
we have confined ourselves to  the case of s capture, 
corresponding to isotropy of the process in a plane per- 
pendicula'r to the dislocation axis. The results of the 
numerical calculations show that this limitation is jus- 
tified, since the probabilities of the capture of the par- 
ticle with 1 # 0, owing to  the repulsive nature of the cen- 
trifugal potential, turns out to  be much l ess  than the 
s- capture probability. 

According to  the results of Ref. 3, the potential of 
the charged dislocation can be approximated by expres- 
sion (2) only a t  sufficiently high temperatures ff < 1. 
At the same time, for the quasiclassical approximation 
to be valid it is necessary that many wavelengths of 
the captured carr ier  be spanned by the barr ier  thick- 
ness that the following inequality be satisfied 

kro=2m-" In" (A/2a) >I, 

which imposes an upper bound on the temperature in- 
terval. A joint analysis of the obtained criteria shows 
that for Ge with E, = 10 eV, AwD = 0.03 eV, m - 10"' g, 
M -2.5. g, 6 = 16, S- 5 - lo5 cm/sec, with dnoro 
density n," 1013 cmo9, and 0.3 < ff < 1 the results of the 
present paper a r e  qualitatively correct in the tempera- 
ture interval 200 K < T < 500 K. The absolute value of 
the capture radius turns out in this case to  be of the 
order of lo-'' cm < p,(T) < 10'~ cm. If the dislocation 
density is ND = lo6 ~ m ' ~ ,  then according to  (27) we have 
for the lifetime of the excess electrons 7,  - - 1) sec. 

The stronger temperature dependence of the capture 
radius than in the case of the point centers1' can be 

explained by the fact that when the temperature changes 
a change takes place not only in the energy of the most 
effectively captured electrons, but also in the charged 
state of the dislocation, i. e. ,  the shape of the electro- 
static barr ier  that surrounds the edge dislocation. 

The author thanks I. B. Levinson and Yu. A. Osip'yan 
for interest in the work and for a discussion of the re- 
sults. 
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The Heisenberg model of a ferromagnet with an admixture of negative exchange integrals of a small, but 
definite magnitude is investigated. It is shown that this system exhibits low-temperature properties of the 
"glass" type along with the occurrence of a spontaneous moment close to the nominal moment. Long- 
wave spin waves are found to be abnormally strongly damped. The problem of elementary excitations in 
spin glasses is discussed. 

PACS numbers: 75.10.Jm. 75.30.D~ 

1. INTRODUCTION 

There has been in recent years quite an intensive 
study of the properties of the models of disordered mag- 
netic substances with random alternating-sign exchange 
interaction between the spins located on the regular lat- 
t i c e . ' ~ ~  It is assumed that there is no spontaneous mo- 
ment when the mean exchange value is close to zero, 
and the low-temperature phase in such models is simi- 
lar  to the spin-glass phase observed in disordered solu- 
tions of the Cu-Mn type.' The thermal capacity of spin 

glasses has a maximum at some temperature Tf, and 
is linear at T<<T,, while the magnetic susceptibility as-  
sumes a constant value a t  T << T,. 

In the present paper we show that the low-temperature, 
"glass" type properties a r e  not necessarily due to  the 
absence of a spontaneous moment, but can also be ob- 
served in a ferromagnet with a moment of magnitude 
close to the maximum value. Below we propose for the 
Heisenberg ferromagnet a model in which the magnitude 
and sign of a small part of the exchange integrals a re  
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changed. For a small  negative-coupling concentration 
c e l ,  the system possesses a spontaneous moment that 
differs little from the nominal moment, yet i ts  low- 
temperature properties turn out to be similar to those 
observed in spin glasses. This effect is explained by 
the appearance in the ferromagnet of aquasi-independent 
subsystem of localized states whose behavior deter- 
mines all  the low-temperature properties of the ferro- 
magnet. 

