
ever, the magnetic field can cancel 00 (in our case a0 
< 0). It is seen from (38) that a t  h--00 the susceptibi- 
lity has a 6-like burst, and the heat capacity has two 
bursts a t  1 E* 1 -T and a dip a t  I c i  I << T. Let now po > 1 
in our case. It is seen from (37) that altogether, in- 
cluding the pure ferromagnetic state, we have po + 1 
levels. It is easily seen that susceptibility bursts 
of the type (38) appear only upon intersection of only 
the two lower levels, and the two bursts and the dip of 
the heat capacity will occur when any two levels inter- 
sect. Therefore when the magnetic field is increased 
the susceptibility will have po 6-like bursts, and the 
heat capacity will have po(po + 1)/2 minima each brack- 
eted by two bursts, i. e. , in all  po(po + 1)/2 minima and 
po(po + 1) maxima. Since the described picture is con- 
nected only with the presence of Po magnetic levels, it 
should be observed also for other magnetic systems. 
In particular, the same picture is observed in the anti- 
ferromagnetic-impurity problem10 (not to be confused 
with the antiferromagnetic coupling). 

We note that if the antiferromagnetic exchange inte- 
grals a r e  random quantities, then we obtain near I h 
+ a 0  ( -T, averaging over the distribution of this ran- 
dom quantity: 

We consider in conclusion the case s>> 1. Here we 
have a region w <<T <<T, in which the described oscilla- 
tions a re  smeared out. The sum in (37) must then be 
replaced by an integral. Calculating the heat capacity 

and the susceptibility by the saddle-point method, we 
get a t  h>>T 

where pl is the minimum of cp at h* 0. Since a p  ,/ah 
< 0, it follows that x in (40) is positive. Thus, C and 
X do not depend on temperature in this region. 

In conclusion, the author thanks S. V. Maleev and I. 
Ya. Korenblit for a discussion of the work. 
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Cross section for electron capture by a charged dislocation 
in a semiconductor 
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The cross section for multiphoton capture of an electron by an edge dislocation in an n-type 
semiconductor is calculated in the quasiclassical approximation. Analytic dependence of the cross section 
on the electron-phonon interaction constant, on the temperature, and on the charge per dislocation unit 
are obtained. 

PACS numbers: 61.70.Ga 

1. INTRODUCTION 

According to the experimental data, an edge disloca- 
tion in a semiconductor leads to the onset of a one-di- 
mensional band with a bottom ED located in the forbidden 
band. The investigations performed to date a r e  still 
insufficient for final conclusions concerning the carr ier  
dispersion in this band, but i t  can be regarded a s  esta- 
blished that the width of the dislocation band Eo is much 
less  than i ts  depth ED, which is comparable with the 
width of the forbidden band E,. In accordance with the 
general concepts, such a " deep one-dimensional band" 

should contribute to  the effective recombination of the 
excess carriers.  The statistics of the electron and 
hole recombination in semiconductors were considered 
by ~ u l ~ a e v , ~  who obtained the dependence of the life- 
time of an electron-hole pair on the concentration of the 
excess carr iers  and capture cross  sections. It was 
noted that the quantity corresponding to  the capture 
cross  section should be referred to the length of the 
dislocation, in view of the extended structure of the lat- 
ter,  and the concept of capture radius was introduced by 
the same token. The purpose of the present study was 
to find the radius for the capture of an electron by a 

1132 Sov. Phys. JETP 49(6), June 1979 0038-5646/79/061132-05$02.40 63 1979 American Institute of Physics 1132 



dislocation. 

It was shown by the author3 in an earlier calculation 
of the hole capture radius that the edge dislocation in an 
n-type semiconductor, by acting a s  an acceptor and 
being negatively charged, leads to a bending of both the 
valence and the conduction band. This bending of the 
bands, by contributing to the hole capture, prevents the 
dislocation from capturing the like charged majority 
carriers-the electrons. Therefore the electron cap- 
ture proceeds in two stages. The f i rs t  is the penetra- 
tion of the electron through the repulsion barr ier  of the 
charged dislocation, an elastic process, and the other 
is an energy transfer to a two-dimensional "chemical* 
well with a ground level corresponding to  the depth ED. 
A survey of the presently known energy outflow mech- 
anism in carr ier  capture processes is contained in the 
paper of Bonch-Bruevich and Landsberg. ' Particular 
interest attaches to the phonon mechanism, wherein the 
energy of the captured carr ier  is transferred to the 
acoustic lattice vibrations. It precisely such an inter- 
action that is realized in the homopolar semiconductors 
Ge and Se, as well a s  in some other crystals of the CdS 
type. Inasmuch a s  the Lax capture mechanism5 does 
not hold for deep traps, all  that remains possible within 
the framework of the phonon model is a quantum multi- 
phonon transition. The general methods of modern 
theory of multiphonon transitions a re  given in the re- 
view of Perlin.' In the present exposition we shall 
follow Rickayzen's original paper' where he considered 
carrier capture by deep point traps. To take into ac- 
count the electron interaction with acoustic phonons we 
use the simplest approximation, assuming a Debye 
phonon spectrum and terminating it a t  the limiting wave 
number q, connected with the unit-cell volume Vo by 
the equation q i ~ o  = 6 2 .  We neglect the contribution of 
the local oscillations connected with the dislocations. 
As the potential of the interaction of the electrons with 
the phonons we use the usual isotropic deformation po- 
tential 

