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Dipole-reservoir cooling and dynamic polarization of nuclei
in saturation of inhomogeneous EPR line
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The temperature of the electronic dipole-dipole reservoir (DDR) and of the dynamic polarization of
nuclei are calculated under conditions of stationary saturation of an inhomogeneous EPR line. The
solution is obtained by two methods: using the model of thermal mixing in a rotating coordinate frame,
and in terms of spin packets. In the latter case it is shown that allowance for the DDR leaves the
spectral-diffusion valid, but only for a definite combination of the Zeeman and dipole-dipole
temperatures. Estimates of the maximum attainable DDR cooling coefficients and of the polarization of
the lattice nuclei are presented, and it is shown that they do not depend monotonically on the width of

the “hole” produced in the EPR line upon saturation.

PACS numbers: 76.30. — v

1. INTRODUCTION AND FORMULATION OF
PROBLEM

It is known that not-strictly-resonant saturation of a
magnetic resonance line in a solid can lower substantial-
ly the temperature T of the spin-spin interaction
reservoir (DDR).? Upon saturation of the EPR line of a
paramagnetic impurity in a magnetically dilute param-
agnetic crystal, this cooling can be transferred to the
Zeeman subsystem of the nuclear spins of the lattice,
thus causing dynamic polarization of the nuclei (“dyna-
mic cooling”).2® This phenomenon was reliably estab-
lished in experiment and plays a substantial role in mag-
netic resonance and its applications, especially at low
temperatures.*””

The theory of effects connected with the cooling of the
DDR was initially developed for magnetic-resonance
lines homogeneously broadened by dipole-dipole interac-
tions.!”® In practice, however, the main contribution to
the width of paramagnetic-impurity EPR lines are made
as a rule by inhomogeneous mechanisms, and it was
therefore necessary to extend the theory to cover this
case, too. So far this problem could be solved only for
two limiting situations: neglecting the spectral diffusion
inside the inhomogeneous line, and for very strong spec-
tral diffusion that covers the entire EPR line.*'® At the
same time, for the more general case (and perhaps of
greatest practical importance) of limited spectral diffu-
sion, corresponding to the appearance of a stationary
“burned hole” in the inhomogeneous line, only qualita-
tive estimates were proposed.®*® These, as will be shown
below, do not agree with the true result even in order of
magnitude.
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In this paper we solve the problem by two methods.
The result is first obtained using a simplified model of
thermal mixing in a rotating coordinate frame, after
which it is generalized within the framework of the de-
scription of an inhomogeneous line in the form of an ag-
gregate of spin packets.

The object that we consider is a solid paramagnet at a
temperature T, = 8;*, with », nuclear spins I and g
electron spins S per unit volume (n,/ns >1), and located
in a stationary magnetic field H, 2. We assume that S
=3, so that the EPR spectrum consists of a single line,
assumed to be inhomogeneously broadened (with width
26;,,), and the distribution of the resonance frequencies
of the electron spins does not correlate with their distri-
bution over the crystal volume, so that the electronic
DDR is common to all spins S.® Let furthermore the
sample be acted upon by a high-frequency magnetic field
2H, cosQ#(H, 1 z), that saturates the EPR line with a de-
tuning A =Q - w, relative to its “center of gravity” w,,
determined from the relation

[ s6(®)ds=0, 1)
where 6=<;)— w,, and G(6) is the form factor, normal-
ized to unity, of the inhomogeneous line.

It is well known that the action of the saturating field
leads under the conditions considered above to the ap-
pearance of the so-called “burned line” which is ob-
served when the EPR is recorded with a second (unsatu-
rated) high-frequency field. The width 26, of this hold
depends on the saturation factor s(2), on the homogene-
ous width 25, of the spin packet, and on the effectiveness
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of the cross relaxation (spectral diffusion) that leads to
propagation of the saturation over the contour of the EPR
line. It will be assumed below that &, << &;pp.

2. THERMAL MIXING

By “thermal mixing” is meant the process of establish-
ment of a single spin temperature g~! in a spin system
consisting of quasi-equilibrium subsystems with Hamil-
tonians%, and temperatures ﬁ;‘, between which reson-
ant energy exchange is possible. The exceptional con-
venience of the thermal-mixing model lies in the fact
that its result can be obtained without solving the corres-
ponding rate equations for 8,, using only the simple
heat-balance principle. In the stationary regime, the
common temperature is given by’

p= Z‘ ch’ﬂ, / 2 et s (2)
7 ]

where c,=~(¥,)/B, is the “specific heat” of the j-th sub-
system, 7, is the time of its spin-lattice relaxation,
and B‘; is the value of B, when the j-th subsystem is at
equilibrium with the lattice (we emphasize that all the
B85 are the same and are equal to the reciprocal of the
lattice temperature 8, only in the laboratory reference
frame).

