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The critical properties are investigated of a model in which the order parameter is a symmetrical zero- 
trace n X n  tensor. The particular case n = 3 corresponds to the model of the nematic liquid 
crystal-isotropic liquid phase transition. It is shown that the critical anomalies near this transition can 
be due to the specific properties of the interaction of the fluctuations of the order-parameter tensor field. 
An experimental method is proposed with which to establish the cause of the pre-transition anomalies. 

PACS numbers: 64.70.E~ 

INTRODUCTION 

We employ in this paper the method of field renormal- 
ization groups (RG) for  the investigation of the cri t ical  
behavior of the Q-model, in which the order  parameter  
is by definition a zero- t race  n X n  tensor. Part icular  in- 
terest  attaches to the c a s e  n =3, which corresponds to 
the model proposed by d e  Gennes for  the description of 
phase transitions of the type nematic liquid crystal- iso- 
tropic liquid (NLC-IL).' Most of them a r e  accompanied 
by strong pre-critical phenomena, and the Landau ex- 
pansion for  the f r ee  energy contains a third-order in- 
variant. Therefore, in the sp i r i t  of the predictions of 
the phenomenological theory, the anomalous behavior of 
the thermodynamic quantities near the NLC-IL transi- 
tion was previously attributed to the presence, on the 
curve of the f irst-order phase transitions (or  near this 
curve), of an isolated singular point a t  which the coef- 
ficient of th is  invariant vanishes. The cr i t ica l  proper- 
t i e s  of the NLC-IL transition, assuming that such a 
point exists, were  investigated by Vigman, Larkin, and 
Filev, as well as by Lubensky and 

Recently Gorodetskir and ~ a ~ r u d s k i r :  and independ- 

ently of them one of us6 have proposed another explana- 
tion for  the appearance of cri t ical  anomalies near  this 
phase transition, without resort ing to the assumption 
that i s  close to an isolated singular point. It was 
shown that in contrast to the conclusions of the pheno- 
menological theory the NLC-IL transition can be  con- 
tinous if the system of the RG equations has a scale-in- 
variant solution satisfying definite conditions, and the 
assumption was advanced that the experimental values 
of the cri t ical  exponents a t  y =  1.0 for the susceptibility 
and a! =0.3-0.5 for  the heat capacity can  pertain to the 
fluctuation region and not to the region of the Landau 
theory. In this ca se  the proximity of the exponent y to 
unity can b e  attributed to mutual cancellation of the con- 
tribution made to i t  by the tr iple o r  quadruple vertices. 
Fo r  the value n = 3 the scale-invariant solution of the 
system of the RG equations in the single-loop approxi- 
mation was obtained by ~ o r o d e t s k i r  and ZaprudskiF 
without taking into account the renormalization of the 
Green's function, a procedure which in general is in- 
consistent for  the given problem. Nor did they ascertain 
whether this solution sat isf ies the condition that the 
phase transition be  continuous. 
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In the present paper we show that for an analysis of 
the critical behavior of the Q model a t  n > 2 i t  is nec- 
essary to consider the evolution, with temperature of 
the vertices of third and fourth order simultaneously, 
and we present a solution of the corresponding solution 
of Kallen-Symanzik equations (without neglecting the 
renormalization of the Green's function), and use them 
to demonstrate the possibility that the NLC-IL transi- 
tion can be of second order. 

We pay particular attention to those experimentally 
observed qualitative differences in the critical behavior, 
with the aid of which i t  is possible to establish whether 
the anomalies in the behavior of the thermodynamic 
quantities a r e  connected with the proximity of the tran- 
sition to an isolated singular point o r  whether they a r e  
the consequence of the possibility of a continuous NLC- 
IL phase transition. 

