
The energy flux carried away by the electrons from 
the pinch can be estimated from the equation Q =j,,ST,, 
where S is the surface area  of the pinch. We note that 
these losses a r e  equal to the energy lost by the hot 
electrons to  heating the cold electrons produced in the 
pinch a s  a result of ionization. We obtain Q = 3 - 1 0 ' ' ' ~ ~  
x (T,/M)"~ kW. At R =  1 atm, S =  1 cm2, and T, = 3 
x lo5 K we have Q =  102/'jjr kW, where p is the mole- 
cular weight of the particle. 

In conclusion, we note the following. It was observed 
in Kapitza's experiments1 that the light hydrogen and 
deuterium impurities contribute to the appearance of a 
hot plasma pinch, and spectroscopic measurements 
have shown that there a r e  no multiply charged ions in 
the pinch. The cause of these phenomena can be un- 
derstood with the aid of the proposed theory. The point 
is that the only particles that can penetrate into the in- 
terior of the hot region of the plasma pinch a re  those 

of light impurities, which have a high thermal velocity 
and a sufficiently high ionization potential. This fol- 
lows, for example, from Eq. (6) [or (911: the larger 
the parameter Mp2, the more difficult i t  is for the par- 
ticle to land in the interior of the pinch. 
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An elementary model of the onset of turbulence, corresponding to Landau's idea of the collapse of the 
stable limit cycle, is considered. We give qualitative estimates of the conditions for the appearance of the 
turbulent (stochastic) motion which has the structure of a strange attractor. We show that a strange 
attractor occurs when the effective coefficient for the stretching of the trajectories in phase space in the 
dissipationless case becomes larger than the effective dissipation coefficient. We performed a detailed 
numerical experiment on the model to elucidate the structure of the strange attractor, the transition 
regime, the local instability, the correlation function, and the stationary distribution function in phase 
space. 

PACS numbers: 47.25. - c 

1. INTRODUCTION system is no longer Hamiltonian. The analysis of the 

The analysis for the conditions for the transition of a 
dynamical system from the regime of a regular, condi- 
tionally peridoic motion to a regime of an irregular, 
stochastic motion has become more and more often the 
topic of study in the physical and mathematical litera- 
ture. The generation of turbulence from a laminar 
motion is perhaps the most characteristic field of phy- 
sics whose content is directly connected with the deter- 
mination of a criterion for the appearance of stochasti- 
citv. 

In the case of weak turbulence the dissipative proces- 
ses  in the system a r e  weak and one can describe the dy- 
namics of the system by Hamiltonian equations. An 
analysis of the conditions for the appearance of turbu- 
lence in this kind of system was given by Sagdeev and 
one of us' (see also Ref. 2) .  It is shown there that the 
basis for the mechanism for the generation of a stoch- 
astic (turbulent) component of the motion is the well 
known n-wave (n 3) cluster wave interaction. The 
wave concept itself is quite well defined, since the dis- 
sipation is weak. The situation, however, changes ab- 
ruptly under conditions of strong dissipation, when the 

conditions for the appearance of stochasticity in this 
kind of system started with Lorenz's well known paper,3 
in which a highly simplified model of thermal convec- 
tion was studied. A large number of papers, stimula- 
ted by Lorenz's paper (see, e. g . ,  Refs. 4 to 91, led to 
the appearance in the physical literature of anew term- 
"the strange attractor9'-introduced by Ruelle and 
~ a k e n s '  to denote a particular form of stochasticity 
occurring in strongly dissipative systems (for details 
see  the reviews by   on in" and ~abinovich"). 

Great hopes were pinned on the study of strange attrac- 
tors  in attempts to construct a theory of the onset of tur - 
bulence. One should note that a strange attractor also 
occurs in problems in other fields of physics: laser 
systems, plasmas, and so on (see Ref. 11). The study 
of the stochasticity effect in strongly dissipative sys- 
tems entails a t  present considerable difficulties. Real 
physical systems a r e  a s  a rule studied numerically. It 
is also unclear how to apply to these systems the exist- 
ing rigorous mathematical methods. 

