotropic-with respect to cp-situation. 
The expressions (1.13), (2.8), and (2.9) determine the 
distribution function's 0 and cp widths referred to in the 
Introduction-the formulas (6). 

A somewhat different situation obtains in the ~ I / ( i i i )  
case, when the distribution has the shape of a smeared- 
out six-pointed star: 

In this case, for the function ~ ( c p )  we obtain from (2.2), 
(2.3), and (2.10) an equation different from (2.6): 

Here the dominant contribution is made by the scatter- 
ing through the angles lcp - cp'l =n/3; 2r/3, while the 
scattering through the angles I cp - cp' 1 = 0; n determines 
the shape of the function F,. 

As before, cancelling out F ,  in (2.11), and differen- 

tiating the resulting equation twice, we obtain 

However, the span, a *, of the sector in which the solu- 
tion N, is nonzero is equal to  

and the function F, is close in shape to  a rectangle of 
height 1/20 *. From the normalization condition for  the 
expression (2.12) for F,, we have 

From this relation and (2.13) we obtain the expres- 
sions (8) for  the angular dimensions of a packet: 

Notice that in the considered case Acp* and AB* a r e  not 
connected by the standard relation (1.13), to wit, A cp* 
<<~0*/6 .  It should be said that the expressions (1.11) 
for  9 ,, and Ik,, were derived under the assumption that 
the renormalization of the vertices was negligible, i.e., 
that 

This same parameter characterizes the deviation of 
the quaternary correlator from the product of the pair 
ones. In other words, the phases of the waves in a 
packet a r e  almost random phases. Therefore, it is to 
be expected that the totally coherent PSW state studied 
earlier4 can be realized only in a highly anisotropic 
medium, o r  in the case of low supercriticality (&>>l). 

Thus, in the case of a slight anisotropy (6 <<I) the 
PSW distribution consists of a set of pairs of wave 
packets with near-random phases and sharp cutoffs 
with respect to the axial angle cp. Notice that the weak 
scattering on the inhomogeneities and the small cor- 
rections 6Qi ,, raising the accuracy of the approxima- 
tion (2.2), 

lead to the smearing out of the discontinuities in N,. 

g3. THE BROADENING OF THE DISTRIBUTION 
OF THE PSW AS A RESULT OF THEIR BEING 
SCATTERED BY THE INHOMOGENEITIES 

We shall restrict  ourselves to the consideration of 
sufficiently small-scale inhomogeneities, the charac- 
teristic angles of scattering on which a r e  large com- 
pared to the angular dimensions of the PSW packet. In 
this case i t  can be assumed that 9,,,(51) and qdef (52) a r e  
constants in the vicinity of the v n  minimum. Of inter- 
est  is the case when the characteristic frequency of 
scattering of the spin waves by the defects y,,,, (3.21, 
is low (y,,, << y )  , since in the opposite case (y,,, >> y) the 
PSW distribution on the resonance surface is isotropic.' 

With allowance for  the assumptions made, we obtain 
from (1.5) the expression 
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where 

. s K-Z ~ ( T , ) ~ x P ( ~ ~ T , )  / I ~ ( v J )  1'; 
1-1 1-1 

g ( 9 - q ' )  =go.. for 0 4 ' = n / 2 ,  

and v i  is given by the expression (2.3). It can be seen 
that the distribution N ,  has the shape of a Lorentz func- 
tion with width Acp = co/v,. The quantity ;,, which de- 
termines h q and A 0 = io/y, can be found by integrating 
(3.1) over q. For C0<<3,, we obtain 

In the opposite case, i.e., when the condition (11) is 
fulfilled, N ,  is almost a constant along the equator of 
the resonance surface. 

It should be noted that, in accordance with (3.3), for 
a single wave pair, K = 1 and Go= 0. Consequently, this 
case should be considered separately, retaining in (1.5) 
the dependence on cp not only in v,, but also in the ex- 
pressions for @,,, (a) and *,,,(a). Taking this fact into 
account, we obtain in place of (3.1) the more accurate 
equation 

Here we have used the fact that for the wave pair 

In (3.5) the entire cp-integration domain turns out to be 
important; therefore, i t  i s  necessary to  give the explicit 
form of g ( p  - q'). Assuming, for simplicity, that 
g(q)  = const, we obtain for N ,  an integral equation with 
a degenerate kernel: 

Integrating (3.6) over cp with the weights 1 and e-*, 
we obtain for N  and N,  the system of linear equations: 

N(l-a)+N,b=O,  -Nb'+ ( l+a)N,=O; (3.7) 

+ err* d q  
' = Y ~ J  7 .f i i t+v iZsinz  (3.8) 

the solvability condition for which yields the relation 

broadening of the distribution function N ,  turns out in 
the case of one pair, (3.10), to be significantly less than 
for  two and three pairs, (10). The Eqs. (3.1) and (3.5), 
which determine the PSW distribution, a r e  linear and 
homogeneous in the integrated amplitude N. The am- 
plitude N  is itself determined in the case of weak scat- 
tering (y,,, <<y) from the condition for the compensation 
of the self-consistent contribution to v,, (1.12), in ac- 
cordance with the S-theory formula (5). 

Notice that, in deriving the expressions (1.10) for 
9 ,,, and 0,,, , we neglected multiple scattering. It can 
be shown that the higher-order diagrams for @,,, and 
@,,, corresponding to these processes have small values 
if 

As is well known, in one-dimensional systems mul- 
tiple scattering is not weak as compared to  single scat- 
tering. The criterion (3.12), written in the form 

is the condition for the PSW distribution to be non-one- 
dimensional. 