The most important distinctive feature of our model 
is the presence in i t  of a resonance level with energy 
I&,l <<JS (J is the exchange integral and S is the magni- 
tude of the spin; below we set  JS  = 1)  for a spin wave 
scattered by a negative coupling. We carry out in the 
case d exact resonance (i.e., for  c, = 0) at  T >>c a virial 
expansion similar to  the one performed in Ref. 3. In the 
case when c << Ic,l <<I, the virial  expansion allows u s  to  
find the properties of the system for  arbitrarily low 
temperatures. The thermal capacity C, turns out in this 
case to be linear in the temperature: C, - c ~ & ; ~ T ;  a t  
T = 0 the susceptibility is finite; x -c2/&:. We have 
computed the spin-wave damping constant: 

Our results also allow us to draw qualitative conclu- 
sions about the absence d well-defined quantum quasi- 
particles in spin glasses. 

2. THE SINGLE-MAGNON APPROXIMATION 

The Hamiltonian of our model is the Heisenberg Ham- 
iltonian with only the nearest-neighbor interaction taken 
into account and part of the exchange integrals J re-  
placed by J' = -1 + 1. We write down our Hamiltonian, 
using for the spin operators the 1/S expansion of the 
Holstein-Primakoff formulas 

As will become clear from what follows, the problem 
gets simplified in the case of large spin magnitudes, 
i.e., in the S>>1 case. It is this case that we shall con- 
sider. In this representation the Hamiltonian has the 
form 

The Wterm contains products of four o r  more Bose 
operators and 

o, (k).= (1 - cos ka) 
(.) 

is the spin-wave spectrum of a "pure" ferromagnet. 
The second term in (1) contains a sum over a l l  the lat - 
tice sites linked by negative couplings (via the "impur- 
ities"). 

Let us show that, at T = 0, the ferromagnetic state 
with the maximum spontaneous moment turns out, for 
a definite I, to be unstable in the presence of any a r -  
bitrarily small impurity concentration. For this pur- 
pose, let us consider the problem of the scattering of 

one spin wave on the negative couplings. The W term 
in the Hamiltonian (1) will not be needed by us in the 
present case. 

The Green function, G(k, k'), of the spin wave scatter- 
ed on the potential, 

of one impurity can be determined from the equation 

where G(')(u, k) = [w - w,(k) + i6]-' and 52, is the unit-cell 
volume. 

The solution to Eq. (2) has the following form: 

Vkt*G'oJ (k)G'O1 (k') 
G(k,  k') =G'OJ (k)6tr# + 

l+IRo 2 ('c-cos pa) G'OJ (p, o) dp/(Zn)' 
' (3) 

For lo 1 << 1, I U/Z - 11 << 1 (Z i s  the number of nearest 
neighbors), we can approximately write: 

Substituting (4) into (3), we find that the spin-wave scat- 
tering amplitude has the following form: 

1 f"'(&,)=- - Vrr , 
a o-eo+io"O (o)/8na ' 

ea=a-' (1-2I/Z). 

Everywhere below we restrict  ourselves to  the consid- 
eration of the simple cubic lattice, for which Z = 6 and 
c0= a - l ( l  -113). 

In order to investigate the stability of the system, it 
is necessary to find the Green function of a solitary spin 
wave for a finite impurity concentration. For our pur- 
poses, it is sufficient to  use the effective-medium ap- 
proximation4 in this case. All the results of this sec- 
tion can be obtained with the aid of the standard impur- 
ity diagram t e ~ h n i q u e , ~  but it will be convenient for us, 
bearing further generalizations in mind, to use another 
method. 

Notice that if we neglect the imaginary part of (5), the 
scattering amplitude can be represented in terms of the 
Green function of the magnon bound state in the impur- 
ity: 

D: (o) =((b..(t) b,+. (0) > I ,  = 
i 

o-e,+i6 ' 

Here b,, and b:, a r e  the creation and annihilation opera- 
to r s  for the bound state in the (n, a) coupling. Below 
D::' will be represented in diagrams by a wavy line. 

Thus, the Hamiltonian (1) assumes the form 

where gt= (1/cu)'/~(1 - elksa) is denoted by a small  cross. 
In constructing the diagram technique with the Hamilton- 
ian (?), account should be taken of the fact that the si tes 
n and m should be different in diagrams of the type 
shown in Fig. 1 [here a thin line represents the func- 
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FIG. 1. 

tion G(*&, w)], since the contributions from multiple 
scattering on the same site have already been taken into 
account in the derivation of the formula (5). After aver- 
aging over the impurities, we obtain for the complete 
Green functions D and G the diagram equations shown in 
Fig. 2. 

