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The influence of spectral migration on the saturation kinetics is investigated. It is assumed that the 
radiation is monochromatic and that its interaction with the medium can be described in the balance 
approximation. A dependence of the spectral migration and of the method of realizing the latter on the 
frequency v is observed at not too large and not too small field powers and of v (migration-accelerated 
stage). The width of the saturation-induced dip in the population spectrum is either constant in time if 
the frequency jumps are comparable with the width of the spectrum, or else increases monotonically if 
the jumps are so small that they result additively in spectral diffusion. 

PACS numbers: 82.20. - w 

1. INTRODUCTION t ion of the  populations over the  frequencies, es tabl ishes 
a stat ionary f o r m  of the  dip. 

It  is known that  when a powerful coherent  field inter- 
Nonlinear spectroscopy methods can  b e  used t o  study acts with a n  ensemble of inhomogeneously broadened 

all the  fac tors  on which t h e  shape of t h e  d ip  depends: 
two-level s y s t e m s  the f i r s t  to b e  saturated are those 

t h e  charac te r i s t i cs  of the saturat ing field itself, as well 
t ransi t ions whose frequency detunings are within the  

as the p r o c e s s e s  of spec t ra l  migration and relaxation 
l imits  of the  homogeneous width. T h i s  l eads  t o  the ap- 

due t o  the interaction with the  medium. The  study of . 
pearance of a dip i n  the density of t h e  distribution of 

the  l a t t e r  is important  not only f r o m  t h e  point of view of 
the  population difference of the two-level s y s t e m s  with 

population of quantum generators ,  but also because they 
respect  to  the t ransi t ion frequencies-a phenomenon 

yield valuable information on t h e  i r rad ia ted  sample, 
which serves as the b a s i s  of numerous nonlinear spec-  

information difficult o r  impossible to obtain by other  
troscopy effects. ls2 On account of absorpt ion on the  

methods. 
wing of the inhomogeneous line, and also because of 
spec t ra l  migration i n  the  course  of t ime,  t h e  t rans i -  However, whereas  the  influence of relaxation on the 
tions fa r ther  away f r o m  resonance become successively formation of a dip can in mos t  cases of p rac t ica l  im- 
saturated i n  the course  of t ime.  T h e  width of the re- portance b e  adequately described by introducing into 
sultant dip increases  until  the  interaction with the me- the  theory the relaxation constants,  the  role of the  
dium, which tends t o  produce a n  equilibrium distribu- spec t ra l  migration is a much m o r e  difficult t o  evaluate. 

1019 Sov. Phys. JETP 49(6), June 1979 0038-5646/79/061019-08$02.40 O 1979 American Institute of Physics 1019 



It is possible to  advance farthest in this direction by 
regarding the spectral migration a s  a Markov random 
process. In this case the problem can be reduced to a 
solution of a system of integro-differential equations or  
partial differential equations. '" Even in this form the 
problem still remains quite complicated. For  an arbi- 
trary strong interaction with the field, only a station- 
ary solution could be studied so far, and that only in 
the case when the step of the spectral migration is 
commensurate with the width of the contour (uncorre- 
lated process). 3'5-8 It is not excluded, however, that 
the migration is affected via small jumps of frequency 
and adds up to form a spectral diffusion (correlated 
process). Judging from precedents,9'10 these cases a r e  
kinetically distinguishable, i. e., one should expect the 
formation of the dip in uncorrelated and correlated 
migrations of the frequency t o  be qualitative quite dif- 
ferent. 

To investigate this question to full extent, we consi- 
der  it in the so-called balance approximation. The 
latter greatly simplifies the problem and makes it pos- 
sible to describe the process in terms of transition 
probabilities. This simplification is legitimate if the 
homogeneous broadening of the spectral components is 
larger than the migration rate. It makes i t  possible 
to go far beyond the limits of the linear (in the interac- 
tion with light) theory. It becomes possible to investi- 
gate the kinetics of saturation of an ensemble of inho- 
mogeneously broadened two-level systems in a powerful 
monochromatic field, both in the uncorrelated and the 
correlated case. It turns out that not only the kinetics 
of formation of the dip in the distribution of the popula- 
tions in frequency, but also the time variation of the 
integral population of the states depends substantially on 
the degree of correlation of the frequency migration. 