In conclusion, let us  find out when it is necessary to 
take the PSW scattering by the inhomogeneities into 
consideration. For this purpose, it is  sufficient to com- 
pare the angular dimensions A B and Aq of the PSW pack- 
ets,  computed without allowance for one of the above- 
considered broadening mechanisms. As a result, we 
find that, when 

in the case of a wave pair, o r  

in the case of a cross,  scattering by the inhomogeneities 
predominates. If, on the other hand, the inequalities 
that a r e  the opposites of (3.13) and (3.14) a re  fulfilled, 
then the PSW-PSW scattering, considered in 82, i s  more 
intense. The case of a s t a r  (z = 3) is more complex. 
Scattering by the inhomogeneities predominates when 

i = a 2 - ~ b ~ a .  while the PSW-PSW scattering is dominant when 

Hence for vo<<y we obtain for  vo the expression (3.16) 
V0=4n2y6e,/67. (3.9) 

In the intermediate case, it is necessary to  take into. 
With the same accuracy we have account the scattering of PSW belonging to different 

N A q  cos 2 q+q1'~6-~ sina q 2ny.w ' pairs on each other and the scattering by the inhomo- 
N.-- n ( A T )  '+sin' cp , A -  . (3.10) 

78 geneities, which determines the angular width, Aq, of 
a packet. The simultaneous consideration of these ef- 

The expression for N ,  is a Lorentz function with half- fects yields 
width Arp for Icp - p,l<rpo, where 

(3.11) q o - 8 ' h ( ~ v ~ =  (2ny*dy)'/=, 

and a constant for I cp - q, 1 > qo. 
(3.17) 

~ c p ' = 2 1 % 6 - ~ ~ - ' ~ ~ . ~  ( I - K )  . 
By comparing (3.10) and (lo), we can verify that the The expression obtained for Ap* in this case coincides 
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up to a numerical coefficient with the packet width due 
to the scattering of the PSW by the inhomogeneities. 

$4. THE STABILITY AND THE COLLECTIVE 
OSCILLATIONS OF ANISOTROPICALLY 
DISTRIBUTED PSW 

Here we obtain the collective-oscillation frequencies 
of the highly ansiotropic PSW states investigated above. 
As is well known,' two types of collective oscillations 
occur in a PSW system: relatively high-frequency os- 
cillations and low-frequency ones. The first  type of 
oscillations can, in the case when y,, <<y, be de- 
scribed in the S-theory approximation, while the second 
type is connected with the limited amount of PSW scat- 
tering, and needs to be considered outside the frame- 
work of this approximation. 

1. The high-frequency collective oscillations of the 
correlators 

in a uniform steady -state background a r e  described by 
the following system of equations12: 

i l k &  ( P )  - ( i y r + P ) h f  ( P )  -2nt { J ~ ~ k . [ i i r ,  ( P )  

Here the wave vectors k, k' lie on the resonance sur- 
face. 

If the angular dimension of the excitable packets is 
small, then it is easy to integrate (4.1) over the angles. 
As a result, we obtain after a Fourier transformation 
the equations 

where 

Here we have restricted ourselves to the oscillations 
of the integrated amplitudes nk and ri;, inside each nar- 
row sector cp = * j / z .  As to the oscillations of the pack- 
et shape that occur without changes in the integrated 
amplitude of the packets, for them the right member 
of (4.1) vanishes, and such modes attenuate with the 
frequency 52 = -2iy. As a result, we obtain for the sys- 
tem (2.2) the spectrum (12) given in the Introduction. 
This spectrum coincides in form with the collective- 
oscillation frequencies obtained earl ier  in the axially 
symmetric case.',' Notice that, on account of the prop- 

erty S(cp + *) = s ( ~ ) ,  a l l  the S[X] and, together with them, 
51: vanish when X is odd. The quantities T[X] and S[X] 
can be expressed in t e rms  of the Fourier harmonics of 
the matrix elements ~ ( c p )  and S(P): 

a s  follows: 
For a wave pair (z = I), only two modes, a:, remain, 

where 

For a cross  (z = 2), there exist two pai rs  of modes, 
9; and a;, in which 

For a six-pointed s t a r  (z = 3), there a r e  three pairs of 
modes, at,  a:, and a:, with frequencies coinciding 
with the frequencies for the axially symmetric case 
(the modes go over into the a!, modes): 

S[Ol =So, T[Ol=To; 

Here we have used the specific forms that S(cp) and 
T(cp) have in ferromagnets2: 

It should be noted that our result (12) differs essential- 
ly from the collective-oscillation frequencies obtained 
by ~ a k 2  in Ref. 3. The difference is explained by the 
fact that, in Ref. 3, i t  is assumed that only a finite num- 
ber, namely, 4, of PSW a r e  excited in the system. We, on 
the other hand, showed in the preceding section that in- 
finitely many degrees of freedom a r e  excited in a con- 
tinuous medium even in the presence of slight aniso- 
tropy. 

2. The low-frequency collective oscillations of PSW 
in an axially symmetric system were studied earl ier  
by us.' In our case, when scattering by the inhomogen- 
eities is ignored, these oscillations a r e  described by 
the equations 

where 

8k.(P) =(ar.+pa-t, r,-.>, B ~ * + ( B )  =<akaa-t, ,- ,+d. 

Using the fact that the distribution N, is narrow and 
the fact that 

S,.=eu(v-.')S(cp-q') T w = T ( ~ - v ' ) ,  

we can find, after a Fourier transformation in (4.4), 
that 

From (4.5) and (2.7), we obtain finally for  the most in- 
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teresting case-the cross-the expression 

Notice that, in an anisotropic system, the stability 
conditions for the high-frequency and low-frequency 
modes (12) and (13) coincide with (14), exactly as  in the 
axially symmetric case.' 
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