The aim of the present paper consists in a detailed 
numerical study of a greatly simplified model for the 
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onset of turbulence, which lends itself also to an ana- 
lytic treatment. The basic considerations which led to 
our model a r e  connected with well known arguments by 
Landau. l2 We shall imagine that there is a single mode 
which has a stable limit cycle and which is perturbed by 
all  other modes. In the vicinity of the limit cycle one 
can write down the equations of motion with the action 
(I) and angle (8) a s  variables: 

where Y is the dissipation coefficient, I. is the action 
corresponding to the limit cycle, E is the dimension- 
l e ss  parameter of the interaction with the other modes 
(we assume that c << 11, q is a function in which I is 
replaced by I. (because & << 11, w(I) i s  the nonlinear 
mode frequency, while At) takes into account the effect 
of all  other modes. It is shown in Ref. 1 that if the 
number of modes is sufficiently large and that under 
rather general conditions the function fit) can be written 
in the simplified form 

where the quantity 2n/T is of the order of the charac- 
teristic distance between the frequencies of neighboring 
modes. One can reduce Eqs. (1.1) to finite difference 
transformation equations of the following form: 

where (1,,9,) a r e  the values of (I,$) after the n-th 6- 
function jolt. It is possible to make a qualitative analy- 
tical study of the set (1.3) and to determine explicitly 
the criterion for the occurrence of a strange attractor. 
Although the model (1.1) is a very great simplification 
of those problems which ar ise  in the turbulence studies, 
i t s  analysis gives rather extensive information, a s  will 
be seen in what follows. The main reason is that for 
the model (1.1) one can obtain for the conditions for the 
appearance of the strange attractor, for i t s  structure, 
and for other properties analytical estimates which a re  
confirmed by a numerical analysis. These results a re  
partially given in Ref. 13. Moreover, when Y = O  the 
set  (1.1) degenerates into the so-called main model of 
stochasticity of Hamiltonian ~ ~ s t e m s , ~ " " " ~  which is 
typical also of the case of a large number of degrees 
of freedom. ' One sees easily that the set  (1.1) is a 
natural generalization of the Hamiltonian case when a 
stable limit cycle i s  present. Finally, the formal con- 
struction of a system with a strange attractor, sugges- 
ted recently by Vul and Sinai, l6 corresponds apparently 
to the set (1.1), and this may lead to the possibility of 
using more rigorous methods. 

The main results of the present paper consist of a 
detailed numerical analysis and of qualitative estimates 
of the conditions for the appearance of a strange attrac- 
tor  in the system (1. I) ,  and of the establishing of a 
connection between the model (1.1) and already known 
models. One of the principal results is the construc- 
tion of a stationary distribution function on the strange 
attractor, which opens up a possibility of using thermo- 
dynamic methods in systems with strong dissipation. 

We noted already that the set  (1.1) can ar ise  a s  the 
result of a strong idealization of the problem of the 
occurrence of turbulence. The qualitative considera- 
tions leading to i t  consist of the following. Let a(x, t) 
be a state vector satisfying the hydrodynamic equations 
of motion and boundary conditions. We expand a(x, t) 
in a Fourier series: 

a (o, t )  = ar ( t )  elu 

L 

and write the equations of motion in the form 

where the dissipation coefficients y,, the frequencies 
w,, and the interaction matrix elements Vkkl a re  deter- 
mined directly from the initial equations of motion. 

We assume now that one unstable mode with complex 
amplitude A is excited. For  small values of the time 
we can write 

d = ~ A + i o A ,  (2.2) 

where 7 > 0 and where we have dropped the wave-vector 
index for simplicity. ~ a n d a u ' ~  described qualitatively 
the transition from the nonperiodic motion (2.2) to a 
periodic one a s  follows. With increasing time the amp- 
litude I A  I grows and we must take into account in Eq. 
(2.2) the next t e rms  of the expansion in (A I. This 
leads to the equation 

A = ( ~ + ~ ~ ) A - G I A I ~ A  (2.3) 
or  

d 
-IAIa--2~ lAIz-261AIL. 
dt (2.4) 

When 6 > 0 the stationary state corresponds to  the value 
lo - IAo12=~/6 .  

In the vicinity of this value one can rewrite Eq. (2.4) 
in the form 

f=-28zO ( I - I0) ,  I= 1 A 1 ', (2.5) 

where the variable I will be called the action. One can 
add to Eq. (2.5) an equation for the phase: 

i = o  ( I ) ,  (2.6) 

where @ ( I )  is the frequency of the oscillations of the 
selected mode and must also take into account nonlinear 
corrections in the form of an expansion in I. The ac- 
tual expression (2.6) can be obtained from (2.3) if we 
write 

A=lAlei*. (2.7) 

Equation (2.5) describes the motion in the vicinity of a 
stable limit cycle to which corresponds the value Io. 
In the normal situation y a R  - R,,, where R,, is the 
critical characteristic number of the problem. 