1. HAMILTON IAN AND SCALE-INVARIANT 
PROPERTIES OF THE Q MODEL 

The effective Hamiltonian of the Q model is 

Here Q is a symmetrical zero- trace n xn tensor and ro 
is a linear function of the temperature. The third term 
in (1) describes the contribution made to the free ener- 
gy by the anisotropic fluctuations. In the subsequent cal- 
culations we shall neglect them, since usually the corre- 
lation function in the liquid phase of the NLC is close to 
isotropic, and the coefficient h is small; we shall only 
qualitatively discuss the influence of this term on the 
precritical properties of the system. Owing to the dif- 
ference in the expansion (1) of the third-degree invar- 
iant (the cause of i t s  appearance is the physical non- 
equivalence of the states -QaB and QaB ) the phase tran- 
sition in the Q model, in accordance with the Landau 
theory, should be of first  order, with the exception of 
an isolated singular point a t  which go =O. 

However, the interaction of the fluctuations in the Q 
model has a unique property: a t  n 8 4 i t  leads to an ef- 
fective decrease of the triple vertex r3(qi =q2 =q3 =0, .H.) 

= r3(0,  x) in the critical region, where H. (the reciprocal 
correlation radius) decreases rapidly. In fact, the sign 
of the fluctuation correction to the dimensionless in- 
variant charge 

(Z is the renormalization factor of the Green's function) 
at these values of n is negative, i.e., i t  is opposite in 
sign to the analogous correction in the scalar of vector 
models. Therefore the Gell-Mann and Low equation 
gR(n) without allowance for the fourth- order terms in 
(1) has in first-order approximation4' 

and has at n 4 a nontrivial fixed point (FP) 

This circumstance suggests that the total system of the 
RG equations for the Q model also admits a scale-in- 
variant solution, in which the value of gR differs from 
zero a s  x- 0, and consequently the critical behavior of 
the model is not necessarily connected with the proxim- 
ity to an isolated singular point. 

Equation (2) and i ts  singular solution (3) describe a- 
symptotically exactly the scale-invariant properties of 
the Q model, strictly speaking, only in a (6 - C)-dimen- 
sional space (E<< 1) in which the fourth-order vertices 
a re  not critical and the dimensionless charge & is 
small, gff2- &. On going over to a real  three-dimen- 
sional space, the solution (3) turns out to be unstable 
to terms of fourth order in (1). To verify this, i t  suf- 
fices to calculate the anomalous dimensionalities of all 
the operators of the type Q4 which a re  needed for a com- 
plete renormalization of the model, on a non-Gaussian 
basis (3). Using the general calculation scheme pro- 
posed in Ref. 9, we have calculated these dimensional- 
ities in first  order in E and obtained 

The additions to the Hamiltonian of the operators of type 
Q4 do not influence the critical behavior of this system, 
which is determined by the solution (3) in the case when 
the contribution of the diagrams containing the inserts of 
all the operators tends to zero a s  .H.- 0 more rapidly 
than the contribution of the diagrams made up of only 
triple vertices. To this end i t  i s  necessary to satisfy 
the inequality') 

From expressions (4) we see  that at n = 2  the function 
X,(n) vanishes, and at n > 2 i t  becomes negative:) SO that 
to study the critical behavior of the three-dimensional 
Q model with n > 2 i t  is necessary to consider the evolu- 
tion, with temperature, of the vertex parts of the opera- 
tors g0spQ3, U , ( S ~ Q ~ ) ~ ,  vOspQ4 simultaneously. 

2. KALLEN-SYMANZIK EQUATION FOR THE Q 
MODEL IN  THREE-DIMENSIONAL SPACE 

In the theories where the effective Hamiltonian con- 
tains a triple vertex in g (for example, in the micro- 
scopic theory for the percolation problem'0), the lowest- 
approximation corrections for the Green's function and 
for this vertex itself a r e  proportional tog2, s o  that re- 
normalization of the Green's function must be taken into 
account from the very outset (in contrast to the case of 
the parquet approximation for theories of the ucp4 type). 
It is  therefore convenient to use the RG method in the 
Kallen-Symanzik scheme." 