The oval in Fig. 2 denotes averaging over the impur- 
ities, which amounts to multiplication by c. The effec- 
tive-medium approximation consists in the assumption 
that we can neglect the diagrams in which two o r  more 
Green's functions of bound states belonging to different 
couplings a r e  simultaneously averaged. In the language 
of the conventional impurity diagram technique, this 
corresponds to  the discarding of diagrams with inter- 
secting dashed lines (see Fig. 3). 

It is easy to see that the effective-medium approxi- 
mation yields the first  term of the expansion in powers 
of c/(o - E,,). It will be further shown that, in the single- 
magnon approximation, only &, - w -E is important to 
us and, thus, c/(w - E,,) --fi<< 1, and our approximation 
is justified. For the same reason, we can neglect the 
frequency dependence of G(')&) and G(k) in the analytic 
expression for  the diagram of Fig. 2b and, moreover, 
set  G(k) =G(O)(k). Thus, the analytic expression for the 
diagram of Fig. 2b has the following form: 

Its solution is 

It follows from the diagram in Fig. 2a thatthe self-ener- 
gy part of the function G can be expressed in terms of 
D : 

2(o, k) =ma (k) ( c l a ) D ( o ) ,  (10) 

It can be seen from (10) that, in the effective-medium 
approximation, for &,< 2c1' '/a, the density of states at 
negative energies p(w < O)> 0, which indicates the in- 
stability of the ground state with the maximum moment, 
which is what we wanted to show. As we shall see be- 
low, when the correlation effects a r e  taken into account, 
negative levels ar ise  virtually at any c/&, (with a con- 
centration containing higher powers of c). 

3. THE EFFECTIVE HAMlLTONlAN 

As shown above, the state of the system with the maxi- 
mum ferromagnetic moment is unstable. In the t rue  

D=- = - + -+e+-- 
b 

FIG. 2. 

,--. 
J 

FIG. 3. 

I-, ,-. 4 . . 
ground state the negative levels produced a s  a result of 
the overlap of the wave functions of the "single-impur- 
ity" bound states a r e  filled. 

Thus, fo r  the investigation of the properties of the 
system near the ground state, it is necessary to take 
into consideration the correlations between the mag- 
nons a t  the impurity levels. It is easy to see that two 
magnons located on the same impurity strongly repel 
each other, since the wave function of the impurity state 
i s  highly localized ( 1 \k 1' - l/r 4); the repulsive energy U 
- l/S>>c (below it will be shown that, in contrast to the 
results  of the preceding section, the characteristic 
energies near the ground state a r e  -c), and therefore 
the states with more than one magnon per coupling can 
be regarded a s  being unrealized. Since the mean num- 
ber of magnons bound to one impurity i s  2 1, the spon- 
taneous moment of the system at  T =  0 is M(O)k S-c .  

The magnon eigenstates on one impurity a r e  exhaust- 
ed by the se t  10) and Il), where 10) corresponds to the 
vacant, and 11) to the filled, &, level. Projecting the 
operators bru and b& onto this narrower basis, we ob- 
tain operators, X g  and X E ,  similar to the operators 
f i rs t  introduced by Habbard6 for systems of strongly 
interacting Fermions. 

The algebra of the X operators is determined by the 
relations 

The interaction between magnons in different couplings 
is -c/S <<c (let us recall that in our case S >>I), and we 
shall not consider it. In the X-operator representation 
the Hamiltonian of the system can be written as fol- 
lows : 

This is the Anderson Hamiltonian for Bose particles. 
For the study of the properties of the. bound states, it is 
convenient to eliminate the spin-wave variables ak, a;, 
and go over to the Habbard Hamiltonian for bound states: 

3 I aa' 3(aR) (a'R) ) , (14) = Cgk*gk.-.~(o) (k, 0) elkn= - - - + 
4na R3 

, L R5 

where G('' is the bare Green function for the magnons. 