Equation (2.4) does not contain oscillating terms and 
ar ises  a s  the result of some procedure for  smoothing 
the motion of the selected mode A. We now take into 
account in some appropriate manner the effect of the 
other modes a, on the evolution of A. Using (2.1) and 
(2.3) we can write: 
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where the wave number ko corresponds to the mode A.  
Multiplication of (2.8) by A* gives 

We assume now that the difference R - R,, is small and 
that for the modes a, in the sum in (2 .9)  the instability 
either does not develop or develops rather slowly. We 
can then write approximately: 

a,= ( a l l  exp ( i o , t ) ,  a-,=a,' 

and 

We consider the expression 

We drop from the right-hand side of (2.10) the fast 
oscillating terms occurring in the sum with k < ko and 
we assume that the k-dependences of Vkk0, 1 ak 1 ,  and 
lakO-,l  a r e  weak. If we further assume that a rather 
large number of modes with k > ko with a weak disper- 
sion dw/dk is excited, we get from a comparison of 
(2.10) and (2.11) 

where the quantity T h a s  the meaning 

(Ak is the characteristic distance between neighboring 
wave numbers of the excited modes a,). Substitution of 

(2,7) and (2.12) into (2 .9)  leads to the model (1.1). It 
is useful to emphasize that from a qualitative point of 
view the representation (2.12) works rather well for 
broad excitation spectra and weak dispersion not only 
in the single-mode approximation. ' 
3. MODEL HIERARCHY 

We make in (1.1) some slight simplifications without 
changing the basic properties of this set. We put: 

i. e . ,  we retain in q(Zo,8) only the first  harmonic in the 
phase, the factor Zo is introduced from dimensional con- 
siderations, and (Y is a dimensionless nonlinearity 
parameter. We introduce the dimensionless quantities: 

y = ( I - I o ) / I , ,  6 - L x ,  W=ooT,  r = y T .  (3.2) 

Using (1.21, (3. 11, and (3 .2)  we can by a simple inte- 
gration from (1.1) obtain the set (1.3) in explicit form: 

yn+,=e-* (y.+e cos 2nx, ) ,  

. where the brackets {. .) denote the fractional part of 
the argument. 

K = ~ a a ,  ~=( i - e -= ) / r .  (3.4) 

Absence of dissipation corresponds to r = 0(p = 1). In 
that case the set (3.3) takes the form 

y,+,=y,+e cos 2nz, ,  

which is the basic model for stochasticity of Hamilto- 
nian systems. In what follows we assume everywhere 

FIG. 1 .  Trajectories in phase space when there is no dissipation (r = 0 )  for c =0.3, a = 0 . 3  and different values of K: a) K=0.09; 
b) K = 0 . 1 8 .  
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that c << 1. In this case the parameter K plays a funda- 
mental part. The limit for the occurrence of stochasti- 
city is the value K-1. When K s 1 the motion is stable 
while for K z  1 the motion has the property of local in- 
stability which can be expressed a s  follows. We denote 
by 

D ( t )  =[ (x(t)-Z(t))Z+(y(t)-ij(t))z]'b 

the distance between two trajectories in phase space. 
If D(0) is very small (D << 11, the local instability mani- 
fests itself in the relation 

D ( t )  -D (0)  eht (3.6) 
until D-1 is reached. The instability growth rate h is 
proportional to the Kolmogorov entropy and for the se t  
(3.5) is of the order of2 h-~"1nK. Local instability 
(3.6) leads to an exponentially fast mixing of the tra- 
jectories in phase space and, hence, to turbulent mo- 
tion. 

The qualitative aspect of the appearance of stochasti- 
city consists in the f ~ l l o w i n g . ~  For small c one can to 
a first approximation neglect the change in the variable 
y and when K>> 1 there occurs a "stretching" of trajec- 
tories with respect to phase such that 

1 6x,+,/6xnI - K B l .  (3.7) 

Exceptions a r e  the stability islands in the vicinity of the 
stable singular point x, =O,  where the derivative ax,,l/ 
ax, vanishes. What we have just said is illustrated in 
Fig. 1 by the data from a numerical analysis. We give 
in that figure the points (x,, y,) of a trajectory for the 
se t  (3.5). At small values of K the trajectories a re  
periodic (Fig. la). Increasing K leads to their partial 
destruction in the neighborhood of the hyperbolic point 
(Fig. lb). Large stability islands a r e  st i l l  preserved. 
Finally, a t  sufficiently large values of K practically the 
whole of phase space is a region of stochastic motion. 

