
3k. Yamanaka, T. Yamanaka, T. Sasaki, J. Mizui, and 
H. B. Kang, Phys. Rev. Lett. 32, 1038 (1974). 

3 7 ~ .  G. Basov, A. A. Kologrivov, 0. N. Krokhin, A. A. 
Rupasov, A. S. Shikanov, G. V. Sklizkov, Yu. A. 
Zakharenkov, and N. N. Zorev, Laser Interaction and Re- 
lated Plasma Phenomena, Vol. 4A, Plenum Press, 1977, 
p. 479. 

3 8 ~ .  Soures, L. M. Goldman, and M. Lubin, Nucl. Fusion 13, 
829 (1973). 

3 9 ~ .  Lee, D. V. Giovanielli, R. P. Godwin, and G. H. 
McCall, Appl. Phys. Lett. 24, 406 (1974). 

'OC. Yamanaka, T. Yamanaka, H. B. Kang, M. Waki, and 
K. Shimamura, Annu. Rev. Instrum. Plasma Phys., April 
1972-March 1973, Nagoya University, p. 110. 

4 1 ~ .  A .  Rupasov, G.  V. Sklizkov, V. P. Tsapenko, and A. S. 

Shikanov, Zh. Eksp. Teor. Fiz. 65, 1898 (1973) [SOV. Phys. 
JETP 38, 948 (1974)l. 

4 2 ~ .  V. Aleksandrov, S. I. Anisimov, M. V. Brenner, E. r. 
Velikhov, V. D. Vikharev, V. P. Zotov, y. G. Koval'skii, 
M. I. Pergament, and A. A. Yaroslavskii, Zh. Eksp. Teor. 
Fiz. 71, 1826 (1976) kov. Phys. JETP 44, 958 (1976)l. 

4 3 ~ .  G. Basov, 0. N. Krokhin, V. V. Pustovalov, A. A. 
Rupasov, V. P. Silin, G. V. Sklizkov, V. T. Tikhonchuk, 
and A. S. Shikanov, Zh. Eksp. Teor. Fiz. 61, 118 (1974) 
[SOV. Phys. JETP 40, 61 (1975)l. 

"A. S. Shikanov, Tr. Fie. Inst. Akad. Nauk SSSR, Vol. 103, 
Nauka, 1978, p. 164. 

Translated by A. K. Agyei 

Kinetic equation for a system of parametrically excited 
spin waves 

I. A. ~inikovetsk;, A. M. Frishman, and V. M. Tsukernik 

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR 
(Submitted 19 July 1978; resubmitted 28 December 1978) 
Zh. Eksp. Teor. Fiz. 76, 2110-2125 (June 1979) 

Kinetic equations describing the magnon system of a parametrically excited ferromagnet are derived. The 
coherent-state representation is used to fmd the explicit form of the collision integrals. The stationary 
distribution is found with allowance for the exchange interactions. It is shown that such a distribution is 
stable with respect to weak relativistic interactions. The problem of pump-field absorption is investigated. 
It is shown that the absorbed power is dependent only on the interactions that do not conserve the 
rnagnon number. 

PACS numbers: 75.30.D~ 

1. INTRODUCTION 

The macroscopic characterist ics of a parametrically 
excited ferrodielectric are determined by the pair cor- 
relators, n, =(ak + a,) and u, =(aka,), of the magnon 
operators. The temporal evolution of the quantities 
nk and uk is described by kinetic-type equations con- 
taining a dynamical part  and a collision-integral analog. 
The aim of the present paper is to find the explicit 
form of these integrals, something which has not been 
done before. Further, we investigate the steady-state 
distribution of the magnons, and look into the problem 
of energy absorption for such a distribution. 

As  is well known, by parametric excitation we mean 
the situation in which, in a trans-threshold pump field, 
the magnon system i s  unstable in some region of k 
space. This leads to  the exponential growth of the cor- 
relators n, and uk in time. We assume that, as a 
result of the interaction between the magnons, there 
occurs such self-consistent renormalization of the 
magnon energy and pump-field amplitude as is required 

strongest of them i s  the exchange interaction between 
the magnons. We a lso  take into consideration the ex- 
change interaction between the magnons and the phonon 
subsystem, which is regarded as a thermostat, i. e., 
as being in thermodynamic equilibrium. We shall con- 
sider the relativistic interactions to be weak as com- 
pared to the exchange interactions, and shall treat 
their effect on the steady-state distribution as a per- 
turbation. We establish below the conditions under 
which the corresponding correction to the stationary 
magnon distribution wil l  be small. AS will be shown, 
it is precisely the relativistic interactions that are 
responsible for the absorption of energy in the steady- 
state regime. 