'I 

where E, is the constant of the deformation potential, N 
is the number of unit cells in the fundamental volume, 
and Q, is the normal coordinate of a phonon with wave 
vector q. 

2. WAVE FUNCTIONS 

To find the wave functions that characterize the states 
of an electron in a one-dimensional dislocation band and 
in the continuum of the conduction band, we introduce 
cylindrical coordinates (r, 8, z) with the dislocation axis 
a s  the polar axis. Avoiding additional assumptions, we 
use the simplest model for the choice of the dislocation 
potential, and represent the dislocation a s  a two-dimen- 
sional square well of depth Uo and of radius of the order 
of the lattice constant a, surrounded by an electrostatic 
barrier described in the region of sufficiently high tem- 
peratures CY c 1, with high degree of accuracy, by a 
function of the form3 

Here CY = e 2 / & a k ~  is a parameter that characterizes the 
ratio of the Coulomb energy of the interaction of neigh- 
boring electrons that have settled on the dislocation to 
their thermal energy KT, & is the dielectric constant, 
rD i s  the Debye screening radius, and InY = 0.577 is the 
Euler constant. We note that the use of the concept of 
the dielectric constant i s  justified only a t  sufficiently 
large distances from the dislocation axis. In the inves- 
tigation of the influence of the electrostatic barrier on 
the capture process, however, it is precisely such dis- 
tances that a r e  significant. 

In the temperature region CY < 1 of interest to us  the 
height of the Coulomb barr ier  is much less  than the 
well depth Uo. Therefore when finding the wave func- 
tion &(r, 8, z), which characterizes the f ree  motion of 
the electron along the dislocation with two-dimensional 
localization on the ground level ED, we neglect the in- 
fluence of the electrostatic field and assume that this 
function is well approximated by 

where n ={ED, 1, kc), 1 is the orbital number, kc is the 
wave number of the electron moving along the disloca- 
tion, p = (2m~,/h~) ' /  2, and the normalization i s  carried 
for a cylinder of radius R and length L. This wave 
function i s  the simplest one that follows from the vari- 
ational principle, and constitutes the asymptotic solu- 
tion of the wave equation in the case of a cylindrically 
symmetrical potential. 

To find the wave function of the electron Jl,(r, 8, z) in 
the continuum of the conduction band we must solve the 
Schrodinger equation a t  short (0 < r < a)  and long ( r >  a) 
distances and then join together the obtained solutions. 
In view of the cylindrical symmetry of the potential, the 
variables separate, and the solution is sought in fac- 
torized form 

$m (r, 8, z )  =CRM ( r )  exp (ik,z+il8), (4) 

where C i s  the normalization constant, m={k, 1, kc), 
k (2rn~/ t i2)"~ is the radial wave number, W =  E - Fi2k2/ 
Zm, and R,,(r) is the solution of the radial part of the 
wave equation. At short distances corresponding to the 
region of action of the "chemical forces," the solution 
satisfying the condition that the wave function be finite 
is 

R,, ( r )  =I, ( x r )  , O<r<a, (5) 

where J(x)  is a Bessel function of order I ,  and x 
= [2m(W + &)/ti2]" '. In the case of narrow and deep 
one-dimensional band of interest to us  ED -UoME, 
>> max(Eo, kT, 5wD) is the Debye frequency, neglecting 
the small corrections, we can assume that x = P .  