Within the framework of this scheme, the entire in- 
formation of interest to us  is extracted from the renor- 
malization constants 2, Z,, Z,, and Z,, which a re  de- 
fined below. The constant Z connects the 1-irreducible 
vertex functions (without the lower ends) rAN' with the 
nonrenormalized functions I"N': 
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where gR, uR, and vR a r e  dimensionless invariant charg- 
es, with respect to which the expansion is carried out in 
the renormalized perturbation theory; they a r e  express- 
ed in terms of the bare charges with the aid of the con- 
stants Z', Z,, Z, (d = 3): 

- -' 
0-X '=gnw- '6 ,  u ~ = x - ~ u J " Z - ~ ,  V ~ = X - ~ U ~ Z . Z - ~ .  (7) 

The constants Z,, Z,, Z,, and Z a s  well as the renor- 
malized mass x can be determined by imposing the nor- 
malization conditions on the function rkN' at zero ex- 
ternal momenta: 

It is important that within the framework of perturbation 
theory the renormalization constants depend only on the 
invariant charges (there is no explicit dependence on x),  
this being a direct consequence of the renormalizability 
of the theory. In the single-loop approximation we ob- 
tain for these constants the expressions3) 

Substituting these values in (7) and differentiating both 
halves of these equations with repsect to t =Inn,  we ob- 
tain a system of three linear equations for the determin- 
ation of the functions of Gell-Mann and Low. 

Thus, we arrive a t  a system of renormalization-group 
equations describing the evolution of the invariant charg- 
e s  in the critical region: 

Before we proceed to discuss the properties of the 
solution of the system (13)-(15), let us explain briefly 
how to calculate the critical exponents in the Kallen- 
Symanzik ~cheme.""~ The constant Z is proportional to 
nnas t -L -m, we therefore have for the Fisher exponent 
7) 

and the expression in the curly brackets is taken a t  gR 
=g$, UR =u$, VR =v$, where gft, ug, vff a r e  the coor- 
dinates of the fixed points of the system of equations 
(13)-(15). From (9)-(16) i t  follows that in first-order 
approximation in the invariant charges we get 

To calculate the critical exponent of the correlation 
length v we use the Ward identityi3 

arl') (P=O) = r(l,2, T-T. (p1=pz=0), T = - , a t  T, 

which connects the derivative of the reciprocal suscept- 
ibility r t2 '  with respect to T with the Green's function 
(without external ends) r"*2' that contains the composite 
operator spQ2. The transition from 1'"'2' to rAis2' is ef- 
fected with the aid of a new renormalization constant Z,, 
which does not reduce to a combination of  constant^^"^: 

To calculate the constant Z,, which also depends only on 
the invariant charges, i t  is necessary to superimpose an 
additional condition on rA1**', for example 

and then we obtain in the approximation linear in gi, UR, 
and vR 

In the critical region z ~ - ~ ~ ~ " ' "  , whence 

The expression in the curly bracket is calculated at 
g~=g$,  UB=U$, V ~ = v d .  

An investigation of the system of the renormalization 
group equations (13)-(15) becomes much simpler a t  n 
=2 o r  3, for in this case there is only one fourth-order 
invariant [inasmuch as 2SpS = ( s ~ Q ~ ) ~ ] .  The case n =2 
is trivial: the Q model degenerates into the XY model. 
At n =3  the RG equation for the single isotropic vertex 
of the fourth order is obtained by multiplying (15) by 
1/2, adding i t  to (14), and replacing (uR +vR/2) by uR. 
By a similar substitution in (13), we obtain a system of 
two coupled equations: 

The system (23) has, besides the unstable Gaussian fix- 
ed point, also three nontrivial fixed points: 

The first  of them is a saddle and corresponds to the 
fixed point of a five-component Heisenberg model, which 
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FIG. 1. Phase diagram of 
system of renormalization 
group equations (23). The 
shaded region is that of the 
instability of the isotropic 
phase. 