The Hamiltonian of the system under consideration 
by us  has the following form: 

H=H,+Hp+H,,'r+Hm,'s+H,,'. (1) 

Here H, and H, are the Hamiltonians of the f ree  mag- 
nons and phonons, H ,  covering the resonance interac- 
tion with the pump field: 

to make the instability region disappear. Hm=g (ekak+ak+1/2(V~aka-ke'yf+Vk'ak+a-I+eeee1)}, (2 
It turns out that the nature of the steady-state distri- h 

bution essentially depends on the ratio of the strengths H ,  =.z Ekb,+bk, (3) 
of the interactions conserving and not conserving the k 

magnon number. We proceed from the fact  that the where E,  is the magnon energy, E, is the phonon ener- 
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gy, and V, is proportional to the amplitude of the uni- 
form monochromatic pump field of frequency w. 

The last three terms in (1) describe the interaction 
of the magnons with each other and with the phonons: 

is the exchange magnon-magnon interaction; 

H m 9 " - x  ( ~ ~ ~ t . ~ a , + a ~ b , + ~ ; ~ 2 , ~ b ~ + a ~ + a ~ )  
11s 

(5) 

is the exchange magnon-phonon interaction; 

H,,,~.=C ( ~ l , ~ , s a l + a ~ a s + ~ ~ z . 3 a , + a 2 + a , ~  
-3 

(6) 

is the relativistic interaction between the magnons. The 
The amplitudes of the interactions +1.2isr(, \ k ~ ; ~ , ~ ,  and 
@l;z,s contain Kronecker symbols ensuring the fulfill- 
ment of the momentum conservation laws in such a way 
that the sums of the momenta on the left and right of the 
semicolon a re  equal. Furthermore, from (4) and (6) 
follow the following properties of the amplitudes: 

0l.2.S,i=@lt?:l.l=@~,4;1,P~@Z~l;J~4~ ~I;Z.J=@1,J,Z. 

Explicit expressions for the magnon energy and the 
interaction amplitudes a re  given in, for example, the 
monograph by Akhiezer et al. ' 

In the second section of the present paper we derive 
a system of kinetic equation for the correlators n, and 
4 in the first  approximation that takes account of the 
strongest (the exchange magnon-magnon and magnon- 
phonon) interactions. In the third section we find with 
the aid of the obtained kinetic equation the stationary 
magnon distribution that takes into account the interac- 
tion of the magnons with the phonon thermostat. In the 
fourth section we evaluate the effect of the relativistic 
interactions on the steady state distribution. For this 
purpose, we find the contribution of such interactions 
to the kinetic equations, and determine the correspond- 
ing correction to the distribution function. The prob- 
lem of pump-field energy absorption is investigated in 
the same section. An expression is obtained for the 
power absorbable a s  a result of the magnon-number- 
nonconserving relativistic interaction. It is also shown 
that the magnon-number-conserving interactions-in 
particular, the exchange interactions-cannot lead to 
absorption. 

2. DERIVATION OF THE SYSTEM OF KINETIC 
EQUATIONS FOR n, AND a, 

1. In accordance with what was said in the Introduc- 
tion, let us limit ourselves in this section to the con- 
sideration of the exchange interactions. We shall pro- 
ceed from the Liouville equation for the density matrix 
P: 

a P  i h - = [ H , p ] .  
at 

(7) 

With the aid of the unitary transformation 

io t  
= u = e x p [ -  ah+ak] (8) 

k 

we eliminate the explicit dependence on time and obtain 

The pair correlators 

nk==(ak+aI)=Sp pak+ak=Sp pak+a,, 

4 6 ( a ~ a - , ) = S p  paka-.=e'"' Sp paha-, 

satisfy the following equations, obtained from (9) and 
(10): 

The terms denoted by s. c. (sign conjugation) here and 
below a r e  obtained from the terms written out by chang- 
ing the sign of each of the momenta. The averaging 
on the right-hand sides of the Eqs. (13) is performed 
with the density matrix jS . 