We now apply this approach to this problem and re-
call, to start, the results for the case when the spectral
diffusion is effective over the entire contour of a satur-
able inhomogeneous EPR line (such a line can be called
quasi-homogeneous).*"® In this situation, the thermal
mixing is possible in a rotating coordinate frame (RCF),
the transformation to which is effected by the unitary
operator

U=exp (—iﬂz‘J St ),

where S is the operator of the z-th component of the ;-th
electron spin, and the participants in the mixing are the
following subsystems.

The summary electronic Zeeman subsystem J; in the
RCF, for which

H=—A Z S¢,
i

(the Hamiltonian corresponding to it in the laboratory
frame was ¥, =w, Y, 7).

. w z o _ @of:
Cp= ik ngA®, B, "—‘A (3 )

The aggregate of the difference electronic Zeeman
subsystems &, with parameters

2
Hr= X ASE, ea= Z—k nsMy, Ba®=p.. 4)

The electronic DDR, whose Hamiltonain 5 is well
known, and
3
Co8 = 7= NsOss’,

4k
Finally, the nuclear Zeeman subsystem, for which

ﬂas°= ﬁn- (5)

Bt
%1z=—m12 I{'. Ciz= Zl;"xmlzy ﬂ"-e=ﬂf~- (6)
t

Here M is the second moment of the distribution of the
resonant frequencies relative to w,, wsg is the average
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DDR frequency, and w, is the NMR frequency.

We note that independently of the presence of a saturat-
ing field (i.e., even in the laboratory frame) the cross
relaxation between the spin packets leads to a mixing of
the subsystems g, and % with formation of the so-
called low-frequency reservoir® (or in other words, the
reservoir of local fields!®), and the direct thermal con-
tact ;s —H;; connects to them also the nuclear subsys-
tem. At the same time, a connection between these
reservoirs and the ;?:, subsystem occurs only in the
RCF, and the effectiveness of this connection is deter-
mined by the saturation factor at the frequency Q.

Substituting the indicated parameters in (2) and neg-
lecting quantities of order A/w,, we obtain the well
known formula

E=p/B.=—Aw/ (M +awss’+far), (D

inwhich a=7g ;; /Togp, [N Ts 71 /MsT g1, With Tg p, 7oy,
and 7,,, the partial times of the spin-lattice relaxation
of the corresponding subsystems. The quantity E intro-
duced here determines, obviously, the degree of cooling
of the DDR and the coefficient of the enhancement of the
nuclear polarization.

We apply now this approach to the case 6, < §inn. We
make a simplifying assumption wherein all the spins
whose frequencies lie inside an interval of width 25,
with center at the point w= are in a state of strong
saturation (either directly by a microwave field or with
participation of cross relaxation), and the all the re-
mainder of the EPR line is at equilibrium with the lattice
(see the figure). We note that the rectangular hole
shown in the figure does not necessarily correspond to
the observed form of the absorption signal, since the
latter is determined not only by the degree of saturation
of the line, but also by the state of the DDR.

We assume first that the spectral diffusion is neglig-
ibly weak, sothat the width of the hole is determined only by
the saturation. Then all the arguments presented above
concerning the thermal mixing must be applied to the
“burned” section of the EPR line, and the role of the re-
maining electron spins reduces only to their contribu-
tion to the common DDR and to the nuclear spin-lattice
relaxation. Applying to the line section contained in the
frequency interval Q + §;, the relations (3)-(6) and sub-
stituting them in (2), we get

- Mzh+Ahz+a'l (e0ss*t+forlt) )

b
Lo
by
b
b
[
[
b
[
[
[ |

L L
wy wi @

g
FIG. 1. Inhomogeneously broadened EPR line. Solid vertical
lines—boundaries of the burned hole, dashed—boundaries of
quasi-homogenous sectiongs. The saturation frequency is
marked by the arrow.
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Here “’1? is the center of the gravity of the indicated sec-
tion of the line (see the figure), M} =62/3 is its normal-
ized second moment relative to w?,A,=Q - w? and «
=n, /ng, where n, =26,G(A)ng is the number of electron
spins that land in the burned hole.