is isomorphic to the Q model at n = 3 and go =O. This 
fixed point describes the critical behavior of a nematic 
liquid crystal near an isolated singular point. Linear- 
izing Eqs. (23) with respect togR we obtain for ri3'(0, 
u) in the vicinity of the isolated singular point the fol- 
lowing solution2* 3: 

In a number of papers'4-i6 the Pad6-Bore1 method 
(matching of the f i rs t  seven terms of the expansions in 
powers of the charge uR with the asymptotic estimates 
of the higher orders of the perturbation- theory ser ies)  
was used to obtain the critical exponents for an n-com- 
ponent three-dimensional Heisenberg model at n =0, 1, 
2, 3, which agreed with the most reliable values obtain- 
ed by numerical methods for lattice systems. Although 
the case n = 5 was not considered, but since the suscept- 
ibility exponent y(n) increases monotonically with in- 
creasing n,  one should expect 

i.e., near the isolated singular point the susceptibility 
should have a rather complicated nonlinearity a s  a func- 
tion of the temperature or pressure. 

Expressions (25) a re  solutions of the system (23) only 
at small gR, namely gi << uR or  [ri3)(0, %)I2 << r g ' ( 0 , ~ ) d .  
The qualitative behavior of the phase trajectories at fin- 
ite values of go is shown in the figure. The fixed points 
A, and A, a r e  respectively a saddle and a stable focus. 
They a re  inside a region that is stable to precipitation of 
a condensate. In the f i rs t  approximation in the renor- 
malization group, the boundary of this region, the 
straight line 1-0 is given by the equation""7 gi < 924,. 
The phase trajectory 2-0, which passes through the fix- 
ed point A,, divides the phase plane into two parts: the 
trajectories from the region 1-0-2 go over to the line 
1-0, on which a first-order transition takes place (in 
our approximation), and in the region 2-0-24, they tend 
to the fixed point A_, and the phase transition is of sec- 
ond order. Substituting the values of coordinates (gff, 
uff) of the fixed points in (17) and (22) we obtain the val- 
ues of the critical exponents 

The remaining exponents can be calculated from the or- 
dinary scaling relations. The values for v and y are  
much higher than obtained from measurements near the 
NLC-IL transition; v =0.57 and y =  1.0.~"~ We note, 
however, that the contributions from the triple and quad- 

ruple vertices to the exponent y a r e  of opposite sign and 
a r e  quite large in absolute magnitude, 0.4 and 0.8, re- 
~pectively.~'  It can therefore be assumed that in the 
higher orders of renormalized perturbation theory al- 
most complete cancellation of the contributions from 
both vertices can occur, a s  the result of which we get 
v =  1/2 and y = 1.0. 

Equations similar to our equations a t  n = 3  (23) were 
derived by another method without allowance for the re- 
normalization of the Green's function (i.e., u n d ~ r  the 
assumption 7 =O) by ~orode t sk i r  and ~aprudsk i i ?  These 
equations also had fixed points of the type A, and A_. 
However, the qualitative phase-trajectory picture shown 
in5 is incorrect: the regions of values of u, for which 
the phase transition is of f i rs t  order a t  arbitrarily small 
value of gR does not exist in reality. The phase transi- 
tion i s  of first order for coupling constants in the re- 
gion 1-0-2 (see the figure), and the transition itself in- 
to the ordered phase (in first-order transition in the re- 
normalization group) takes place on the 1-0 line and not 
on the UR = O  line as indicated in Ref. 5. I t  can be shown 
that allowance for the anisotropy of the correlation func- 
tion [see (I)] leads to a certain increase of the region 
1-0-2. 