In writing down (13) and (14), we neglected the f re-  
quency dependence of G(') (o, k). Allowance for this 
dependence would have led to the appearance in t ( R )  
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of an additional factor -exp(iwl"R), which is important 
for I w ~ ~ / ~ R  2 1. It will subsequently become clear that 
of importance for the computation of the thermodynamic 
properties a re  w - T and t(R) - T, i.e., R - T-'I3, and, 
consequently, in the region of interest to us IwlllZR 
-T ' /~<<I .  

In the general form, the problem of finding the Green 
function D,,(w) with the Hamiltonian (13) is extremely 
complex. We shall restrict  ourselves to the study of the 
cases in which it is sufficient to take only the pair cor- 
relations between the impurities into consideration. 
This means that we shall carry out the virial expansion 
(see, for example, Ref. 3) in powers of the impurity 
concentration only up to second order in c. For this 
purpose, it is necessary to find the Green functions for 
the bound states on an isolated impurity and on an im- 
purity pair. The corresponding computations a r e  given 
in the Appendix. The Green function for a magnon on 
one impurity has the form 

For two impurities (denoted by 1 and 2) we shall have 
(see the Appendix) 

t K ( t z ,  e,)  (1 6) 
D12("n)  = ( io l -eO)  z - ~ z .  &,=eo*t ( R ) .  

4. THE DENSITY OF STATES AND THE 
THERMODYNAMIC CHARACTERISTICS 

As follows from the form of the Hamiltonian (12), in 
first  order of the virial expansion, the self-energy part 
of the magnon Green function G = (((ak(t)a;(0)>>),,,, aver- 
aged over the impurities, can be expressed in t e rms  of 
the solitary-impurity Green function D(w), (15): 

PIII- o o ( k )  t h ( e d 2 T )  -c(gk'D (o)grS>.=c ------- 
a o-&,+is ' 

The angular brackets denote averaging over the direc- 
tions of the impurity couplings a. 

In the second virial approximation, c(* i s  expressed 
in terms of the pair Green functions (16), and the an- 
swer should be averaged over the distance, R, between 
the impurities and over the orientations of a and a': 

+ ( (ka )  (Lar) I D . ,  (w)eos  kRdR . )...I 
In the first  term of (18), we have, as we should in a 
virial expansion, subtracted the contribution, D(w), of 
the solitary impurities. Notice that the contribution of 
the off-diagonal Green function D,,(w) vanishes on being 
averaged because of i ts  oddness. In that region where 
we can restrict ourselves to  the first  orders of the virial 
expansion, (C 1 <<wo(k), and, consequently, we can use 
the approximate expression G =Go+ CG; in the density- 
of-states calculation. Then the contribution of the im- 
purity states to the density of states of the system will 
have the form 

1 
p ( o ) = - -  Go'(k,O)IrnZ(k, o ) .  

" t' 
Bearing (17) and (18) in mind, we obtain 

p"'(o)  =c t h ( d 2 T )  6  ( o - E , ) ,  (19) 
p(z) (a )  =- - t h -  dR(6 ( o - E , - t " ' ( R ) )  " 2  2T " I  

The total density of states is represented by a virial 
series in powers of c/(w - E,). In this case there ap- 
pears in each term the factor tanh(w/2T), which arises 
a s  a result of the two-levelness of the system of im- 
purity states. Therefore, the density of states p ( ~ )  
can be represented in the form p(w) =p(w) th(o/2T), 
where p(w) is the density of states corresponding to an 
effective Fermi statistics for the impurity states. 

We shall be able to  carry out further computations in 
those cases when the parameter Ic/(w - &,)I << 1 in the 
important energy (w) region. In this case we shall be 
able to limit ourselves to  the second virial approxima- 
tion. We shall investigate the low-temperature proper- 
ties of the system for c << Icol (the case A) and compute 
the thermal capacity and the susceptibility of the system 
at "high" temperatures T>>c for  the on-resonance case 
(case B). 

CaseA: c ~ l ~ , l , T Q l e ~ I  

When c0< 0, the calculations can be carried out at any 
T; when E,> 0, we a r e  limited to T<<co, since the im- 
portant energies w -T. We shall in both cases inves- 
tigate the low-temperature properties (T<<co). The vir- 
ial expansion is in powers of the parameter c/&,. 

