
3 ~ .  D. Buckingham and M. Pariseau, Trans. Faraday Soc. 62, 
1 (1966). 

4 ~ .  L. Boyle, A. D. Buckingham, R. L. Disch, and D. A. 
Dunmur, J .  Chem. Phys. 45, 1318 (1966). 

'A. D. Buckingham and B. J. Orr, Trans. Faraday Soc. 65, 
673 (1969). 

6 ~ .  M. Kung, J. F. Young, and S. F. Harris, Appl. Phys. 
Lett. 22, 301 (1973). 

'A. Owyoung and R. W. Hellwarth, and M. George, Pnys. 
Rev, A4, 2243 (1971). 

'J. J. Song and M. D. Levenson, Appl. Phys. 48, 3496 (1977). 
'A. Owyoung, IEEE, QE-9, 1064 (1973). 

''A. Gerard and J. M. Birch, Introduction to Matrix Optics 
(Russ. transl.), Mir, 1978. 

I'D. V. Vlasov, V. V. Korobkin, R. V. Serov, Kvantovaya 
elektron. (Moscow) 5, 2457 (1978) [SOV. J. Quant. Electron. 
8, 1380 (1978). 

125. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1959). 
V. Vlasov and V. V. Korobkin, a d  R. V. Serov, 

Kvantovaya elektron. (MOSCOW) 6, in press (1979) [Sov. J. 
Quantum Electron. 9. in press (1979). 

Translated by J. G. Adashko 
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A plasma pinch in dynamic equilibrium with a surrounding dense gas is considered under conditions 
when the ion mean free path in the hot region of the pinch is much longer than the characteristic 
dimensions of the pinch. An ion flux that hinders the penetration of the neutral particles into this region 
is produced on the boundary of the hot region of the pinch so that in the ion "free flight" regime the 
energy losses of the electrons turn out to be lower than under the conditions of the diffusion regime. The 
structure of the plasma pinch is investigated. 

PACS numbers: 52.55.E~ 

1. High-power high-frequency electromagnetic radia- 
tion can produce in a dense gas  a plasma pinch in which 
the electron temperature is several  orders  of magnitude 
higher than the temperature of the gas  surrounding the 
pinch. This  interesting phenomenon was observed by 
Kapitza. ' He obtained and investigated a pinch in gas  
at atmospheric pressure  at a power input "20 kW. The 
pinch thickness was  several  millimeters, the length 
several  centimeters, and the electron temperature T, 
= 3 .  lo5- lo6 K. 

The electrons a r e  heated in thepinch under conditions 
of the anomalous skin effect, and the containment of the 
high-temperature electrons i s  due to the presence in the 
boundary region of the pinch of a constant electric field 
that i s  the result of the separation of the charges. In 
th is  boundary region, called in Ref. 1 a double layer, 
the densities of both the hot electrons and of the neutral 
particles a r e  high. The structure of the double layer 
influences strongly the energy lost by the hot electrons. 
If it i s  assumed1 that the thickness of the double layer 
is of the order of the pinch diameter, then the power of 
the R F  field i s  by f a r  not enough to compensate for the 
hot-electron energy loss  due to elastic collisions with 
the neutral particles and to  the collisions with the cold 
electrons, which result from impact ionization. The 
structure of the pinch was investigated in Refs. 2 and 
3 on the basis  of the balance equations for the number 
of particles under conditions of the diffusion regime, 
when the mean f r ee  path of the ions between the colli- 
sions with the neutral particles is small  compared with 
the characteristic dimensions of the pinch. In this case 

the thickness of the double layer turns  out t o  be  smal ler  
by two o r  three  orders  of magnitude than the dimension 
of the pinch. The inelastic energy lost by the hot elec- 
t ron makes in this  case  a negligible contribution to  the 
energy balance of the system. However, the energy 
lost by the hot electrons in collisions with the cold ones 
is nevertheless large: the power necessary for  the 
pinch to exist in the diffusion regime is 10-30 t imes  
la rger  than the experimental value of the R F  field 
power fed to the pinch. 

The present paper deals  with a plasma pinch under 
conditions when the ion mean f r e e  path in the hot region 
of the pinch exceeds the characteristic dimensions of 
the pinch. It appears that this  is precisely the case 
realized in Kapitza's experiment,' since the regime of 
the ion "free flight" is energywise favored over the 
diffusion regime. The point i s  that under ion f r ee  flight 
conditions the neutral particle density in the entire 
pinch region where hot electrons are present i s  much 
l e s s  than the density of the gas  f a r  f rom the pinch. The 
reason i s  that the ions accelerated by the constant 
electric field produce on the boundary of the pinch a 
convection pressure  that balances the action of the 
neutral ga s  surrounding the pinch. Beyond the l imits  
of the hot region of the pinch the ions lose velocity as 
they collide with the neutral particles, the convection 
pressure  of the ions decreases,  the part ial  pressure  
of the neutral particles increases.  Thus, the partial 
pressure  of the hot electrons on the pinch boundary is 
transformed into convection pressure  of the ions, 
which prevents the neutral part icles f rom penetrating 
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into the region of the pinch where the hot electrons 
a r e  present. The number of neutral particles entering 
the pinch i s  just sufficient to  compensate for the drift 
of the ions and electrons from the pinch. 