To determine the critical properties of the Q model a t  
n > 3 it is necessary to find the phase transitions of the 
system (13)-(15). We have verified that n = 4 and 5, and 
also a s  n - 00, this system does not have real stable fix- 
ed points with & # 0. It is  natural to assume that there 
a re  no such stable fixed points also a t  arbitrary values 
n < 5. Since i t  is known that the fixed points with & = O  
a re  unstable for all n > 3, i t  follows that the Q model 
phase transitions of only first  order a r e  possible a t  n 
> 3, and the continuous phase transition is possible only 
a t  n = 3, corresponding to the model of the NLC-IL tran- 
sition. The presence of a stable fixed point A- for this 
case is apparently due to the special symmetry proper- 
ties of the Q model a t  n = 3, which lead to degeneracy of 
the system (13)-(15) into the system (23) and transform 
the space of the renormalization group variables into a 
two- dimensional space. 

In the next section we consider the experimental re- 
sults that point to the need for taking into account the 
fluctuations near the NLC-IL transition, and also dis- 
cuss the experiments with which i t  is possible to deter- 
mine the type of the scale- invariant solution realized by 
this transition in the region of strongly developed fluc- 
tuations. 

3. CHARACTER OF THE PRE-TRANSITION 
ANOMALIES IN NLC 

In recent years the singularities of phase transitions 
into the liquid-crystal state, including the properties of 
the NLC-IL transition, have been intensively investi- 
gated experimentally. It is well known that in the im- 
mediate vicinity of this transition there a re  strong tem- 
perature anomalies: a strong increase of the birefring- 
ence in electric and magnetic fields, a strong increase 
of the intensity of the Rayleigh scattering of light, e t ~ . ~ '  
From experiments on light scattering in the pre-transi- 
tion region of the liquid phase i t  was found that the cor- 
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relation length is 5 - T-", where v =0.5 and AT =Tc- T, 
-1 K(T, i s  the transition t e m p e r a t ~ r e ) . ~  More accurate 
measurements performed in Ref. 8 have revealed aweak 
anisotropy of the correlation function (characterized by 
an approximate difference of 15% between the two cor- 
relation lengths 5, and tt in the case of MBAA), and 
yielded a critical-exponent value v =0.57. The coeffi- 
cient of the magnetic birefringence behaves like T", 

where the values of the exponent y, which plays the role 
of the susceptibility exponent, turned out to be close to 
1.0." It was established that the coefficient of thermal 
expansion 

also has singularities near the transition (on both sides), 
and the value obtained for AT was smaller by one or two 
orders of magnitude (several hundredths of a degree) 
than obtained from optical  experiment^.^' The results 
of calorimetric measurements of the temperature de- 

- 
pendence of the heat capacity, obtained in various stud- 
ies, differ strongly (apparently because of the influence 
of the impurities), it can nevertheless be concludedfrom 
them that near the transition there appears a single in- 
crement to the specific heat AC,,, - 171* and the ex- 
ponent a! is large enough, a! s 0 . 3 . ~ ~  

The thermodynamic properties of the NLC-1L phase 
transition a re  customarily described with the aid of an 
expansion of the free energy in powers of the order pa- 
rameter Q,,,20 which is a particular case of the pheno- 
menological Landau theory 

@-@,='/,A (T) Sp Q"-'/,B Sp Q"+'/,C(Sp Q")'f.. . (28) 

Within the framework of this approach, the anomalous 
growth of the birefringence, the strong scattering of 
light in the isotropic phase near T,, other similar ef- 
fects can be connected with the strong temperature de- 
pendence of the coefficient A(T)- (T - T,)", and the small 
values of the jump of the heat capacity and of the heat of 
transition can be connected with the smallness of the 
coefficient B. The results that follow from the pheno- 
menological theory a re  in fair agreement with most ex- 
perimental data. However, more accurate measure- 
ments of the temperature dependence of the heat capac- ' 

ity,n of the correlation length,' and of the coefficient of 
thermal expansion2' show that the fluctuations of the or- 
der parameter near the transition a re  not small and the 
Landau expansion is insufficient for a quantitative de- 
scription of the pre-transition phenomena. 