Since the line shape of luminescence or  absorption 
(amplification) of a weak field is not very sensitive to 
the type of spectral migration," i t  was already proposed 
many times to  investigate this process by means of 
nonlinear spectroscopy. Experimental and theoretical 
studies were made of the manner in which the dip (peak) 
smears out, after the field is turned off, in inhomoge- 
neous EPR  line^,'^"^ in the optical spectra of activated 
glasses, and in gas lines broadened a s  a result of the 
Doppler and of the rotational structure. 20 

A study was also made of the distributions of popula- 
tions during the time of the action in the field, but with- 
in the framework of perturbation or  in the 
boundary-condition approximation. 13'23124 

It is shown in the present paper that the same infor- 
mation can be obtained by observing optically induced 
relaxation of the integral populations of levels, which is 
an easier procedure. 

It must be emphasized that the theory developed here 
describes the interaction of a powerful field with an in- 
homogeneously broadened contour both in the optical 
and in the microwave bands, regardless of the origin of 
the broadening. The results obtained for the integral 
populations a r e  equally applicable also to  the descrip- 
tion of the relaxation of a homogeneously broadened 
two-level system under the influence of frequency- 

modulated radiation, which is considered in Ref. 3. 
However, for the sake of argument, we shall consider 
henceforth and throughout the interaction of monochro- 
matic light with a line inhomogeneously broadened a s  
a result of the Doppler effect. 

2. FORMULATION OF PROBLEM 

The equations for the density matrix of a gas mole- 
~ ~ l e ~ ~ - ~ ~  situated in an external monochromatic field 
resonant to the transition 1-2 can be reduced in the 
spatially homogeneous case t o  the form 

an(v,  t )  -=-4 Im Vo(v, t )  +L,n-I',[n(u, t )  -n,cp(v)], at (2. l a )  

Here rl and r a r e  respectively the rates of the longi- 
tudinal and transverse relaxation of the transition 1-2, 
S2 = w - wo is the detuning of the frequency w of the ex- 
ternal field from the transition frequency wo = (E2 - El)/ 
A > O  of the immobile atom, v is the projection of the 
velocity of the atom in the wave vector of the field 
k = wo/c is the wave number, c is the speed of light, 
n =pit - pz2, ( ~ = p l ~ e - ' * ~ ,  and p i ,  a r e  the elements of the 
density matrix. As usual, the nonresonant component 
of the field is neglected, i.e., the off-diagonal element 
of the Hamiltonian is of the form H12 = veiot, where 
V=d12E/E, while E is the complex amplitude of the 
field. To simplify the notation, the phase shift of the 
dipole moment of the transition dlz is chosen such that 
the interaction amplitude V is real. 

The collision term is 
1 

Ln=-  -r (v ,  r) + /&f(uf, 0 )  n(v t ,  t )  dv'. 
To (v) ~o(v ) 

Here TO(v) is the mean f ree  path time and depends, gen- 
erally speaking, on the velocity of the molecule, and 
f(vl, v) i s  the distribution in the velocities v acquired a s  
a result of the collision by the particles that had prior 
to the collision a velocity v'. The width 6 of the kernel 
f(vl, v) of the integral operator L, is a measure of the 
change of the velocity in one collision. The kernel 
flu', v) is normalized: 

At equilibrium the collision term (2.2) should be 
equal to  zero, therefore the kernel f(vl, v) satisfies the 
stationarity condition 

where 

is the one-dimensional *well distribution. We define 
similarly the operator L,, the free path time and 
the collision kernelf(vl, v )  for the off-diagonal element 
a. For  simplicity we assume here that the parameters 
rl and I' a r e  independent of velocity. 

Equation (2. l a )  implies that the collision operators 
L, a r e  the same for both levels. This means that we 
a r e  dealing here more readily with vibrational- rota- 
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tional than with electronic transitions. If the two- 
levels a re  excited, then the depletion rates rl of the 
two levels a re  assumed to  be  equal. In the optical band, 
the stationary population difference no =pi, - pg2 is 
maintained because of the equilibrium form of the pump 
which populates the levels 1 and 2 a t  respective ra tes  
I'lp:l and r#&. Since the external resonance field 
does not change the total number of molecules in the 
1-2 transition, i t  follows that 

p,1(v, t )  Spzx (u, t )  = (pr,o+pz?o)cp(u). 