The quantity w9 can be easily obtained by using the
definition of the center of gravity (1) as applied to the
frequency interval Q + §,, with allowance for the fact
that 6, < 6i,n. As a result we have

A=M}IG'(A)/G(A). (9)
Substituting (9) in (8) and neglecting the quantity a?/M}
~ (6,/5inn)? compared with unity, we obtain ultimately

@G’ (A) (1

E= G(A)

awss* o ) -t

A (10)

We now take into account the spectral diffusion and as-
sume that the half-width of the burned hole (which we
continue to assume to be rectangular) is determined no
longer by the saturation factor, but by the characteristic
diffusion length (@), with &, < I(R) < Ginn (under this
condition the diffusion length is not very sensitive to the
state of the DDR and can be estimated without taking the
latter into account®). We note that the diffusion length is
in general not the same for different sections of the
homogeneous line, a fact emphasized by using the nota-
tion 1(Q).

This, however, is far from a complete description of
the role of the spectral diffusion. The point is that the
cross relaxation is now effective not only on the burned
out section of the line, but also outside this section,
provided only that the spins that participate in it are
separated by a frequency interval that does not exceed
the diffusion length. This leads to thermal mixing of the
corresponding difference subsystems and the common
DDR, and this should manifest itself in the total thermal
balance.

This circumstance can be approximately taken into ac-
count by breaking up the entire EPR line into spectral
sections of width 2/(w,), each of which is set in corres-
pondence to a different subsystem (we neglect the cross
relaxation between these sections). The specific heats
of the newly introduced subsystems ¥, are defined,
obviously, as

Ai=_z s‘ zi 1
c 4kn JUAR (11)
where n§ =21(w,)ngG(w, — w,) is the number of the spins
in the i-thsection, and M} =M, (w, - w,) = I*(w,)/3 is its
second moment. Adding the terms corresponding to the
subsystems ¥, in (2) and replacing the sum over ; by an
integral, we have
©,G’(A)

= +7+
E=q G (oc

awss*tfol ) -t

i (12)

where

-
J= Ehj G (8) M, (5)ds.

3. THE SPIN-PACKET MODEL

We now represent, as is customary, the inhomogene-
ously broadened EPR line in the form of a continuous
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set of homogeneous spin packets with resonant frequen-
cies w’ and with form factors g(w - w’) normalized to
unity and with a cross relaxation with probability
Weg(w’ = w”) (for which an explicit expression is given,
e.g., in Ref, 11) acting between them. Neglecting the
influence of the nuclear spins (their role, as is clear
from (10) and (12), reduces only to the appearance in
the final formulas of terms proportional to f), we can
write down a system of equations for the Zeeman tem-
perature [Bg(w’)]™! of the packets and for the common
spin-spin temperature B;} under conditions of stationary
saturation at the frequency §, in the form®

[Be(0") —pel+stng (0'~2) [ Bs ()~ 2= pas |
(0]

+1'5LJ. Wer(o'—0”) G (0" —w,) [Ba(m')—%—;ﬂs(m”)
"
-2 ?5BS]dm”=or
®

(13a)

nsbp

(Bss—Bu)+ jm'(g—m')g(w'—sz)c(m'—m.,)

a0ss”

X[Bs(0") -

®

Q ’
—Pss ] do
)

(13b)

TssL

.”. 0" (0’ —0")Wer(0' —0") G(0"—00) G (0" —00)

2
WOss

x[ﬁs(m’)—i,ﬂs(m”)—
(0]

’
® —

(l)”

, ﬁss] do’de”=0,

[0}

where S=(ys H,)?75,/6, (v¢ is the spectroscopic-split-
ting factor for the electron spins); all the integrals here
and below are taken between infinite limits.

No general solution has been obtained so far for the
system (13a), (13b), and the main difficulty lies in the
fact that these are integral equations. To get around
this difficulty, we introduce a new characteristic of the
spin packet, namely the quantity

’

o' —Q

o Bss,
which is the deviation of the reciprocal Zeeman temper-
ature of the packetfrom the limiting value Bo (w')=-A"Bgs/
w’ reached in the case of strong saturation of this
packet with a detuning A’ and (or) effective cross relax-
ation on the frequency interval w’—-. We note that
[B,{w")]"! is the value of the single spin temperature
under conditions of thermal mixing in the RCF. We note
also that for packets not affected by saturation (i.e.,
located far enough from the center of the burned hole),
the parameter y(w’) becomes

1(0")=Bs (o)

(14)

—Q
'Yn(ﬁ)')=ﬁ:.— ° P Bss.