For the thermal capacity of the impurity states we ob- 
tain 

The spontaneous moment M(0) at T = 0 is less than the 
nominal moment by the quantity 

for C - E O  at co<O ' 

It is easy to show that the introduction of a weak rnag- 
netic field H is equivalent to raising the energy of the 
single-impurity state by a value H (we set g p ,  + 1). 
Therefore, the impurity part of the susceptibility at 
T <<E, will be 

-- 
An important characteristic of the system i s  the exis- 

tence of well-defined quasiparticles. In our case the 
decrement of the spin waves is determined with the aid 
of (18), and turns out to be equal to 

Thus, there exists at low temperatures a wide frequency 
range T s  w <<E, in which the ratio of the wave-damping 
constant to the wave frequency turns out to be frequency 
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independent: 

Case B: e, = 0; c << T 

In this case the virial-expansion parameter is C/T 

<<I. With the aid of the expressions, (19) and (20), for 
the density of states, we obtain the thermal capacity 
C, and the susceptibility x connected with the impurity 
states: 

We draw attention to the complete analogy between the 
expressions (25), (26) and the corresponding results  
obtained by Larkin and ~ h m e l ' n i t s k i i ~  for a system of 
magnetic impurities with the RKKY exchange. This is, 
of course, not accidental, since we have reduced our 
problem to a system of impurities with an alternating- 
sign 1/R3 interaction. 

5. DISCUSSION OF THE RESULTS 

We have investigated the effect of a small  concentra- 
tion of negative exchange integrals of definite magnitude 
on the low-temperature properties of a ferromagnet. 
It turned out that the behavior of the system is deter- 
mined by the presence in it of localized excitations 
connected with the possibility of occupation by magnons 
of low-energy "impurity" states. Since these states ad- 
mit of only single-magnon occupation, we actually ob- 
tain a set of two-level (in other words, spin-+) systems 
with a dipole interaction between them. 

Let us note that our treatment can be carried over 
wholly to a slightly disordered crystal with a certain 
number of resonance levels for phonons. This system 
would be an intermediary between the normal crystal 
and glass, just a s  the "spoiled" ferromagnet considered 
by us is an intermediate state between the normal fer -  
romagnet and a spin glass. There is ,  however, adiffer- 
ence between spin glass and ordinary glass: if spin 
glass can be regarded a s  a thermodynamic-equilibrium 
system, ordinary glass is basically a nonequilibrium 
system. In our model, this means that not al l  the nega- 
tive resonance levels a r e  correctly filled; therefore, 
there should remain at ze ro  frequency residual phonon 
attenuation, with decrement y(k, w= 0) -w(k), much like 
our results of Sec. 2. 

The idea that two-level systems a r e  important in 
spin- and ordinary-glass theory was first  expressed 
by Anderson et aL7 (see also Ref. 8). They showed that 
the phenomenological introduction of a certain density 
of two-level states allows us to give a qualitative ac- 
count of the experimental data on the thermodynamics 
of, and ultrasound absorption in, g l a s s e ~ . ~  As we can 
see,  two-level systems a re  important evenin arelative- 
ly weakly disordered system with preserved ferromag- 
netic long-range order. Let us emphasize, however, 
that the two-level systems in our case manifest them- 

selves differently than in Ref. 7, which accounts for  the 
significant difference between the results; as can be 
seen from the formulas (21)-(24), the thermodynamic 
quantities and the spin-wave damping constant a r e  de- 
termined by the same quantity j(O), whereas in the 
mechanism considered in Ref. 7 only a small fraction 
of the states determining the thermodynamics partici- 
pates in ultrasound absorption. 