Using this equality and the definition of n, we can ex- 
press the populations of levels 1 and 2 in terms of the 
population difference 

Equations (2.1) a r e  valid not only in the case I?, = r z ,  
which we shall call problem 1, but also in the case 
when the rate of depletion rl of one of the excited levels 
(for example, level 1) i s  much less  than the rate of de- 
activation rz of the second level (for example, level 2) 
and the field i s  not so strong a s  to populate noticeably 
the second level (problem 2). In the last case n=ptl ,  
and the first  term in the right-hand side of (2. la)  
should be decreased by one- half. Finally, we note that 
Eqs. (2.1) and (2.6) remain in force also for a two- 
level system3 in which the levels 1 and 2 a r e  relaxa- 
tionally coupled only with each other. 

It is possible to measure the populations of the tran- 
sition 1-2 by observing, either along or  opposite to  the 
direction of propagation of the powerful field, the ab- 
sorption (amplification) of the weak field or  the lumin- 
escence on the same or  adjacent transition. The opti- 
cal characteristics of these processes a re  proportional 
to the integral populations 

and the spectral characteristics yield information on 
the distribution on the populations in velocity. Since 
the powerful field distorts substantially the absorption 
(amplification) and luminescence spectra,z1 the latter 
a r e  easiest to analyze directly after the termination 
of the action of the powerful field, when they a r e  simp- 
ly proportional to the convolution of the form functions 
of the homogeneous component of the transition with 
the distribution of the populations in velocity. 

In addition to the populations, interest attaches also 
to the energy absorbed by the molecule per unit time, 

In the integration of Eq. (2. la) with respect to  v, the 
collision term vanishes because of (2.31, and we find 
that the result 

previously obtained for the case when there is no spec- 
t ra l  i s  valid also in the presence of mi- 
gration. 

Equations (2.1) can be used to describe an ensemble 

of inhomogeneously broadened two-level systems inde- 
pendently of causes of the inhomogeneous broadening 
and of the spectral migration, and also to  describe 
transitions in a homogeneously broadened two-level 
system under the influence of a frequency-modulated 
wave.' For  this purpose i t  is necessary only to  put in 
(2.1) k = 1 and L, =in, and the purely discontinuous 
Markov variable v(t) should be regarded a s  a deviation 
of the frequency with respect to  wo. 

3. RELAXATION OF POPULATIONS 

If the rate of transverse relaxation r greatly exceeds 
the rate r of the phase relaxation induced by the spec- 
t ra l  migration, then in Eq. (2. lb) we can neglect the 
collision term, i. e . ,  we can assume the variation of v 
in this term to  be slow. Solving the thus-simplified 
equation for  the phase element d v ,  t)  and substituting 
the latter in (2. la),  we get a t  a(v, 0) = 0 

+Lon-r,[n(u,  t )  -nocp(v) I 

with initial condition n(v, 0 )  = n(~)cp(v). 

The rate f of the phase relaxation due to  the spectral 
migration is measured by determining the falloff of the 
signals of the spin3' and photon31 echo. Analysis shows 
that i f  fo(v) and f(vl, v) a r e  real and the kernel f(vl, v) 
has a second moment a s  a function of v, then the result 
obtained in Refs. 8 and 31 in the Keilson-Storer model32 
is valid for f. Taking this result into account, the cri- 
terion for the applicability of (3.1) becomes 

rWr=min {To-',[  (k6)z/?o]'1=}, (3.2) 

where T o  is the characteristic value of the function <(v) 
a t  I v 1 C, and 8 is the width of the kernel f(vl, v). In 
addition, in order for the problem considered here to 
be meaningful, conditions must be satisfied such that 
the spectrum remains inhomogeneous: 

a) rgk t i ,  b) V < E .  (3.3) 
Here v is the frequency of the collisions that change the 
velocity. 

According to  (3.2) the rate of randomiation of the 
phase should be sufficiently large. For  this purpose 
it is necessary that the amplitudes of the scattering of 
the molecules in the states 1 and 2 be substantially dif- 
ferent. 26-28 The collision operators for the populations 
can then remain approximately equal to one another, 
a s  is assumed in (2.1). The latter condition is not 
assumed satisfied in problem 2, in which the operator 
L, pertains only to  the level 1. 

As t -rn, Eq. (3.1) goes over into the equation for the 
stationary population differencez1 ns(v) = limn(v, t), t 
-03 

-2w(11-U) n.(v) +Lon,-r, [n. ( v )  -n,cp(u) I =0, (3.4) 

where u = Q/k is the frequency detuning in velocity 
units. It differs from the equation of the elementary 
probabilistic particle-balance scheme only in that the 
probability of the transition per unit time 

W ( V )  = 2 v z r / [  ( k ~ ) ~ + r * l  (3.5) 

is a function of the random variable v whose time vari- 
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ation takes into account the collision term L,n. 