Using the fact that the interaction is weak, we can 
decouple the right members of the Eqs. (13) into pair 
correlators, taking into account in the process the fact 
that not only the nk's, but also the ah's, a r e  nonzero. 
As a result, we obtain 

where 

a r e  the renormalized energy and pump; 

zIn-z:-) +I;(%+P)~ zka=z~mm)+z~(mp) (16) 
a r e  collision-integral analogs: 

for the magnon-magnon correlators and 

1 ~ 7 , ~ )  = Lz ( Y P v k  q<ap+akbq) - Y k  q<ak+apbq)) + C.C.  
tc 

PP (16b) 
i 

I:,,,) = --z (YI,p , ,<a-kapbq)  + Y;,-k,,(a,apb,+))+s.c. 
tr 

P I  

for the magnon-phonon correlators. The summation in 
(16a) is performed over those values of the quasimo- 
menta for which direct decoupling into pair correlators 
yields zero. Therefore, the contribution of these sums 
to Eqs. (14) is quadratic in the small amplitudes Q and 
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By constructing equations, similar to (141, for the 
higher-order correlators, and decoupling their right 
members into pair correlators, we can, in principle, 
obtain a closed system of equations. However, since 
the Hamiltonian (1) contains anomalous quadratic-in 
the Bose operators-terms (~,a,a-, + c. c. ), this stan- 
dard procedure leads in the present case to a system 
of sixteen equations for the higher-order magnon cor- 
relators and to a system of four equations for the mag- 
non-phonon correlators, the direct solution of which is 
extremely difficult. On the other hand, it is impossible 
to get rid of the anomalous terms in the Hamiltonian 
(11, since in the region of parametric magnon excitation 
I E, - Ew/2 I < I Vk 1 ,  and the diagonalization of the quad- 
ratic-in the Bose operators-part is impossible. 

In view of the above-indicated difficulties, to find the 
higher-order correlators entering into the expressions 
(161, we shall use the coherent-state distribution func- 
tion of the magnons. This function is determined by 
solving a linear, first-order partial differential equa- 
tion. 

2. Let us  go over in Eq. (9) t o  the coherent-magnon- 
state representation involving those coherent states for 
which the vector lz) I{z,)) is a common eigenvector 
for al l  the Bose operators a,, i. e. ,  for which 

For  this purpose, let us  introduce for consideration the 
function 

F ( { z k ) )  =<z 1 pm 12); pm=Spphp, (17) 
where Sp,, denotes the trace over the complete set  of 
phonon states. The function F gives the probability 
distribution of the magnons over the se t  of complex 
amplitudes 2,. " If we take into account (see Ref. 2) the 
fact that 

where 

then from (9) we obtain the following equation for F: 

aF/at= CL~F+M. 
k 

Here 

Equation (18) is similar to the Liouville equation for  the 
classical distribution f ~ n c t i o n . ~ )  

Let us  introduce the distribution function for a pair of 
magnons with oppositely directed momenta: 

The correlators n, and 5, can be expressed in terms of 
it as follows: 

Similarly, we can determine the distribution function 
for pairs with four different momenta: 

in terms of which the corresponding correlators can be 
expressed, e. g., 

The equation for the function f,, follows from (18) 
and (24). It has the following form: 

where 

Bearing in mind that the distribution function (24) will 
be used by us only for the computation of correlators 
of the type (25), we can drop the terms with second 
derivatives in the operator (19). Indeed, these terms 
drop out when we go over from Eq. (26) to the equations 
for such correlators,') and therefore in no way affect 
the values of the correlators. 

From Eq. (26) we can derive a closed equation for  
the function f,, if, using the fact that the interactions 
a r e  weak, we decouple the t e rms  in the expression (27) 
and limit ourselves to the lowest order in the interac- 
tion. In this case complete decoupling should be car- 
ried out up to the pair functions of the distributionf,. 
Furthermore, a s  in Eqs. (14), the renormalization (15) 
should be allowed for in (27). As a result, we have 

where 

Here we have taken into consideration the momentum 
conservation law p +q = r + s, which is contained in the 
expressions, (161, for the sought collision integrals. 
Notice that the t e rms  with the magnon-phonon interac- 
tion drop out in the indicated decoupling process, since 
they contain a single phonon operator. 