The formulas (21)-(24) were derived for c/c,<<l, 
when the "impurity" part, j(O), of the density of states 
is small compared to unity. For c 2 E,, T, a l l  the t e rms  
of the virial expansion of the density of states a r e  im- 
portant, and therefore a quantitative consideration is 
impossible. The problem for the impurity subsystem 
turns out to be similar to  the problem that ar ises  in the 
investigation of Cu-Mn-type spin glasses with the RKKY 
interaction between the magnetic impurities; the differ- 
ence between the dipole and RKKY interactions is  in- 
significant. It seems to us to be most probable that 
the density, &O), of the "Fermion" states approaches 
a constant value -1 at c 2 c,. Then a t  low temperatures 
C ,  - T and x - 1, a s  in spin glasses. If in this region, a s  
in the c /c0 << 1 region, the magnon-damping constant is 
proportional to p(O), then we obtain y(k, w )  -w,(k) tanh(w/ 
2T). In other words, no weakly damped excitations with 
energy w a T exist in the system, and a t  T = 0 there a r e  
no well-defined long-wave quasiparticles at all, despite 
the presence of long-range ferromagnetic order. Notice 
that in the region investigated by us [see Eqs. (21)-(2411 
the ratio of the magnon-damping constant to the magnon 
frequency is small only to the extent that c/&, is small, 
and does not contain powers of the momentum, a s  ob- 
tains in the case of a normal ferromagnet. At the same 
time, in the region of classical fluctuations the system 
behaves like a ferromagnet; in particular, there should 
occur in this region a ferromagnetic phase transition 
with exponents that a r e  characteristic of slightly dis- 
ordered systems.1° 

Thus fa r  we have talked about a highly model problem 
with a definite value of "impurity" exchange integrals 
J and, consequently, of the level energy c,. It would 
have been more natural to  consider a distribution of c, 
values with some width A .  We should then have obtained 
the relationF(0)-C/A for c / h < < l  and, probably, j(0) 
-1 for C / A ~  1. 

Let us now make an important qualitative deduction 
about the properties of spin glasses. Normally, it i s  
assumed that the magnetic moments in this phase a r e  
frozen in some random directions determined by the 
potential-energy minimum. This means that each mo- 
ment should be directed along the local field, which is 
the resultant of the fields produced by the spins interact- 
ing with the spin in question. A fundamental spin-glass 
property, called frustration,2n8811 is that some of these 
spins necessarily produce a field directed in opposition 
to  the resultant field. The above-considered problem 
of a f errornagnet with a small admixture of negative ex- 
change integrals constitutes an extreme simplification 
of this situation. 

Let us consider from this standpoint the question of 
elementary excitations in glasses. 
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Macroscopic symmetry arguments show that three 
long-wave vibrational modes with the linear spectrum 
o(q) = s q  could exist in a spin glass.'' Let us now note 
that the frustration phenomenon will necessarily lead to 
the appearance, for  the quanta of these modes, of reson- 
ance levels similar to the magnon levels considered by 
us. Therefore, that same mechanism will lead to the 
appearance of damping of these modes: y(q) -sqtanh(w/ 
2T) (naturally, for spin glass c -A - 1). This means 
that, a t  T = 0, the long-wave excitations a r e  damped out 
over their wavelength. Notice that a similar result has 
been obtained by Shender13 for spin glass in a strong 
magnetic field. At the same time, it has been establish- 
ed by Sherrington14 that the attenuation of long-wave ex- 
citations in the model problem of spin glass without 
frustration (the Mattis model) is weak [ u ( ~ )  -q; y(q) 
- $1. 

In conclusion, we wish to thank D. E. ~hmel 'n i tski i  
for numerous useful discussions. 

APPENDIX 

Let us find the Green function for  a pair of impurities. 
Let us take the Hamiltonian of the pair in the form 

The equation of motion for the Green function D, , (T)  
= (Or~l(~)x:o(0))) is: 

dDu - =-6"8(z) (1-2n) -t(L$'-L~')-e0D,,. 
d7 

(A. 2) 

Here n = (x,,) = -T En D,,(w,) and we have introduced the 
functions L$,O*') = (@:,x:,( ,,)(T)x',,(~))). The equations 
of motion for the L functions have the following form: 

( i o n - e o ) ~ $ )  (a")= (6,.KIo'-6"A) f t~itO' ( o n ) ,  

(A. 3) 
(jo,-eo)L,(~ (on) = (6,jK'o'-6uA) +tL:,O' ( o n ) .  