From the solution of the renormalization group system 
of equations (23) it follows that the critical anomalies 
can be connected either with the presence of the fixed 
point 0(5), which described the phase transition near 
the isolated singular point, or  with the stable fixed point 
A_,  the existence of which is due to the specific char- 
acter of the interaction of the fluctuations in the nematic 
liquid crystal. In either case the theory predicts a 
rather strong nonlinear susceptibility (y > 1.39 or y 
= 1.6), and a s  a consequence, the absence of a diver- 
gence of the heat capacity (a! < 0), although its  anomal- 
ous growth is observed experimentally.22 We note, how- 
ever, that for the solution connected with the phase 

transition A,, when account is taken of the next higher 
orders of the renormalized perturbation theory, a can- 
cellation can take place of the contributions of the ver- 
tices .& and us in the exponent y, in which case a! be- 
comes larger than zero and there will be no disparity 
with experiment, whereas for the Heisenberg fixed 
point O(5) the estimate (26) is valid and the value of a! 
remains less than zero. The presence of a scale-in- 
variant solution, in which, on account of the interaction 
of the fluctuations, the triple vertex decreases rapidly 
a s  the transition point is approached rA3'(0, x ) -  x3j2 1, 
has made i t  possible to explain in a unified manner the 
nearly-continuous character of the NLC-IL transitions 
in various substances. In fact, the fluctuation region in 
this case is wider (rB s B ~ / ~ )  than the critical region 
near the isolated singular point, determined in accord- 
ance with the usual Ginzburg-Levanyuk criterion (7, 
SC2), and rB can be several times larger than 7, at B 
- C < 1. Therefore, although the NLC-IL transition i s  in 
fact of f i rs t  order, when an attempt i s  made to describe 
i t  with the aid of the expansion (28) i t  is necessary to 
assign to the coefficient B the value of the rapidly de- 
creasing function rA3' (0, n ), averaged over the measur- 
ed temperature interval which i s  much less than the val- 
ue of the function B(T) outside the fluctuation region5) 
At the same time, i f  i t  is assumed that the NLC-IL 
transition is close to an isolated singular point, then i t  
becomes necessary to regard the systematic smallness 
of B for all NLC to be accidental and i t  is difficult to in- 
dicate for i t  any common ~ a u s e . ~ '  We therefore assume 
that the pre-transition critical anomalies a r e  more 
readily described by a solution of the renormalization 
equations that is connected with the stable fixed point A_ 
rather than the Heisenberg fixed point. 

How can experiment show which of the two scale in- 
variant solutions is responsible for these anomalies? 
Measurements of any critical exponent by traditional 
procedures a r e  hardly suitable for this purpose, for in 
either case the theory yields for i t  close values (not too 
reliable, although the inequality (26) should be satis- 
fied), and furthermore the accuracy of the measure- 
ments in modern experiments is not high e n o ~ g h . ~ )  It i s  
therefore natural to attempt to use those experimental- 
ly observed consequences which depend on the type of 
the scaling solution not quantitatively but qualitatively. 
It seems to us that i t  is possible to establish the char- 
acter of the critical behavior in the NLC-IL transition 
from experiments on the scattering of electromagnetic 
waves in the nematic phase near the transition point. 

~okrovsk i i  and ~ a t z ' ~  and ~ t r a t o n o v i c h ~ ~  have shown 
that the expression for the differential scattering by 
fluctuations in a frequency interval dw and in a solid- 
angle interval dS1 can be represented as a sum of three 
parts: uniaxial transverse, longitudinal, and biaxial 
transverse: 

where e and e' a r e  the polarization vectors of the inci- 
dent and scattered waves, and the quantities a,, az,  and 
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at characterize the contribution made to the cross sec- 
tion by the scattering from biaxial, longitudinal, and 
transverse uniaxial fluctuations, respectively. The 
matricess B:',:, a r e  projectors on the mutually ortho- 
gonal subspaces 

(the explicit form of B z i ,  is given in Ref. 25). Their 
convolutions with the polarization vectors a r e  given byz5 

where no is the director vector. 