Comparing the Laplace transform of (3.1) with (3.4), 
we find that the connection between the stationary pop- 
ulation difference n,(v) and the Laplace transform of the 
the kinetics 

m 

i (u)  = n (u, t )  e+dt. 
0 

Namely, the change of variables --r +p, r1 -r1 + p  
transforms the quantity n,(v)/norl into pn(v)/[pn(~) 
+norl]. This connection makes it possible in principle 
to reconstruct, from the now stationary solution of 
(3.11, the kinetics of the process n(v, t). 

The balance app-oximation. If the characteristic 
rate of the population relaxation induced by the medium 
(rl) and by the field (PI is such that 

a) r 6 r ,  b )  F r .  (3.6) 
then we can assume in the expression for n(v) that r 
+ p = r .  This meansthat inEq.  (3.1) a t t>>r - 'we  can 
take n(v, t - t') %(v, t) outside the integral sign and let 
the upper limit of integration go to infinity. As a re- 
sult we get for the kinetics the balance equation 

W v ,  t )  -- --2w(u-u)n (u, t)+L.n-r,[n(u, t )  -n,cp(u) I. (3.7) at 

The longitudinal relaxation ( r l )  can be excluded from 
consideration with the aid of a change of ~ a r i a b l e ~ ~ ' ~ '  

1 

n ( v ,  t )  =n (0) m ( v ,  t )  e-rr'+n,I', I m (u, t') e-rll'dt'. (3.8) 
0 

The new variable m(v, t) describes only the optically 
induced relaxation and satisfies the equation 

with the initial condition m(v, 0) = rp(u). It must be 
emphasized that Eqs. (3.7) and (3. Q) were obtained 
under much more limiting assumptions than (3.1). As 
to the stationary solution of Eq. (3.71, which is connec- 
ted with m(v, t) in accordance with (3.8) by the equa- 
tion - 

n, (u )  =nor,  J m (u, t )  e-r~'dt, (3.10) 
0 

it is restricted only by the condition (3.2). This fol- 
lows from the identity of Eqs. (3.7) and (3.4) a s  t e rn .  

When account is taken of the foregoing correspon- 
dence between n,(v) and ii(p), this remark enables us 
in principle to obtain the solution of (3.1) from the so- 
lution of (3.9) or (3.4). 

Integrating (3.8) with respect to u, we obtain the con- 
nection between &(t) = $m(v, t)dv and the integral popu- 
lation difference q t ) :  

The kinetics of a t )  is generally speaking not exponen- 
tial, but the average rate of the optically induced re- 
laxation can be characterized by a generalized proba- 
bility ws, introduced in accordance with the equations's5 - 

norr ii.- lim ii(t) = n o r , j  iii ( t )  e-rl'dt- - 
1- lp I',+2w. . 

0 

According to (2.9) and (3.121, the rate of absorption 
of the light in the stationary regime is 

I.=fiow.n., (3.13) 

i. e. ,  the generalized probability w, determines the 
level not only of the stationary saturation but also of 
the absorption. s'35 

For  problem 2 we can obtain equations that agree 
with (3.1) and (3.7) accurate to the substitution 2v2 
-v2. For  these equations to be valid i t  is necessary 
to satisfy, besides the conditions (3.21, (3.31, and 
(3.61, also the inequality P << r2 [cf. the remark follow- 
ing formulas (2.6)]. Thus, all  the results obtained be- 
low for the case rl= r2 pertain, with accuracy to the 
indicated substitution also to  the problem 2, 

We proceed now to find the function m(v, t), which 
determines in accordance with (3.81, (3. ll), and (2.9) 
the kinetics of the saturation and absorption of light. 

4. STATIC LIMIT 

iVonstationary saturation. If the frequency of the col- 
lisions is low enough, then we can neglect in (3.9) the 
collision term. This yields 

m(u,  t )  =exp [ - 2 w ( u - ~ ) t ] c p ( v ) .  (4.11 

Thus, in the static limit (70'~) the function m(v, t) 
contains a dip whose width a t  large t i s  of the order of 
(2v/k)(rt)'". We now estimate the limits of the re- 
gion where the optically induced relaxation of most 
particles is described by formula (4.1) (quasistatic 
stage). In the indicated region the saturation process 
should practically terminate in the interval 0 < t << v", 
i. e. ,  before the position of the frequencies in the spec- 
trum changes. In other words, i t  is necessary to sat- 
isfy the inequality (2v/k)(rv)lf2 >> Z +  ) u 1 or  