3. Equation (28) is a nonhomogeneous first-order 
partial differential equation with J,,,, a s  i tsright mem- 
ber. Assuming that the correlators (25) vanish at 
t=-a , we shall seek the particular solution to Eq. (28) 
with the same initial condition. We shall use the meth- 
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od of characteristics to  find the solution. 

The characteristics of Eq. (28) a re  the solution to the 
system of equations 

which coincide with the equations of motion for the 
classical amplitudes. As can be seen from (15), into 
the quantities t;, and Ak enter the required pair correla- 
to r s  n,, and u,., which a r e  time dependent. However, 
a s  is customary in kinetics, this slow dependence can 
be neglected in Eqs. (31). Then we obtain the following 
solution: 

zk=ckuk exp(-E,t/fi)  +c-,'vc exp (i€,t / tr),  

z-,'=c-;u,' exp(-ic,t/h) +c,v, exp ( i , t / f i ) ,  

where c,and cz  a r e  constants of the integration, 

€,= [ (E*-fio/Z)"IA,l"l", (33) 

In conformity with what was said in the Introduction, we 
assume that the renormalizations ensure the realness 
of Ek in the entire k space. The sought solution of Eq. 
(28) then has the following form: 

f 
i 

fpq,r.= j lPq,.. ({ckuk exp (- 2.I) +c-k-Ui - -- ( 11) drl  

where ck and c-: should be expressed in terms of z, and 
zfk from (32). As a result, we obtain 

-- 
where 

&=Ah' ( 7 )  zh-ph' (z)z-,', Z - , ' = A , ( ~ )  z - ; -ph(z )  zk.  (36) 
Here 

4. The found solution, (351, allows us  to obtain ex- 
plicit expressions for the four-magnon correlators of 
interest to us. From (25) and (35) we have 

It is natural to go over from integration over z to inte- 
gration over Z with the aid of (36). Taking into account 
the fact that the Jacobian of the transformation is equal 
to unity, we represent the correlator in the following 
form: 

4i 
0 

(a,+a,+a,a,)= - Q,,,,. d ~ ( [ h ~ ' ( n ~ + l ) + p ~ ~ ~ l  
f i  -- 

x [a,' ( n , + l )  + pqaql (h,n,+p,'a,') (h.n.+p.'o.') - (h,'nP+ppap) 
x (h,'n,+ p,aq) [h, (n,+$) +p,'a.'l [h. (%+I) +p.'a.'l 

- [hp'ap'+pp(np+l)  1 [h;a;+pq(nq+l) 1 (h,a,+ p,'nr) (h.a.+p.'n~) 
+ (h'pa,'+ypnp) .(h,'a,'+ pqnq) [h,a,+p,'(nr+l) 1 [h.a.+p.'(n.+l) 1).  

Collecting the terms with the same exponential time 
functions, and integrating over T ,  we obtain 

<a,+a,+a,a.>=4inQp, ,, ,. .{)upuqu,u.12RQq. . .~+(s+E~-E,-€ . )+.  . .). (38) 

The terms that have not been explicitly written out in 
the curly brackets in (38) [and in (40) and (41) below] 
a r e  obtained by the substitutions 

The correlator 

is computed in entirely similar fashion. 

Substituting the expressions (38) and (40) into the for- 
mulas (16), we obtain the expressions for the magnon- 
magnon part  of the collision integrals I",(,,) and I :(,,,: 

5. We can use for the computation of the correlators 
entering into the collision integrals (16b) the function 

where the function I;P is given by the formula (21). The 
equation for FQ is derived from the Liouville equation 
in exactly the same way a s  equation (18) was derived 
for F. Further, performing the integration in (42) and 
decoupling the terms on the right-hand side, we obtain 
the equation 

where 

i a a 
l r e q =  - e-lziz  Y zF - Nq- -z8'(Nq+1) 

f i  { ;'*q [ az. az: I 

Here N, = [ exp(E,/T) - 1 I-' is the phonon equilibrium 
Bose function and T is the temperature of the phonon 
thermostat. Equation (43) i s  similar to Eq. (28). It 
has the same characteristics, and therefore i ts  solu- 
tion can be written in the form 

f r a q  = Jvaq ( {&} ) ~ X P  (+ E ~ T )  d ~ ,  
-- 

where the Z, a re  determined by the formulas (36). 