At large distances the radial part of the wave function 
satisfies the equation 

We make the usual substitution R,,(r) =%, (r)/r" ', and 
obtain then in place of (6) 
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The obtained equation readily reduces to the Riccati 
equation, which has no exact solution for the potential 
(2). We therefore use a quasiclassical approximation8 
that is valid when the condition I dh/drl << 1 is satisfied, 
where is the de Broglie wavelength. It is impossible 
to  apply the quasiclassical approximation directly to 
Eq. (7). The reason is that this equation has a singu- 
larity near the origin. At small r only the centrifugal 
potential is significant, and consequently dh/dr -1-I and 
the condition for the quasiclassical approach a t  small 
2 is violated. To obtain a solution that i s  valid a t  the 
origin a t  all  2 and yields the correct value of the phase 
of the wave function a t  infinity, we make the change of 
variable r = e x  and use the transformation u,,(r) 
=exnxk,(x) (the Langer methodQ). In t e rms  of the new 
variables we have 

The use of the methods of quasiclassical approximation 
to  Eq. (8) with subsequent transition to  the variable r 
leads to the following expressions for the radial part 
of the wave function: 

71th) 

R ( r )  = r l k ( r )  - I h  e x  (- I k )  I ) ;  a<r<r, ( k ) ,  

(9) . 
n 

R,(r) = r ? [ k ( r )  I-," coa ( I k ( r )dr  - -) ; r>rl(k) .  
rrtl) 

4 

which corresponds to motion of the particle in the clas- 
sically accessible and inaccessible regions. Here 

k (r) = {2m[ W - U ( r )  -Azlzi2mrZ]]'1i, 

and r,(k) is the turning point determined from the con- 
dition k ( ~ )  = 0. It is easily seen that the Langer cor- 
rection reduce to  the substitution (12 - 1/4) -1' in the 
centrifugal potential. The obtained solution (9) must 
be joined to the solution (fl in the region 0 < r <  a. The 
joining of the wave functions and of their derivatives a t  
the point r = a yields 

To determine the normalization constant we can replace 
R,,(r) by i ts  asymptotic value a t  large r: 

R,, ( r )  =2 (kr)-" cos (kr-lnI2-n12) .-- (11) 

and to carry out the integration with any finite value of 
r a s  the lower limit, e. g., zero. This leads to neglect 
of a finite quantity compared with an infinitely large 
one.8 Normalization to a cylinder with account taken 
of the fact that Rk,(R) = 0 yields 

The wave numbers (k, k,) run through a ser ies  of dis- 
crete values chosen from the conditions that the wave 
function vanish on the boundary of the normalization 

volume. The final equation for the wave function of the 
continuous spectrum is given by expressions (41, (101, 
and (12). We note that the quasiclassical solution per- 
tains only to  radial motion, and the solution for the 
remaining dimensions is exact. 

3. QUASICLASSICAL CAPTURE RADIUS 

By definition, the capture cross  section is given by 
the ratio of the flux of captured particles to their aver- 
age velocity. As noted in the Introduction, the quantity 
corresponding to  the capture cross  section should be 
referred to  a unit dislocation length and be of the di- 
mension of length. We assume that the gas of the cap- 
tured particles i s  nondegenerate and is at  thermal equi- 
librium with the lattice. Confining ourselves to the 
capture of particles with angular momentum 2 = 0 (s 
capture) we get for the capture radius 

Rdk dk, Alkl d3k 
p t ( T ) -  Jwrnnf(k)--  n 2x / J - f ( k ) - ,  m ( 2 ~ )  (13) 

where f(k) is the Boltzmann function and w, is the 
probability of the transition of the electron from the 
continuum to  a one-dimensional dislocation band. Such 
a two-dimensional localization of the captured electron 
produces near the dislocation a lattice polarization that 
corresponds to a change of the normal coordinates of 
the phonons. An exact expression for the probability 
of a multiphoton transition is given in Rickayzen's 
paper.7 In the quasiclassical limit, when the tempera- 
ture is high enough and (or) the coupling of the captured 
carr ier  with the lattice is not small according to Ref. 
7 we have for w,, neglecting the quantities of order 
of Eo/ED and kT/ED, we have 

where 

oz = ~ I A ~ I ~ Q ~ ~ ( ~ ~ ~ + ~ ) ,  A=2 IAqIzQq, A , = ( A ~ Z M O ~ ) ~ U ~ ,  
q q 

Pq= (A/2Mwq) 'IzQ,,,. ( q )  , 9-. ( q )  = f 2 J ~ J  d 3 r $ m ' e t q r ~ .  ( 15) 
N ED 21th 

Here M i s  the mass of the unit cell, s is the speed of 
sound, a,= w,/oD and sD=ED/fiwD a r e  the dimension- 
less  frequency of the phonon and the binding energy of 
the electron with the dislocation, and p: is the-momen- 
tum of the electron in the dislocation band. P, is the 
matrix element of the electronic transition in the so- 
called Franck-Condon approximation,6 and a, is the 
change of the normal coordinates of the phonons. Start- 
ing from symmetry considerations, it is convenient to  
introduce the phonon quasimomentum components 911 and 
ql along and across  the dislocation axis, respectively. 
Direct calculation of a, with the aid of (3) yields 