[ Z W  (G+ i u I ) lr'=/.)v"=. (4.2) 
The integral kinetics of the optically induced relaxa- 

tion m(t) in the static limit is obtained by integrating 
(4.1) with respect to v. Although this integral cannot 
be evaluated in analytic form, it is possible to obtain 
simple results for the majority of the important parti- 
cular cases. 

a) Short times. At 2w(0)t = (2 v ) ~ ~ / I '  << 1 the exponen- 
tial in (4.1) can be expanded in a series,  from which we 
get 

iii ( 1 )  s l - 2 E t .  (4.3) 

The average transition probability is here 

E= (4.4) 

where 

is the known convolution of the dispersion and Doppler 
contours. In (4.5) the limiting value ulim is the larger 
root of the equation ~ k ~ ~ ~ ~ r p ( ~ ~ ~ ~ )  = r. According to  
(4.51, the quantity w has the following asymptotic 
forms: 
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We see from this that a t  1 u 1 >> ulIm the integral kine- 
t ics of the saturation is the same a s  in the case of a 
homogeneously broadened line with width and with a 
center a t  the frequency wo.  It will be shown below that 
this statement is valid a t  a l l  t and v .  In other words, 
a t  1 u 1 >> u,,,, regardless of the frequency v of the 
spectral migration, we have E ( t )  = em2" ' u ' t .  This a- 
grees with the known fact that a t  1 u 1 >> ulIm, a s  seen 
from (4.5b), the wings of the Doppler contour a r e  de- 
termined exclusively by the homogeneous broadening. 

This does not mean, however, that in this case the 
Doppler contour does not differ in any way from the 
homogeneously broadened line. According to (4. I) ,  a 
high-power field produces a dip in the velocity distri- 
bution of the populations a t  a l l  values of u. However, 
for large frequency detunings, the details of the pro- 
cess  whereby the dip is formed, and even the very fact 
of its formation, may not influence the kinetics of the 
saturation of most atoms. This explains also the fact 
that when 1 u 1 >> c the region of quasi- static stage for 
the integral populations is generally speaking broader 
than the region of the quasi-static stage (4.2) for the 
partial populations (see Sec. 6). 

An estimate for m(t) in a larger time interval can be 
obtained not only a t  1 ul >> ulIm but also a t  I u I << u,,,. In 
the latter case, s o  long a s  the width of the dip in the 
function (4.1) is not too large it can be assumed in the 
integration of (4.1) with respect to v that cp(v)=cp(u), 
whence 

diii=-2Fexp -- 
dt ( 2 y ) ~ o ( y ) ,  (4.7) 

where lo(z) is a modified Bessel function. From this 
follows a t  t << r/(2vl2 the equality (4.3), and a t  t>> r/ 
(2 v ) ~  we have 

b) Long times. At u =  0 the function a t )  can be ob- 
tained for times t >> r/(2vl2,  when the central compo- 
nent of the spectrum is practically completely saturated 
and the integral of (4.1) with respect to v remains 
practically unchanged. If the function w(v) (3.5) is in- 
creased by putting r = 0 in i t s  denominator. Proceed- 
ing in this way, we find that a t  t >> r/(2vl2 we have 

( t )  e x ( -  q=ZVr/(ki?)'=w (5) .  (4.9) 

At small t this expression coincides with (4.8), thus 
demonstrating the intersection of the asymptotic esti- 
mates (4.7) and (4.9). 

At large t, the function a t )  can also be obtained for 
( u  ( >>v. The quantity n,, which is obtained by substi- 
tuting (4.1) in (3.10) and by integrating the subsequent 
expression with respect to v, is proportional according 
to (3.12) to the Laplace transform of the function a t ) .  
An analysis of this transform has shown that when at 
large t satisfying the condition 2w(u)t << u2/$ we have 

~ ( t )  =exp[-2w ( u )  t ] .  (4.10) 

The limiting time t ,  ,, a t  which this expression replaces 

formula (4.8) can be estimated by equating (4.8) with 
(4.10). As a result we find that 

The exponential kinetics of (4.10) is explained by the 
fact that a t  1 u 1 >> E the saturation rates for a tremen- 
dous majority of atoms with 1 v I << 1 u 1 practically coin- 
cide and a r e  equal to  2w(u). 