The anomalously large intensity of the scattered light 
in the NLC is due primarily to scattering by transverse 
uniaxial fluctuations (rotations of the director), which 
have no gaps because of the degeneracy of the state of 
the system with respect to the direction of the director 
no. The contribution of the longitudinal fluctuations is 
also anomalously large for small wave vectors q, as fol- 
lows from the modulus-conservation principle, but i t s  
singularity is much weaker. Scattering by biaxial fluc- 
tuations become noticable only in the region of suffi- 
ciently short waves, since the barr ier  A -  B'/C must be 
surmounted in order to excite them. If, as  above, we 
disregard the anistropy of the Green's function,* then the 
dependences of the contributions of a, on qtake theformZ4 

where K is a constant connected with the Frank modulus. 

From the microscopic point of view in the critical re- 
gion the functions B(T) and C(T) a r e  1-irreducible ver- 
tex parts r3(0) and r4(0)  a t  zero momenta for the effec- 
tive Hamiltonian (1). If i t  i s  assumed that the NLC-IL 
transition takes place near an isolated singular point, 
then the gap A in the spectrum of the biaxial fluctuations 
should not change in practice with temperature [see 
(2511: 

On the other hand, i f  the near continuous character the 
NLC-IL transition is due to the specific character of 
the interaction of the fluctuations, then a scale-invar- 
iant solution is realized, connected with the fixed point 
A,, we obtain and for the gap A 

We see  that in this case A decreases rapidly (at a rate 
equal to the reciprocal susceptibility) when the transi- 
tion point i s  approached. This sharp difference in the 
qualitative behavior of the gap A can be used to ascer- 
tain which of the two possible scale-invariant solutions 
a re  realized in the NLC-IL transition. 

As shown in Refs. 24 and 25, when certain conditions 
a re  satisfied for the polarization, the transverse uni- 
axial fluctuations do not lead to scattering of light. In 
particular, there is  no scattering if the vectors e and 
e' are  perpendicular to the direction of the director no 

[see (30)]. A contribution to the scattering will then be 
made only by the longitudinal and biaxial fluctuations 
and, a s  seen from (30), these contributions depend dif- 
ferently on the angle between e and e'. If this angle is 
chosen close to 90°, then the longitudinal scattering is 
suppressed and only biaxial scattering remains. By 
measuring the corresponding scattering cross sections 
as a function of the temperature, we can establish the 
A(T) dependence. Generally speaking, the condition e 
l e t  is not obligatory for this purpose. Measurements 
can be performed at different values of q (i.e., by vary- 
ing the scattering angle), and the contribution to the 
cross  section from the biaxial fluctuations can be s e p  
mated by using the difference between the angular de- 
pendences of the longitudinal and biaxial scattering. 

We emphasize that the main purpose of such an experi- 
ment is not so  much a quantitative measurements as an 
observation of a qualitative effect: in one case (isolated 
singular point) A is practically independent of tempera- 
ture, and in the other (critical behavior) this dependence 
should be very strong (33). It is important that the last 
conclusion follows already from the very existence of a 
fixed point of the type A_, and is connected with the pos- 
sible numerical inaccuracies of the RG method in the 
single-loop approximation when i t  comes to determining 
the exact position of this fixed point and of the critical 
exponents corresponding to it. 

In conclusion, we discuss briefly the influence exerted 
on the properties of the NLC-IL transition by the im- 
purities contained in the sample. Assuming that the cor- 
relation radius of the impurities i s  small near the tran- 
sition compared with the correlation length 5, we have 
derived the renormalization-group equations with ac- 
count taken of the indirect interaction of the fluctuations 
via the randomly disposed nonequilibrium impurities. 
It turned out that the fixed point A, remains stable a s  
before and consequently the critical behavior is isomor- 
phic to the behavior of the pure system. The situation 
can change, however, if the impurity produces near it- 
self an effective ordering of the molecules. 