Here K ( O )  = (Xi, -X:,,X;,), A = (x:&,). 
Similar equations can be written down for the ~ ' j )  

functions. Solving them, we obtain 

Substituting (A.4) into the formula (A.2), we obtain 

where K=d0'- K(') =((x& -X:,)(X& -x:,)). From (A.5) 
and the definition of the quantity A ,  we have 

1 
A=-T ~ ~ , , ( o . )  = - ~ ( n ( e + ) - n ( e - ) ) .  

2 (A. 6) 

Here and below n(x) = (8 I T  - I)-', s ,= E,* t. In order to  
determine I?, let us  investigate the Green function 

P(7) =((Xo,LXola(7)XloLX,~(0) ). 
It is evident that P(-0) = -(x:&:,). The equation of 

motion for P ( T )  yields 

1-2n 
P(@")  = io,--2e,. (A. 7) 

Substituting (A.7) into the defining expression f o r k ,  
we obtain 

8=1-4n+4n(2eo) (1-24 .  (A. 8) 

Substituting (A.6) and (A.8) into (A.5), we obtain after 
simple, but long calculations the expression 

1 th(e+/2T) 
D f i = ~ (  iw.-E+ (A. 9) 

Letting t- 0, we obtain the Green function of the soli- 
tary impurity: 

From the formula (A.9) we obtain 

(A. 10) 

this quantity does not change when the sign of t is 
changed. Consequently, a s  can be seen from (A.8), the 
quantity I? is also invariant under a change of sign of 
t. Casting a glance a t  the formula (A.5), we see that 
the Green function Dl, should thus be odd in t. 

IS. F. Edwards and P. W. Anderson, J. Phys. F5, 965 
(1975). D. Sherri~igton and S. Kirkpatrick, Phys. Rev. Lett. 
35, 1792 (1975). D. J. Thouless, P. W. Anderson, and 
R. G. Palmer, Philos. Mag. 35, 593 (1977). 

'P. W. Anderson, in: Amorphous Magnetism 11, Plenum 
Press, New York, 1977, p. 1. 

3 ~ .  I. Larkin and D. E. Khmelhitskir, Zh. Eksp. Teor. Fiz. 
58, 1789 (1970) [Sov. Phys. JETP 31, 958 (1970)l. 

's. Kirkpatrick, in: Teoriya i svo!stva neuporyadochennykh 
materialov (The Theory and Properties of Disordered 
Materials). edited by V. L. Bonch-Bruevich, Mir, 1978, 
p. 271. 

5 ~ .  Abrikoysov, L. Gor'kov, and I. ~ z ~ a l o s h i n s k i r ,  Metody 
kvantovoi teorii polya v statisticheskor fizike (Methods of 
Quantum Field Theory in Statistical Physics), Fizmatgiz, 
1962 (Eng. Transl., Pergamon, New York, 1965). 

6 ~ .  Habbard, Proc. Roy. Soc. London Ser. A 285, 542 (1965). 
'P. W .  Anderson, B. I. Halperin, and C. M. Varma, Philos. 

Mag. 25, 1 (1972). 
8 ~ .  Villain, J. Phys. C10, 4793 (1977); C11, 745 (1978). 
'R. C .  Zeller and R. 0. Pohl, Phys. Rev. B4, 2029 (1971). 
'OD. E. ~hmel'nitskii,  Zh. Eksp. Teor. Fiz. 68, 1960 (1975) 

[SOV. Phys. JETP 41, 981 (1976)l. 
"G. Toulouse, Commun. Phys. 2, 115 (1977). J. Villain, 

J. Phys. C10, 1717 (1977). 
1 2 ~ .  I. Halperin and W. M. Saslow, Phys. Rev. B16, 2154 . 

(1977). A. F. Andreev, Zh. Eksp. Teor. Fiz. 74, 785 
(1978) [SOV. Phys. JETP47,  411 (1978)l. 

1 3 ~ .  F. Shender, J. Phys. C11, L423 (1978). 
l4II. Sherrington, Phys. Rev. Lett. 41, 1321 (1978). 

Translated by A. K. Agyei 

1141 Sov. Phys. JETP 49(6), June 1979 M. V. ~ey~el'man and A. M. Tsvelik 1141 