We note that electrons of energy exceeding the poten- 
tial barrier produced by the constant electric field a r e  
not retained in the pinch. Therefore under conditions 
when the mean free path of the hot electron between the 
collisions with the particles exceeds the dimensions of 
the pinch we have for the hot electron a truncated en- 
ergy distribution function. The electrons that leave the 
hot region of the pinch a r e  those which have acquired 
an excess energy by interacting with the R F  field or 
with other electrons and could overcome the potential 
barrier.  Since these interactions a r e  practically con- 
tinuous, we have cooled electrons behind the potential 
barrier.  In the present paper, just a s  in Ref. 2, the 
hot-electron velocity distribution function is assumed 
to be Maxwellian with a truncated tail. This is valid if 
the partition of the energy among the electron is more 
intense than the heating of the electrons in the RF field. 
In the opposite case, when this conditions is not satis- 
fied, the kinetic equation with account taken of the in- 
teraction of the electrons with the RF field and with the 
constant electric field and the electron collisions with 
the heavy particles must be taken into account in order 
to determine the electron distribution function. This 
problem for a diffusion-regime pinch was investigated 
in Ref. 3. 

2. Considering the one-dimensional problem, we 
write down the kinetic equations for the ions, for the hot 
electrons, and for the neutral particles in the form 

where I,, and I,,, a r e  the collision electrons of the ions 
with the neutral particles and of the neutral particles 
with the ions, P is a coefficient that characterizes the 
impact-ionization frequency, e is the absolute value of 
the electron charge. The potential of the constant self- 
consistent electric field is determined by the Poisson 
equation: 

d2q/dz2=-4ne(n,-n,) .  (4) 

We note that in this analysis we neglect the recombina- 
tion of the hot electrons with the ions, since this pro- 
cess makes a negligible contribution to  the particle- 
number balance. Intense recombination of the plasma 
takes place outside the boundaries of the hot region of 
the pinch. 

If we add the first-moment equations corresponding 
to the kinetic equations (1)-(3) and take the Poisson 
equation (4) into account, we get 

P.+P,f P+P,=R=const, (5) 

where P, is the partial pressure of the hot electron, 
Pi =Jdv~v: f, is the convective pressure of the ions, P 
is the partial pressure of the neutral particles, P, 
= (~fp)~/877 is the pressure of the constant electric field, 

and R is the pressure of the neutral gas far from the 
pinch. 

The plasma pinch consists of several regions with 
different structures. In the central region of the pinch 
we have a hot quasineutral plasma. In our analysis 
this is the region between the places z =*a. The partial 
pressure of the electrons makes here the main contri- 
bution to  the total pressure of the system, and near the 
boundary of this region the convective pressure of the 
ions also becomes significant. Located beyond this is 
the region a < lz 1 < b, whose thickness is of the order 
of the Debye radius and in which the charge separation 
is large. The most important in this region is the con- 
vective pressure of the ions, and in contrast to  the 
other region, a sizable contribution can be made here 
by the pressure P, of the constant electric field. Be- 
yond the limits of the hot region (1 z 1 > b) the convective 
pressure of the ions decreases with increasing 1 z I ,  and 
the pressure of the neutral particles increases and 
tends to R. This takes place a t  a distance equal to 
several mean f ree  paths of the ion in the gas of neutral 
particles with pressure R.  The thickness of the layer 
of the low-temperature weakly ionized plasma, which 
is formed beyond the limits of the hot pinch, depends 
on the diffusion coefficient and on the recombination 
rate of the cold plasma. 

3. We consider now the hot plasma region ( z  1 < b. It 
is now necessary to neglect in Eqs. (1) and (3) the colli- 
sions between the heavy particles; this corresponds to 
the condition of "free flight" of the ions. With the aid 
of Eq. (3) we obtain the neutral-particle distribution 
function: 

Here and below functions of velocities directed in the 
positive and negative z directions a r e  marked by the 
superscripts + and -, respectively. 

Assuming that the probability of ion production out- 
side the considered pinch region is negligibly small, 
we have for the ion distribution function the following 
boundary condition: 

f-.(z=b) =f+i(z=-b) =O. (7) 

The kinetic equation (1) in the region 0 < z < b admits 
of the following solution, which satisfies the boundary 
condition (7): 

' n. (z ')  F+ (a, z') dz,+ j n. (z ' )F- (u .~?  
ft+=B [ I " z ( u ,  z l )  v * ( u ,  z') dlf 1. 