The correlators entering into the expressions (16b) 
a r e  defined a s  moments of the function f& e. g . ,  

As  a result, for the magnon-phonon collision integrals, 
we have Here 
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where 

RLpq=(nk+1-~~aA (ns-r.*a9*)Nq-(nh-rhah) (n~fi-T;U~') (N,+I). (46) 

The formulas (41) and (451, together with (16) and (14), 
solve the problem entailing the derivation of a system 
of kinetic equations with allowance for the strongest 
(exchange) interactions. These equations a r e  valid for 
arbitrary amplitudes of the pump field. If the pump 
field is weak, the equations can be linearized around the 
equilibrium distribution, which will lead to previously 
obtained results.' In the case of a strong pump the 
equations a r e  essentially nonlinear in both the dynami- 
cal and collision parts. 

3. THE STATIONARY MAGNON DISTRIBUTION 

The stationary magnon distribution is determined 
from the kinetic equations (14), with the collision inte- 
grals given by the formulas (161, (411, and (45). Set- 
ting ;, = 0, & = 0 in (141, we obtain 

The condition for the consistency of this system follows 
immediately: 

(a&-ha) Zhn+AJ,"+A,'Ih"'-0. (48) 

Using the fact that the magnon-rnagnon and magnon-pho- 
non interactions a re  weak, we shall seek the solution 
of the system (41) in the form 

n, = n:O' + niL' + . . . , ak = 0:') + u:" + . . . , 
where nd", u~", and a,'"* satisfy Eqs. (47) without the 
right-hand sides: 

A*to)~l(o)- A*(')' 0;)' = 0, (g:') - ~ o / 2 )  0:') + A:)' (n:) +I/,) - 0, 

(&,,@I- h d 2 )  a:''' + 8:" (n;" + I/,) - 0, 
(49) 

with 

n,"', u p ,  . . . being small-in the interaction-correc- 
tions. The system (49) has a null determinant, and 
i ts  solution can be expressed in t e rms  of a single 
quantity, n:, a s  follows: 

When (51) is substituted into the solvability condition 

(48), also written in the zeroth approximation, the 
dominant parts cancel each other out, and we arrive 
a t  an equation for the function nf having the form 

x 6 (gP + eq - f; - fA) + I  w ; )  I2[ntn,Bn,! (n,B + 1) 
- (  n f + l ) ( n ~ + 1 ) ( n ~ + l ) n ~ ] 6 ( ~ ~ + $ + € , - € ~ ) +  ...) 

+ ~ { I ~ ~ ~ ~ l ~ [ ( n f + l ) n ~ ~ ~ ~ - n f ( n ~ + l ) ( N ~ + l ) ] .  
P'I 

~ ( T ~ - S ~ + E , ) + . . . }  =0, (52) 

where 

The terms that have not been written out pertain to all- 
possible elementary processes both with conservation, 
and without conservation, of the " new" quasiparticles 
(with the corresponding energy conservation laws). 
Equation (52) has the structure of a normal stationary 
kinetic equation, and its solution is an equilibrium Bose 
function with zero chemical potential and a temperature, 
T, equal to the temperature of the thermostat: 

nf- [ exp (edT) -I]  -I. (53) 

The stationary magnon distribution is found by sub- 
stituting (53) into (511, the functions A:" and ,$@ being 
determined by the self-consistency conditions. These 
conditions a r e  nonlinear integral equations, which a r e  
obtained from (50) when nkO' and uiO) a r e  replaced by 
the found stationary values. The obtained stationary 
distribution differs essentially from the thermodyna- 
mic-equilibrium distribution in that region of k space 
where 1 5, - Ew/2 I - I Ah I . The dimensions of the region 
and its  location a re  determined by the magnitudes of 
the frequency and pump renormalizations, and a r e  
found from the solution to the self-consistency equa- 
tions. Fa r  from this region the renormalizations be- 
come unimportant, and the distribution (51) is close to 
the equilibrium distribution with a chemical potential 
equal to tiw/2: 

4. EFFECT OF THE RELATIVISTIC INTERACTIONS 

1. Let u s  now find out how the above-found stationary 
distribution [see (51) and (53)] changes when the small 
relativistic correction, (61, in the Hamiltonian of the 
magnon system is taken into consideration. 