The authors a r e  grateful to A. G. Aronov, S. L. Ginz- 
burg, and A. I. Sokolov for useful discussions, and to 
S. A. ~razovskiy,  P. B. Vigman, E. I. Kats, A. I. Lar- 
kin, S. V. Maleev, S. A. Pikin, and V. M. Filev for a 
discussion of the results. 

' ) ~ u r  definition of the anomalous dimensionalities At differs in 
sign from that used in Ref. 9. 

')l'he conclusion that the scale-invariant properties of the Q 
model at n >  2 and of its analytic continuation to n < 2  are sub- 
stantially different is obviously not connected with perturba- 
tion theory in E - 6-d, since the equation h - (n = 2) = 0 is the 
consequence of the degeneracy of the Q model into the XY 
model at n = 2 .  

3'In Eqs. (13)-(15) we have changed wer for the sake of con- 
venience from the renormalized charges (8) to the variables 
gR- gR /A ,  uR- uR/A,  v R / A ,  where A = 1/32n. 

4 ) ~ n  the Ising field model the analogous contribution is equal to 
0 . 2 . ~ ~  

5'We recall that at the transition point we have T* = (Tc- T J / T  P - l o3  + 10". 
6)It was suggested in Ref. 22 that NCL-IL transition is close to 
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the tricritical point. In this case, however, it must be as- 
sumed that both B and C are  'kccidentally" systematically 
small compared with the coefficient of Q ~ .  

')we note that Filed3 has proposed a method of measuring the 
exponent y by an optical procedure, with which it is possible 
to distinguish between the behavior near the isolated point and 
the tricritical point. 

'%"is can done by using the formulas obtained by 
Pokrovskii and ~ a t s ? *  but we are  trying to avoid additional 
complications which are of no fundamental significance for us. 
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p+-meson spin relaxation in rare earth metals at various 
temperatures 

V. G. Grebinnik, I. I. Gurevich, V. A. Zhukov,  V. A. ~ikol 'sk;,  V. I. Selivanov, and 
V. A. Suetin 
I. Y. Kurchatov Institute of Atomic Energy 
(Submitted 29 December 1978) 
Zh. Eksp. Teor. Fiz. 76, 2178-2184 (June 1979) 

We measured the temperature dependences of the rates of relaxation of the p+-meson spin in Pr, Nd, 
Sm, Eu, Tb, Dy, Ho, and Er, at T = 5-300 K. We demonstrate the possibility of identifying 
antiferromagnetic phase transitions and of measuring the Nkl temperature T, by the p+-meson method. 
The value of TN of praseodymium measured by the pC method was found to be 6 K. A method is 
proposed for measuring the frequency of the oscillations of the electron spin of the atoms of a metal in 
the paramagnetic state. 

PACS numbers: 75.30.Kz, 75.50.Cc, 75.50.Ee, 76.90. + d 

T h e  spin of a @+ meson in a metal  relaxes because of 
the interaction of the magnetic moment of the  p+ meson 
with the  magnetic moments of the surrounding e lec t rons  
and nuclei. A study of these interact ions is of in te res t  
both f o r  the  investigation of the p roper t i es  of a singly 
charged impurity part ic le  i n  a metal  and f o r  the  investi- 
gation of the p roper t i es  of the  metal  itself. An example 
of a study of ferromagnets  (iron, nickel, cobalt and gad- 
olinium) with t h e  aid of @+ mesons is Ref. 1. 

I n  this  paper  we study the  relaxation of the  @+-meson 
spin i n  ra re -ear th  metals.  T h e  meta l s  of this  group, 
depending on the temperature,  can  be  i n  a paramagnetic, 

antiferromagnetic, and ferromagnet ic  state. We used 
polycrystalline samples  of meta l s  with less than Oa% 
impuri t ies .  T h e  relaxation rate A of the  spin of the p' 

wgggjg@py,+, y 
FIG. 1. Experimental set- 
up: T-target, P-poles of 
electromagnet, 1-6-scin- 

f'+ I- COOBIB1 tillation counters. 
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