We see  therefore that an electron localized on a dislo- 
cation interacts strongly only with the transverse lat- 
tice vibrations, whose wavelength 9;' is of the order 
of the localization radius. Substituting the wave func- 
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point tions in the expression for Q,(g) and integrating with 
respect to Y, we obtain after cumbersome but quite . 
straightforward calculations for the matrix element P, 

Using the relations (15) and (16) and changing over, a s  
usual, from summation to integration with respect to 
9, we get 

The dimensionless parameter PiwD~/ED, which charac- 
terizes the force of the interaction of the electrons with 
the lattice vibrations, is equal to  the ratio of the energy 
of the redistribution (i. e., the energy transferred to 
the lattice in the course of the capture) to the ionization 
energy ED. 

To obtain an analytic expression for the transition 
probability, we consider two limiting cases 

1) kT >>tiwD-the classical limit. Expanding the ex- 
ponential in the phonon distribution function in powers 
of iicoq/kT, we get 

2) ( 8 r n ~ ~ ~ ~ ) l ' ~  << k~ << iiwD-the quasiclassical limit. 
The strong inequality condition kT << EwD must be under- 
stood in the sense of smallness of the exponential 
exp:-Rw,/k~). Neglecting corrections of the type (fiwD/ 
kT) exp(-tio,/kT), we then have 

The exponentials in (19) and (21) characterize the tun- 
neling of the electron through the repulsion barr ier  of 
the charged dislocation. Direct calculation of the argu- 
ment of the tunnel exponential yields 

'TI k ( r )  ldr=kro ( W )  (2a (W) ) ('I2, ln (ro/a)  ) , (23) 

where Y&W) = (2rD/y) exp[-1/2ff(~)], a(W) = @&T/W, 
and y(n, x )  is the incomplete gamma function. To obtain 
the temperature dependence of the electron capture 
radius we must substitute the transition probability w, 
given by (14) and (19)-(23) in (13) and average over the 
initial states of the continuum of the conduction band. 
The resultant integral, which characterizes the flux of 
the particles captured by the dislocation, can be easily 
calculated by the saddle-point method. The saddle 

corresponds to the energies of the most effectively 
captured particles. 

We have followed in this exposition the Franck-Condon 
approximation, in which the electronic matrix element 
does not depend on the normal coordinates of the pho- 
nons. ~ovarskiI'O has shown that by going outside the 
framework of the Franck-Condon approximation one ob- 
tains a much larger capture cross  section, namely 

The quantity tips can be interpreted a s  the energy of the 
"resonant" phonon whose wavelength is of the order of 
the localization radius of the carr ier  on the trap. Tak- 
ing the foregoing into account, the final expressions for 
the capture radius in the classical and quasiclassical 
limiting cases a r e  

pt ( T )  =pro ( T )  (kTIhoDA) " exp (-E'IkT), kT>hoD, 

where 

It is seen from (25) that a t  high temperatures the cap- 
ture is via an activated state with activation energy E*, 
and a t  low temperatures we have a pure quantum tun- 
neling between the electron-vibrational states, a s  a 
result of which the temperature dependence of the in- 
elastic process becomes weaker. 

Under thermodynamic equilibrium conditions, the 
capture of the carr ier  by the dislocation is offset by 
the inverse process of ionization of a carr ier  from the 
dislocation. As shown by ~ i c k a ~ z e n , '  despite the strong 
interaction of the localized electron with the lattice, the 
Einstein formula remains in force. Consequently, the 
ratio of the corresponding radii is given by 

If the dislocation concentration in the semiconductor i s  
ND, then the lifetime of the nonequilibrium cai-rier is, 
by definition, connected with the radius p, in the follow- 
ing manner: 

where ( v )  = ( 8 k ~ / m ) " ~  is the average carr ier  velocity 
in the band. The region of applicability of (27) is 
bounded on the high-dislocation concentration side, 
where the contributions of the dislocations to the cap- 
ture process become non-additive. 

4. CONCLUDING REMARKS 

In the treatment of electron tunneling through a re- 
pulsive electrostatic barr ier  of a charged dislocation 
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we have confined ourselves to  the case of s capture, 
corresponding to isotropy of the process in a plane per- 
pendicula'r to the dislocation axis. The results of the 
numerical calculations show that this limitation is jus- 
tified, since the probabilities of the capture of the par- 
ticle with 1 # 0, owing to  the repulsive nature of the cen- 
trifugal potential, turns out to  be much l ess  than the 
s- capture probability. 