Since the interaction (6) does not conserve the mag- 
non number, on being transformed with the aid of the 
unitary transformation (8), the Hamiltonian ffmm be- 
comes explicitly dependent on time: 

As a result, there appear on the right-hand sides of the 
Eqs. (14) for n, and uk time-dependent relativistic cor- 
rections to the collision integrals: 
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I ir - e-i- t /z  z (Oh; P,q<a,,+aPaq)- 20% k,q<aP+a,+zk)) + LC., 
m 

(54) 
1;. = - 'z (e-imtl%h . ~ a - ~ a ~ a ~ ) +  2eiMm0; q,h<aq+a.*.L-J) + 1.0. 

h 
PP 

To find the correlators entering into (54), let us, a s  
before, use the coherent-state distribution function 
~ ( { z , ) ) ,  in the equation for which we shall allow for the 
relativistic corrections. Going over in this equation 
to the function f,, [it is determined in much the same 
way as (2411, we obtain after the decoupling process 
the equation 

f..q. - C L f P . , ,  = Id, ( t ) .  
L=pqr 

(55) 

where 

2i 
I:., ( t )  = - e'a'~z ~ ; , ~ , e -  

az 
lzia (zP=- z;z;- az; a )  

Equation (55) does not contain terms stemming from 
the exchange interactions, since these terms vanish in 
the integration leading to the function f,,,, and in the 
subsequent decoupling of i ts  terms. In its turn, the 
relativistic interaction does not contribute to  the Eq. 
(28) for the function f,,, because of the difference in 
the momentum-conservation laws. 

The solution to  Eq. (55), like the solutions to Eqs. 
(28) and (431, has the form 

The correlators entering into the expressions (54) for 
the relativistic collision integrals a r e  found, a s  before, 
from this solution. In performing the integration over 
7 ,  we should bear in mind that the functions n, and a, 
entering into the integrand contain parts varying in time 
with frequency o. This is connected with the explicit 
dependence of the Hamiltonian on the time, a depen- 
dence which stems from the relativistic interactions. 
But these rapidly varying parts a re  corrections to the 
stationary values nj  and a;, and are,  to the extent that 
the relativistic interactions a r e  weak compared to the 
exchange interactions, small. Therefore, in computing 
the correlators in the expressions (541, we can assume 
that n, =njo', a, = a,"'. Then for the relativistic collision 
integrals we have 

where 

8n Ro 
B k a = - ~ ~ ~ , q , - h ~ ~ . , h ~ ~ ~ ~ p ~ q ~ 2 R ~ , p q ~ +  (b- b-4--) + . . .  

h, 
P1 

2 

Here the t e rms  that have not been explicitly written out 
a r e  obtained by the substitutions 

uj=uy, F,+-T,, n:+I=-n: (j=k, p, q). 

2. To find the relativistic corrections to the station- 
ary distribution, let us consider the system of equations 
(14) in which the collision integrals I I: and I :  contain 
the relativistic corrections (57). Setting 

where nit and dt a r e  the stationary distributions satis- 
fying Eqs. (471, while n: and a: a r e  corrections due to 
the relativistic interaction, and linearizing the system 
(14) in the corrections n; and a:, we obtain a system 
of linear integro-differential equations. Intending only 
to estimate the relativistic corrections, we can neglect 
the integral t e rms  in these equations. As a result, 
we arrive a t  the following system: 

i i 
4" - -(2E," - h o )  a," - - Aha12nkr - I,""' (nhr, 0;) - I,"'. 

h h  

Here ly(n; a;) is a function that i s  linear in n: and o:, 
and does not contain the integral terms of the correction 
to the exchange collision integral. 