(8) 
n.(z')P-(n, z ')  

f v,,u,z*, dz'. 

We have replaced here vr by the variable u = (Mv2,/2) 
+ ecp(z). The quantity zo is the root of the equation 
vZ(u,z)=[2(u -eV,)(z)j~] ' '=O a t  u <  0 and zo=O at u 
>O. Symmetry considerations allow us to write down 
the relation 

with the aid of which, using (81, we can obtain the solu- 
tion in the region -b < z < 0. 
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We integrate the ion distribution function over velocity 
space. After some transformations and calculations 
(change of the order of the integration, use of the sad- 
dle-point method, neglect of terms =T/Te) we get 

1 M 'I* . 3 MB2 'I. 
n i = - n b ( ; )  2 13- ~Jn*(z~)ex~[-~(---) 

0 

where n, is the neutral-particle density at  the point z 
=b. 

Under the considered conditions, when the distribu- 
tion function of the hot electron velocity is assumed to 
be Maxwellian with a truncated tail, the spatial distri- 
bution of the density of the hot electrons is described 
by the formula 

n,-n,o[exp (F) - e x p ( F ) ]  / [ I-exp($)] , (10) 

where neo=ne(z =0), cp,=rp(z =b), rp(z =O)=O. 

In the region lz 1 < a in the Poisson equation (4) we 
can neglect the left-hand side-the plasma is quasineu- 
t ra l  in this region. The electron distribution function 
does not differ significantly here from a Boltzmann 
distribution, inasmuch a s  the electric-field potential 
a t  1 z I < a has an absolute value much lower than I rp, I .  
Taking this into account, we obtain with the aid of (9) 
and (10) the following relation that determines the de- 
pendence of the electric-field potential on the spatial 
coordinate: 

x [q (5) -q (5') I-" a'. 
We have introduced here the dimensionless quantities 

We note that Eq. (11) coincides at  ff = 0 with the equa- 
tion obtained by Tonks and ~ a n ~ m u i r '  for a weakly ion- 
ized low-pressure gas-discharge plasma, when the ion 
"free flight" conditions a r e  satisfied. In this case the 
density of the neutral particles is homogeneous in 
space. 

Equation (11) reduces to an Abel integral equation, 
from which we get 

Putting d ~ / d b ' ~ ,  we obtain the value of the potential 
at the point lz I =a. This quantity is independent of ff; 

we have ~ ~ 0 . 8 5 .  We shall not investigate in detail the 
function q(b). We note only that in contrast to the case 
ff =0, where the dependence of the potential on the 
coordinate has a smooth c&racter (a plot of the solu- 
tion Eq. (1 2) with a = 0 is given in Ref. 5), under con- 
ditions of the plasma pinch, when (~5(a )  >> 1, the spatial 
distribution of the potential of the constant electric field 
is close in form to a rectangular potential well. 

The ion flux density 

a t  the point z = a  can be calculated in the following man- 
ner: We multiply both halves of (1 1) by [TI. - 9(5)]-" 'dq/ 
d5 and integrate with respect to 5 from L' to 5(a). 
Comparing the obtained relation with Eq. (131, we get 

j,,,= (llnq'") n, ( 2 T J M )  'h. (14) 
A flux of the same magnitude exists a t  the point z = b 

if we can neglect in the region A< z < b the change of 
the number of ion a s  a result of ionization processes. 
To this end it is necessary that the Debye radius of the 
hot plasma be much less than the characteristic length 
of the inhomogeneity of the neutral-particle density, a 
condition satisfied in our problem. The potential of 
the constant electric field at  the point z = b is determin- 
ed by equating the obtained value of the ion flux a t  the 
point z = b to the flux of the electrons that is produced 
because the electrons surmount the potential barrier.  
We get 

qr==ln[4aoe.n., ( ~ l r n ) ' ~ ~ , ' ] ,  

where u,, is the effective cross section of electron- 
electron collisions. For  the usual parameters of the 
plasma pinch, q, is equal to several units ( ~ 4 ) .  

Since the plasma pinch is in dynamic equilibrium with 
the surrounding neutral gas, the flux density of the neu- 
t ra l  particles into the pinch a t  the point z = b is equal 
to the flux density of the ions (electrons), a s  given by 
Eq. (14). From this we get the density of the neutral 
particles a t  the point z = b, i. e . ,  on the boundary of the 
hot region of the pinch: 

where n,=R/T is the neutral-particle density far from 
the pinch. 

We turn now to consideration of the region 1 z I > b, 
where there a r e  no hot electrons and we can neglect 
the influence of the electric field on the ion motion. 
Under these conditions Eqs. (1) and (5) reduce to 

where A is the ion mean free path in a gas of density 
n,. The system (15) has the following solution: 

From this we get the characteristic distance over which 
the convective pressure of the ions falls off with in- 
creasing distance from the hot region of the pinch: 

I=h ln (n, Inb). 