(15)
Using (14) and (15), Eq. (13a) takes the form
[1(0")—1:(0) 1+nsbrg (0'—Q) 1(0")

o [ Wea(0'~0") 6 (0"=an) [ 1(0) - 27 1(0") | do"=0.  (16)

Thus, in place of Eq. (13a), which contains two unknown
parameters—the function B5(w’) and the quantity g5 —
we have obtained an equation for a single unknown func-
tion y(w’). Moreover, as can be readily seen Eq. (16)
has practically the same form as the equation that de-
scribes the behavior of the Zeeman temperature of the
packets without allowance for the DDR, and obtained
from (13a) by excluding the terms that contain B¢ (the
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only difference is that the “lattice term y,(w’) in (16)
depends on the frequency, whereas 8, in (13a) is a con-
stant). This fortunate circumstance enables us to ex-
press immediately the sought function y(w’) in terms of
the well known'! solution of the truncated equation (13a).
In fact, if we express the Zeeman-temperature distri-
bution obtained without allowance for the DDR in the
form

Bs (') =B.[1—F (Q—0’, )],

where F(Q — w’, s) characterizes the shape of the burned
hole under the condition g5 =0 (the explicit form of
F(@Q - w’, s) is given, for example, in Ref. 11), then the
solution of Eq. (16) is

Y(0)=y(e’) [1-F (Q—a’, 5)]. am

If the cross relaxation between the packets can be neg-
lected, the validity of (17) can be directly proved by
substituting it in (16); in the opposite case it is neces-
sary to use the usual procedure of going from the inte-
gral equation (16) to the differential equation of spectral
diffusion'!; this yields

s ICON
de"

1(0") =—1(0) tasdpg (o' —Q) 1 ('), (18)

where

lew'="s TG (8) [7Wen(2)da (19)

is the square of the spectral-diffusion length. Recogniz-
ing that 3¢(w’) satisfies the usual equation of spectral
diffusion (without allowance for the DDR),!! it is easy to
show that (17) is a solution of (18) if I, > 6,

Returning now to the old unknowns B¢(w’) and B¢, we
get from (14), (15), and (17)

Bs(0")=B[1—F(Q—0',s)]+Bes ?m——,%F(Q—m', s). (20)
Thus, inplace of the integral equation (13a) we have ob-
tained the simple algebraic equation (20), which further-
more does not contain any explicit connection between
the Zeeman temperatures of the different packets. Sub-
stituting (20) in (13b) and recognizing that G(x) varies
much more slowly than Wg(x), g(x), and F(x, s), we ob-
tain

7ts8pG (A) Jrt2lcriocr
awss’+rs6pG (A)Jet2lca’ [G(A) ]V

Bss _ QG'(A)
B G(A)

(21)

where
Jo= jx’g(z) [1=F(z,s)1dz, Jo= jaz(x)dx,,
aer=2G (A) j F(z,s)dx.

We consider now the concrete form of (21) for twolimit-
ing cases.

a) If spectral diffusion can be neglected, then accord-
ing to Ref. 11
ns8pg (0—0’)

F(Q—0',s)= ——"—p——.
@-0's) 14758, (0—a’)

Using the notation

Ak

P V_ﬁs z*F (z, s)dz
ol's
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and
gt =271G (A) SpYs+1,

we have

(22)

- ()

b) If the width of the burned hole is determined mainly
by spectral diffusion, then according to Ref. 11

s’ ( lQ—m'l)
exp| — ,

F(Q—0',s)=
Q-0 )= Ton

where

s'="/,s8p/lcr<ks.

Then
Bss _ QG'(A) 1 To d0ss® 17
B G(A) LG(A)  Mh(w) ’ (23)

where M () is the value of M} in the case of strong
saturation (s’>1) (but formula (23) itself is valid for all
s’).

4. DISCUSSION OF RESULTS

We compare first the results obtained in Secs.2and 3.
It is easily seen that in the case of strong saturation and
for a hole of rectangular shape (i.e., under the condi-
tions assumed in Sec. 2) the quantities a ;,; and a,; go
over into o, and M} and MJ3(~) go over into MY; next,
at 6, =l = [G(A)]¥2 [see (19)] we have J(A)=J,/G(A).
As a result it turns out that formulas (22) and (23) go
over exactly into (10) and (12) (without allowance for the
nuclear spins). This agreement reveals clearly the
physical meaning of the results and attests to the useful-
ness of the model of thermal mixing in the RCF as ap-
plied to problems of spin dynamics.

We now stop to obtain a quantitative estimate of the re-
sults, assuming for the sake of argument that G(6) is
described by a Gaussian curve with parameter ¢, so that
G'(A)/G(A)==A/0%, and J, =(27*20)7. As seen from
(10) and (22), the maximum cooling of the DDR which
can be obtained in the absence of spectral diffusion is
reached at detunings A ~to under the condition that
(aw? +fw2)/aMB <1, which yields E mux~wy/6inn. We
note, however, that @ < 1, and therefore the foregoing
condition will in no way be always satisfied in practice.