Let us, in accordance with (571, represent the solu- 
tion to the system (58) a s  follows: 

For  the time-independent part we have 
i -- 
h 

( ~ ~ ~ ~ a ~ ~  - A;'' ahr') - I;'" (hr, ahr) = Ahn, 

Using the fact that the collision part is small compared 
to the dynamical part, we seek the solution to this sys- 
tem in the form 

fihr=fiho'+fih;+ ..., uhr=a.#'+8,,r+ ..., 
where ELo and Trio make the dynamical parts vanish. 
Therefore, a s  was done above [see (51)], Ria and Clo 
can be expressed in t e rms  of a single quantity, v,: 

[We have replaced the quantities [,St and A : ~  by their 
values in the zeroth approximation, and A?, since 
the discarded terms give, a s  can be seen from (60) and 
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(61), corrections that a r e  of higher order in I F / & , . ]  
The equation for vk follows from the solvability condi- 
tion for the system for %L1, aLl: 

(2~: ' -  h a )  I;'" + A:"I,"'+ A/"I,""" = - 2gkAhA,, 

2 € d h  = ( 2 ~ : " -  h o )  Ahn + A:"A," + A;"" Aka'. (61) 

From this system we find 

vk=AI/Dk, 

where 

sh (rk12T) Dh=s z sh ( rJ2T)sh(&/2T)sh(eT /2T)  
PI' 

In the equations determining the coefficients a,, A,, 
and k,  we can neglect the collision terms [we cannot do 
this in Eqs. (59), since it leads to an inconsistent sys- 
tem]. As a result, we obtain the following solution: 

As can be seen from (601, (621, and (63), the time- 
dependent relativistic corrections are,  to the extent 
that the ratio I E X / c k  is small, small compared to Ti; and 
-4. In their turn, the corrections 8: and 5; a r e  small 
compared to the stationary values ndo' and a,"' for v, 
<<nf = [exp(~:/ T) - I]". From this and (62) we obtain 
the inequality 

A ~ n t t ~ , .  

The quantity D;' coincides in order of magnitude with 
the characteristic time of the exchange relaxation to the 
stationary distribution n:", do), while the ratio A,/$ 
determines the characteristic frequency of transition 
in the stationary system under the' influence of the rela- 
tivistic interaction (6'). Thus, if the exchange-relaxa- 
tion frequency is high compared to the relativistic- 
interaction induced transition rate, then the correc- 
tions n: and a,' a r e  small compared to the stationary 
values nl0' and o,". Hence the stationary distribution 
is stable. 

3. Let us  consider the problem of pump-field-energy 
absorption by the magnon system in the steady-state 
regime. By definition, the absorbable energy is 

Q=taH/at, ,  

where H is the Hamiltonian (1) and the averaging is 
performed with the density matrix p determined by Eq. 
(7). Carrying out the differentiation, and using (121, 
we obtain 

On the other hand, the equation for the correlator n, 
can be represented in the form 

the averaging being performed with P. Hence for the 
absorbable power we obtain the following exact expres- 
sion: 

where N =C,n, is the total number of magnons. 

Since the exchange interactions conserve the total 
magnon number (the corresponding terms in the Ham- 
iltonian commute with the operator C,a, + a,), only the 
relativistic terms in the second addend of formula (64) 
will remain. Performing the averaging over time, and 
taking into account the boundedness of N a s  a function 
of time in the steady-state (not necessarily stationary) 
regime, we obtain 

Thus, of all the interactions entering into the Hamil- 
tonian (11, only the relativistic interactions, which do 
not conserve the magnon number, lead to absorption in 
the steady-state regime. Let us  emphasize that, for 
a system with the Hamiltonian (I), this statement, like 
the formula (65), i s  exact. It follows from it, in parti- 
cular, that if the distribution i s  stationary, then there 
should be no absorption. Indeed, a s  shown above, the 
stationary distribution can be established only by the 
magnon-number-conserving exchange interactions, 
while the relativistic interactions, which a r e  responsi- 
ble for the absorption, make the distribution nonstation- 
ary. The stationary distribution (511, (53) found by us 
leads, a s  i t  should, to zero absorption, and the absor- 
bable power is determined by the nonstationary relati- 
vistic corrections. 

Because of the weakness of the relativistic interac- 
tion, we can use the approximate expression (57) for the 
collision integral. The oscillating terms in I;' drop 
out in the averaging over time, and we have 

Here, a s  before, the dotted line in the curly brackets 
in (66) denotes terms that a r e  obtained from those that 
have been written out by the substitutions us - v:, 2, - - ~ , ( s  =p, q, r).  The positive definiteness of the found 
absorbable power is evident; what is more, the substi- 
tution w - -w does not destroy this property. 