The considerations presented here show that the basic 
mechanism for the appearance of stochasticity is the 
mixing of the phases of the system. This means also 
that the phase correlation function 

must vanish a s  m-m if K>> 1. More precisely15: 

FIG. 2. Strange attractor for & = 0 . 3 ,  (Y =0.3 ,  K =  9.03, r = 5 .  

FIG. 3.  Distance between two initially close trajectories 
(D(0)  = as a function of the dimensionless time for motion 
on the strange attractor. 

~ ( m )  .nexp(-'/,m In K )  , (3.9) 

and the phase correlation is uncoupled after a time 

z=ZT/ln K - l l h .  (3.10) 
Hence it follows that the mechanism for the occurrence 
of stochasticity can be traced using the even simpler 
cosine (sine) model:" 

x,+,={Kx-' cos xx,),  (3.11) 

where x is a certain constant. A study1' has shown 
that when K a  1 the mapping (3.11) has the following 
properties: 1) the motion is stochastic and after finite 
times the local instability (3.6) appears; 2) a stationary 
distribution function p(x) se ts  in after long t imes and is 
close to a constant (-1) everywhere except for a small 
region in the vicinity of the point x, of the first  reso- 
nance : 

xo= {Kx- '  cos xxo) .  

Similar properties a r e  possessed also by the set  (3.5) 
in the Hamiltonian case which was studied in detail by 
Chirikov. l4 

4. STUDY OF THE DISSIPATIVE CASE 

Considerations similar to the ones given earlier can 
be advanced also for the dissipative system (3.3) of 
interest to us. Using (3.7) we find from (3.3) and (3.4) 
the condition for the appearance of stochasticity in the 
form 

K ~ = K ~ > I .  (4.1) 

When r >> 1 the condition (4.1) becomes 

K r = K / r S 1 .  (4.2) 

However, the dissipative nature of the system (3.3) 
causes the invariant se t  on which the stochastic motion 
is realized to have a structure that differs from that in 
the Hamiltonian case. 

The numerical analysis confirms Eq. (4.1). We give 
in Fig. 2 a typical phase-plane pattern which corre- 
sponds to the appearance of a strange attractor. We 
recall that a strange attractor is an invariant region in 

FIG. 4. Correlation function on the strange attractor for the 
same data a s  in Fig. 2. 
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FIG. 5. Local properties of the motion in the ca se  of degener- 
acy of the strange attractor to the usual l imit  cycle. 

phase space, and has one less  dimension than the whole 
phase space and a Cantor type structure. The latter 
property manifests itself in that when the scale in- 
creases each of the lines in Fig. 2 subdivides into a 
structure similar to that in Fig. 2. Moreover, the re- 
gion depicted in Fig. 2 is attractive, i. e . ,  for any 
initial condition the point of a trajectory lands after 
some time on the structure depicted in Fig. 2." The 
motion of the representative point on the strange attrac- 
tor is stochastic and corresponds to a transition from 
laminar to turbulent motion. The ensuing property of 
local instability is illustrated in Fig. 3. The develop- 
ment of local instability corresponds for short times 
to Eq. (3.6) and for long times to random fluctuations 
in the vicinity of D -1. The correlation function evalu- 
ated from Eq. (3.8) i s  shown in Fig. 4 and its relaxa- 
tion time corresponds to Eq. (3.10). 

In those cases where K>> 1, I? >> 1, but condition (4.2) 
i s  not satisfied, i. e . ,  K/r < 1, the motion of the sys- 
tem in the initial stage is close to stochastic (since 
K >> 1). Subsequently, however, the trajectory is at- 
tracted to some periodic cycle. This statement i s  il- 
lustrated by numerical data in Fig. 5 .  

The qualitative criterion for the appearance of a 
strange attractor can thus be formulated a s  follows. 
Let the initial system be reduced to  some "diagonal" 
form, i. e., to variables such that the fast  and slow 
motions a r e  effectively separated. In that case the 
ratio of the stretching parameter K of the fast  variable 
(phase) when there is no dissipation to the character- 

FIG. 7. Distribution function p ( x , y )  on the strange attractor 
depicted in Fig. 2.  

istic dissipation coefficient of the slow variable (ac- 
tion) must be larger than unity. 