In the other case, when the shape of the hole is deter-
mined by spectral diffusion (a situation that seems to be
the most realistic), it follows from (12) and (23) that the
maximum attainable value is E max~@,6,/6% , i.e., it
turns out to be smaller by a factor 5, /6, than in the ab-
sence of spectral diffusion. The physical meaning of
this effect is quite clear: as indicated in Sec. 2, the
cross relaxation between the “idle” spin packets (those
not landing in the burned hole) increases the specific
heat of the low-frequency energy reservoir, and it is
this which leads to the decrease of E. We note that with
further enhancement of the spectral diffusion, the frac-
tion of the idle packet s in the total balance decreases
gradually and at &,~6;,,, when none are left, E max
reaches a value w,/26i,, [see (7)]. Thus, the depen-
dence of Ena.x on the diffusion length is quite unusual:
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both at small and at large /., the enhancement reaches
values of the order §,/5,,,, whereas in the intermediate

region there is a slight decrease, reaching a minimum
near [,p=06;,Vv1+s.

We compare now our results with the data of Refs. 8
and 9. In the absence of spectral diffusion the formulas
are almost the same (we note that our Eq. (10), in con-
trast to Refs. 8 and 9, takes the influence of the nuclei
into account), At the same time the estimate proposed
in Refs. 8 and 9 for the case 6y=lgg yields E > w,/
6un, which deviates greatly with the results of the pres-
ent article and apparently does not agree with the physi-
cal arguments advanced above.

We note finally that Eqs. (10), (12) and (22), (23) are
quite similar in structure with the result obtained for the
“solid-effect” under conditions of inhomogeneous broad-
ening of EPR,”"? In particular, inboth case, with in-
creasing |A|, the quantity |E| first increases in pro-
portion to w,G’(A)/G(A), and then decreases in accord
with the decrease of the fraction of the active electron
spins (the factor « in the notation of Sec. 2). This sim-
ilarity emphasizes once more the common physical bases
of the two dynamic-polarization mechanism, which is
connected with thermal mixing in a rotating coordinate
system.”

The authors thank M. I. Rodak and G. A. Vasnev for
interest in the work and for helpful discussions.

e use the traditional abbreviation DDR—dipole-dipole
reservoir—although it can include also other spin-spin inter-
actions (sey, exchange interactions).
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Experimental dependence of the volume of solid normal
hydrogen on the pressure up to 30 kbar at a temperature

77 K

V. V. Kechin, Yu. M. Pavlyuchenko, A. I. Likhter, and A. N. Utyuzh

Institute of High Pressure Physics, USSR Academy of Sciences
(Submitted 12 January 1979)
Zh. Eksp. Teor. Fiz. 76, 2194-2197 (June 1979)

The piston-displacement method was used to measure the dependence of the molar volume of n-H, on
the pressure at liquid-nitrogen temperature in the pressure range 4-29 kbar. The results are presented in
analytic form that approximates the experimental data with accuracy 0.03 cm®/mol. The relative jump of

the volume at melting amounts to (4.740.4)%.

PACS numbers: 62.50. + p, 65.70. +y

Notwithstanding recent interest in hydrogen, both
scientific and applied, the number of experimental in-
vestigations of the equation of state of solid hydrogen at
high pressures is quite limited. There are particularly
few investigations of the P — V — T dependence at high
static pressures, i.e., studies that would permit the cal-
culation of the equation of state and of the thermodyna-
mic functions with sufficient accuracy. In fact, at 4.2 K
measurement of the P - V dependence were made up to
20 kbar! and 25 kbar.? On the other hand, at tempera-
tures higher than 4.2 K, the region in which experiment-
al research was performed does not exceed several hun-
dred bars.3+
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We present here experimental P — V data for solid
normal (75% ortho, 25% para) hydrogen (n - H,) atliquid-
nitrogen temperature. The measurements were made
with a low-temperature press by the piston-displace-
ment method. The apparatus and the experimental pro-
cedure are described in detail inthe preceding papers.5+¢
The high-pressure chambers had inside diameters 6—7
mm and were made of steels EI958 and EP637, of high-
strength manganese—nickel steel, and of beryllium
bronze. The maximum pressures were 11 kbar in
beryllium—bronze chambers and 17-29 kbar in steel
chambers. From two to five experiments were per-
formed with each of the four chambers. The volume of
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