According to  the results of Ref. 3, the potential of 
the charged dislocation can be approximated by expres- 
sion (2) only a t  sufficiently high temperatures ff < 1. 
At the same time, for the quasiclassical approximation 
to be valid it is necessary that many wavelengths of 
the captured carr ier  be spanned by the barr ier  thick- 
ness that the following inequality be satisfied 

kro=2m-" In" (A/2a) >I, 

which imposes an upper bound on the temperature in- 
terval. A joint analysis of the obtained criteria shows 
that for Ge with E, = 10 eV, AwD = 0.03 eV, m - 10"' g, 
M -2.5. g, 6 = 16, S- 5 - lo5 cm/sec, with dnoro 
density n," 1013 cmo9, and 0.3 < ff < 1 the results of the 
present paper a r e  qualitatively correct in the tempera- 
ture interval 200 K < T < 500 K. The absolute value of 
the capture radius turns out in this case to  be of the 
order of lo-'' cm < p,(T) < 10'~ cm. If the dislocation 
density is ND = lo6 ~ m ' ~ ,  then according to  (27) we have 
for the lifetime of the excess electrons 7,  - - 1) sec. 

The stronger temperature dependence of the capture 
radius than in the case of the point centers1' can be 

explained by the fact that when the temperature changes 
a change takes place not only in the energy of the most 
effectively captured electrons, but also in the charged 
state of the dislocation, i. e. ,  the shape of the electro- 
static barr ier  that surrounds the edge dislocation. 

The author thanks I. B. Levinson and Yu. A. Osip'yan 
for interest in the work and for a discussion of the re- 
sults. 

'v. A. Grazhulis, V. V. Kveder, and V. Yu. Mukhina, Phys. 
Stat. Sol. 43, 407 (1977); 44, 107 (1977). 

'YU. V. Gulyaev, Phys. Tverd. Tela (Leningrad) 3, 1094 (1961) 
[Sov. Phys. Solid State 3, 796 (1961)l. 

3 ~ .  A. Vardanyan, Zh. Eksp. Teor.  Fiz. 73. 2313 (1977)[Sov. 
Phys. JETP 46, 1210 (1977)l. 

'v. L. Bonch-Bruevich and E. G. Landsberg, Phys. Stat. Sol. 
29, 9 (1968). 

5 ~ .  Lax, Phys. Rev. 119, 1502 (1960). 
6yu. E. Perlin, Usp. Fiz. Nauk 80, 553 (1963) [Sov. Phys. Usp. 

6. 542 (1964)l. 
'G. Rickayzen, Proc. Roy. Soc. A241, 480 (1957). 
'L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika. 

Nauka, 1974 [Quantum Mechanics, Nonrelativistic Part,  
Pergamon, 19771. 

9 ~ .  FrGman and Per  0. Framan, JWKB Approximation: Con- 
tribution to theyTheory, North Holland, 1965. 
'9. A. Kovarskii, Kinetika bezyzluchatelsnykh protsessov (Ki- 

netics of Nonradiative Processes). Moldavian Academy of 
Sciences, 1968. 

Translated by J .  G. Adashko 

Localized degrees of freedom in a ferromagnet with 
resonant impurities 
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The Heisenberg model of a ferromagnet with an admixture of negative exchange integrals of a small, but 
definite magnitude is investigated. It is shown that this system exhibits low-temperature properties of the 
"glass" type along with the occurrence of a spontaneous moment close to the nominal moment. Long- 
wave spin waves are found to be abnormally strongly damped. The problem of elementary excitations in 
spin glasses is discussed. 

PACS numbers: 75.10.Jm. 75.30.D~ 

1. INTRODUCTION 

There has been in recent years quite an intensive 
study of the properties of the models of disordered mag- 
netic substances with random alternating-sign exchange 
interaction between the spins located on the regular lat- 
t i c e . ' ~ ~  It is assumed that there is no spontaneous mo- 
ment when the mean exchange value is close to zero, 
and the low-temperature phase in such models is simi- 
lar  to the spin-glass phase observed in disordered solu- 
tions of the Cu-Mn type.' The thermal capacity of spin 

glasses has a maximum at some temperature Tf, and 
is linear at T<<T,, while the magnetic susceptibility as-  
sumes a constant value a t  T << T,. 

In the present paper we show that the low-temperature, 
"glass" type properties a r e  not necessarily due to  the 
absence of a spontaneous moment, but can also be ob- 
served in a ferromagnet with a moment of magnitude 
close to the maximum value. Below we propose for the 
Heisenberg ferromagnet a model in which the magnitude 
and sign of a small part of the exchange integrals a re  
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