A detailed analysis of the region of the cold plasma 
must be based on the condition of the continuity equa- 
tions for the particle number, with account taken of 
recombination of the diffusion of the cold plasma in the 
dense gas, and with account taken of the energy balance 
equation with allowance for the influence of the RF field 
on the weakly ionized gas. Similar problems were in- 
vestigated by a number of workers (see, e. g., Ref. 61, 
and we shall therefore not dwell on this process. 
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The energy flux carried away by the electrons from 
the pinch can be estimated from the equation Q =j,,ST,, 
where S is the surface area  of the pinch. We note that 
these losses a r e  equal to the energy lost by the hot 
electrons to  heating the cold electrons produced in the 
pinch a s  a result of ionization. We obtain Q = 3 - 1 0 ' ' ' ~ ~  
x (T,/M)"~ kW. At R =  1 atm, S =  1 cm2, and T, = 3 
x lo5 K we have Q =  102/'jjr kW, where p is the mole- 
cular weight of the particle. 

In conclusion, we note the following. It was observed 
in Kapitza's experiments1 that the light hydrogen and 
deuterium impurities contribute to the appearance of a 
hot plasma pinch, and spectroscopic measurements 
have shown that there a r e  no multiply charged ions in 
the pinch. The cause of these phenomena can be un- 
derstood with the aid of the proposed theory. The point 
is that the only particles that can penetrate into the in- 
terior of the hot region of the plasma pinch a re  those 

of light impurities, which have a high thermal velocity 
and a sufficiently high ionization potential. This fol- 
lows, for example, from Eq. (6) [or (911: the larger 
the parameter Mp2, the more difficult i t  is for the par- 
ticle to land in the interior of the pinch. 
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An elementary model of the onset of turbulence, corresponding to Landau's idea of the collapse of the 
stable limit cycle, is considered. We give qualitative estimates of the conditions for the appearance of the 
turbulent (stochastic) motion which has the structure of a strange attractor. We show that a strange 
attractor occurs when the effective coefficient for the stretching of the trajectories in phase space in the 
dissipationless case becomes larger than the effective dissipation coefficient. We performed a detailed 
numerical experiment on the model to elucidate the structure of the strange attractor, the transition 
regime, the local instability, the correlation function, and the stationary distribution function in phase 
space. 

PACS numbers: 47.25. - c 

1. INTRODUCTION system is no longer Hamiltonian. The analysis of the 

The analysis for the conditions for the transition of a 
dynamical system from the regime of a regular, condi- 
tionally peridoic motion to a regime of an irregular, 
stochastic motion has become more and more often the 
topic of study in the physical and mathematical litera- 
ture. The generation of turbulence from a laminar 
motion is perhaps the most characteristic field of phy- 
sics whose content is directly connected with the deter- 
mination of a criterion for the appearance of stochasti- 
citv. 

In the case of weak turbulence the dissipative proces- 
ses  in the system a r e  weak and one can describe the dy- 
namics of the system by Hamiltonian equations. An 
analysis of the conditions for the appearance of turbu- 
lence in this kind of system was given by Sagdeev and 
one of us' (see also Ref. 2) .  It is shown there that the 
basis for the mechanism for the generation of a stoch- 
astic (turbulent) component of the motion is the well 
known n-wave (n 3) cluster wave interaction. The 
wave concept itself is quite well defined, since the dis- 
sipation is weak. The situation, however, changes ab- 
ruptly under conditions of strong dissipation, when the 

conditions for the appearance of stochasticity in this 
kind of system started with Lorenz's well known paper,3 
in which a highly simplified model of thermal convec- 
tion was studied. A large number of papers, stimula- 
ted by Lorenz's paper (see, e. g . ,  Refs. 4 to 91, led to 
the appearance in the physical literature of anew term- 
"the strange attractor9'-introduced by Ruelle and 
~ a k e n s '  to denote a particular form of stochasticity 
occurring in strongly dissipative systems (for details 
see  the reviews by   on in" and ~abinovich"). 

Great hopes were pinned on the study of strange attrac- 
tors  in attempts to construct a theory of the onset of tur - 
bulence. One should note that a strange attractor also 
occurs in problems in other fields of physics: laser 
systems, plasmas, and so on (see Ref. 11). The study 
of the stochasticity effect in strongly dissipative sys- 
tems entails a t  present considerable difficulties. Real 
physical systems a r e  a s  a rule studied numerically. It 
is also unclear how to apply to these systems the exist- 
ing rigorous mathematical methods. 

The aim of the present paper consists in a detailed 
numerical study of a greatly simplified model for the 
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