In conclusion, let us note that, for the realization of 
such a distribution with the corresponding relativistic 
corrections, besides the need for the self-consistency 
equations to be compatible, it is necessary that the 
pump field exceed the threshold value, whose order of 
magnitude is determined by the linear damping. 

')~n the classical limit the quantities z, coincide with the ampli- 
tudes of the classical waves. 
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')A similar type of equation for a phonon system is considered 
in Ref. 3. 

3 ) ~ h e  terms with the second derivatives drop out in going from 
Eq. (26) to the equations, (25), for the correlators,  since 
there is  not a single pair of indices among the indices p, q, 
r, s that differ only in sign. 
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Investigations of the optical properties of substituted spinel femtes have indicated a significant increase in 
the transmittance of these compounds upon their conversion into a structure with a single Fe3+-ion 
magnetic sublattice. The off-diagonal components of the permittivity tensor are determined from the 
optical and magneto-optical spectra, and some of the transitions that occur in the hexagonal femtes are 
identified. It is suggested that the two-ion optical transitions with charge transfer between neighboring 
magnetically active ions play the decisive role, and a selection rule for such transitions is proposed. 

PACS numbers: 75.50.Gg, 78.20.L.5, 77.20. + y, 64.70.Kb 

INTRODUCTION 

In ferromagnets with two magnetic iron sublattices 
intense allowed transitions in the visible and near-ul- 
traviolet regions of the spectrum a re  observed only in 
the case when they a r e  due to pair excitation of the 2'e3' 
ions. This follows from the fact that, in the indicated 
spectral region, the electric dipole,transitions of the 
2'e3' ion in the internal crystal field a r e  spin and parity 
forbidden, a s  well a s  from the quadratic dependence of 
the intensity of these transitions on the iron-ion con- 
centration. ' The f i rs t  intense single-ion optical tran- 
sitions of the type of a charge transfer from the 2p or- 
bitals of oxygen to the 3d orbitals of iron8 lie, accord- 
ing to  Ref. 4, in the shorter-wavelength region of the 
spectrum. 

sublattices with the formation of ~ e ~ ' -  and Fe2'-ion 
pairs. 2*4 Analysis of the splitting of the energy levels 
of the F'e3' ion in tetrahedral and octahedral crystal 
fields and the computation of the energies of the pos- 
sible transitions both in the case of two-exciton excita- 
tion and in the case of charge transfer between sublat- 
tices lead to good agreement with the experimental 
data. '' 

Thus, if we consider the pair mechanism of transition 
excitation in iron ions located on different sublattices 
to have been reliably established, then we should ex- 
pect to observe not only the above-indicated decrease 
in the magnitude of the magneto-optical effect, but also 
a decrease in the absorption coefficient of such ferro- 
magnets when the iron ions on the tetrahedral or octa- 

The two-exciton mechanism of simultaneous excitation 
hedral sublattices a re  replaced. With the object of 
verifying this assertion, we carried out optical investi- of two 2'e3' ions located on different sublattices, and 
gations of the aluminate ferri tes and chromite ferri tes 

coupled by a strong exchange interaction, has been con- 
of cobalt and nickel, in which we replaced in turn the 

sidered in investigations of the garnet ferrites5 and sub- 
iron ions on the octahedral or  tetrahedral sublattice stituted spinel ferrites. ' 'I  In particular, in Ref. 6, 

where chromium-substituted spinel ferri tes a r e  con- respectively by and cr3+ ions. On the basis of the 
optical and the earlier-performed magneto-optical sidered, the conclusion that the two-ion optical-transi- 
measurements, we computed the permittivity-tensor tion mechanism plays the decisive role is based on the 

fact that the magnitude of the magneto-optical effect components, which were used for a more reliable 
identification of the optical transitions and the deter- has been found in investigations of the magneto-optical 

spectra of the spinel ferri tes of cobalt and nickel to mination of the nature of their splitting. 

decrease sharply when the iron ions on one of the sub- By qualitatively comparing the magneto-optical spec- 
lattices a re  replaced by Cr3' ions. Another possible t r a  of the spinel ferri tes with those of the hexagonal 
mechanism for the pair excitation of the iron ions is ferri tes yith the M, W, 2, Y, and X structures, we 
the transfer of charge between Fe3' ions on different have identified some of the optical transitions in the 
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