We now dwell on the particular features of Eqs. (3.3) 
when the stochasticity parameter K, changes in the 
transition region KT 2 1 where the random (turbulent) 
motion originates. When r < 1 and K  >> 1 the picture 
in the phase plane becomes complicated (Fig. 6) and is, 
in some sense, intermediate between the distribution 
of phase points when r = 0 and the distribution when 
r > 1 (Fig. 2). The appearance of a weak structure in 
the form of almost horizontal straight lines is seen in 
Fig. 6. 

Increasing r in the region r > 1 leads to the appear- 
ance of a number of bifurcations in the regimes of 
motion of the system. For some values of K ,  the 
strange attractor vanishes and becomes a limit cycle. 
This effect is analogous to the appearance of a stability 
region in the variable K  in the Hamiltonian case. A 
numerical analysis shows that for the values E = 0.3, 
a = 0.3, and K =  9.03 (i. e . ,  for the same values a s  for 
the case in Fig. 2) stability islands appear in the range 
5.9 5 I' 5 6. When r > 6 the strange attractor appears 
again and vanishes when r > 14. 

In concluding this section we consider the distribution 

FIG. 6. Strange attractor 
for weak dissipation 
(&=0.3,  ff =0.3, K=9.03, 
r = 0.85). 
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FIG. 8. Subdivision of the distribution function p ( x , y )  in the 
vicinity of the point B on the strange attractor depicted in Fig. 2. 

function p(x, y, t )  of the states of the system. A numer- 
ical analysis shows that there exists a stationary func- 
tion p(x, y) on the strange attractor. We give in Fig. 7 
an example of such a function (the numerical data a re  
the same a s  in Fig. 2). It has two sharp maxima in 
the neighborhood of the points A and B (Fig. 2) and in 
the remaining region fluctuates about a constant value. 
With good accuracy we may assume that the function 
smoothed over a small region is 

p (x ,  y) =eonst. 

This conclusion is completely analogous to the proper- 
ties of the distribution p ( x )  in the cosine (sine) model 
(3.11). If, however, we increase the scale of the map- 
ping of p(x, y), there occurs a subdivision of the lines 
of the attractor and correspondingly a subdivision of the 
"crests" of the relief in Fig. 7. An example of such a 
subdivision for the region near the point B is given in 
Fig. 8. The sharp maximum occurring in Fig. 7 i s  
strongly diminished and the amplitude of the distribu- 
tion becomes more uniform. 

The conclusion about the existence of a stationary 
distribution function on the strange attractor and about 
its properties has, in our opinion, the following funda- 
mental significance. Notwithstanding the presence of 
strong dissipation in the system, one can describe the 
turbulent motion by means of an appropriate invariant 
distribution similar to what is done for Hamiltonian 
systems. In other words, for the range of parameters 
for which a strange attractor appears one might con- 
struct an "equilibrium thermodynamics" and study the 
relaxation to equilibrium by means of a suitable kinetic 
equation. 

5. CONCLUSION 

Using a very simplified model we have shown how 
turbulent motion can be generated under the influence 
of a perturbation in the vicinity of an unperturbed stable 
limit cycle. The simplicity of the model enables us to 
give an intuitive, qualitative analysis which was con- 
firmed by the data from a numerical experiment. One 
may expect that the basic features of the appearance of 
turbulence, discovered above, a re  possessed also by 
more complex systems. We note two aspects whose 

study, in our opinion, would enable us to reinforce the 
"position" of the strange attractor in turbulence theory. 
The first  is connected with a study of a large number of 
interacting dissipative modes and with making more 
precise the turbulence evolution picture suggested by 
Landau. The second is connected with an analysis of 
the picture we have obtained of the appearance of a 
strange attractor and with a comparison of it with 
existing mathematical and others. An ans- 
wer to this question would enable us  to elucidate the 
formal side of the problem. In connection with this last 
remark we note that, for instance, the formal model of 
turbulence suggested by Ruelle and ~ a k e n s "  bears, 
apparently, no relation to the real situation. 

From the results of the present paper it follows also 
that the main stochastic characteristics of a dissipative 
system a re  similar to those of Hamiltonian systems. 
These include the property of local instability, the expo- 
nential damping of the correlation function, and the ex- 
istence of a stationary distribution function. 

' ) ~ e ~ l a c i n ~  the cosine by a sine does not play any role. 
2 ) ~ n  analysis of the structure of the strange attractor which 

appears (number of lines, size, position of the points A and 
B ,  and so  on) is given in Ref. 13. 
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