Stationary saturation. We shall not present here the 
well known e ~ ~ r e s s i o n ~ ' ~ - ~  for n,(v) and &. We indicate 
only that in the static limit 

Here 

is a width of the dip in %(v), and 

is the average time of the saturation a t  rl = O .  Expres- 
sion (4. l l a )  can be simplified with the aid of (4.5). 
Thus, a t  G<< a,, 

lulcuemf (4.13a) 
I u 0 u I m ~  ' (4.13b) 

where u;,, is the larger root of the equation ~ru;~,qo(u;,,) 
= A*. 

We recall that in accordance with the statement made 
in Sec. 3, the applicability of the results (4.11) and 
(4.13) i s  limited only by the condition (3.2) and conse- 
quently does not depend on the ratio of the relaxation 
constants r and rl. For  = r l ,  in particular, expres- 
sion (4.13a) was obtained for the f i rs t  time in Ref. 7. 

5. KINETIC LIMIT 

The case directly opposite to the static limit is that 
of ultrafast migration (the kinetic limit), when the spec- 
t r a l  migration prevents the formation of a dip and 
causes exponential equalization of the populations: 

a) m(u,  t )=exp(-2Et)cp(v) ,  b) E ( t )  =exp(-2Zt) .  (5.1) 

Substituting these equations in (3.10) and (3.121, we find 
find that in the kinetic limit 

As small  t, the kinetics of (4.4) and (5. I) ,  obtained 
respectively in the static and in the kinetic limits, co- 
incide. But with increasing t, the rate of the process 
in the static limit slows down, and the average velocity 
of the process (4.8b) during the quasi-static stage is 
much less  (at least a t  1 u 1 << u,,,) than the average rate 
of saturation 2% in the kinetic stage. 1) 

In the transition region the average rate of the pro- 
cess  should be an increasing function of v . This stage 
of the process can be  called the migration-accelerated 
stage, in analogy with the diffusion-accelerated stage 
of the reactions in ordinary space. 36 In this region, 
the saturation depends substantially on the type of ran- 
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dom migration, and this makes it possible in principle 
t o  obtain rather complete information on the latter. 
This is demonstrated below with an example of two 
types of Markov spectral migration: uncorrelated and 
Gaussian- Markov processes. 

6. UNCORRELATED PROCESS 

Strong collisions change the velocity of the atom by 
an amount 6 -5. Exaggerating this situation, we can 
assume that in each collision the molecule "forgets" i t s  
initial velocity, i. e . ,  the function Avt, v) does not de- 
pend on v (uncorrelated process or  model of strong col- 
lisions). If furthermore r0(v) = 7 0  = const., then in the 
strong-collision model" we obtain from the stationarity 
condition (2.4) that f(vt, v) = rp(v). The process of spec- 
t ra l  migration of this type can be classified a s  an un- 
correlated Markov process. Another physical exam- 
ple of the realization of such a process is the frequency 
migration in EPR spectra. 

Solving Eq. (3.7a) in the case of an uncorrelated pro- 
cess, we obtain the known expressions for n,(v) and - 
n,. 5'6 With the aid of (3.4) we can obtain also an ex- 
pression for  w,. It turned out that it coincides with the 
static result (4.8), accurate to the substitution rl'rl 
+ v .  In this case the reciprocal spectral-migration 
time i s  v = 70'. 

- Starting from the expressions obtained for n,(v) and 
n,, we can determine in accordance with (3.10) and 
(3.12) the kinetics of the saturation with the aid of the 
inverse Laplace transform. Analysis shows that under 
the condition (4.2) the results of Sec. 4 a r e  approxi- 
mately valid for nonstationary saturation. When the 
inequality (4.2) is reversed, it can be shown that a t  
t << 70 the kinetics is purely static, and at t >> To 

vcp(v) e-"' 
a) m(v ,  t )  = b) 6 ( t )  ~ e - ~ ' .  

2w (v-u)  +v ' - 
Here a=2w, I rlSo =fl, i. e., according to the foregoing 
the parameter is determined by expression (4.11) or  
(4.13), where rl must be replaced by v .  

In this case (4.13) takes the form 
~ G [ I + ( ~ V ) ~ ( ~ V ) - ' I - ' ~ ,  I U I K U , ~ , , ,  rr 

a- { (6.2a) 
2w ( a ) .  l u l ~ u , , "  ' (6.2b) 

where ul;, is obtained from uiim by the substitution rl 
' v .  Formulas (6.1) describe the saturation of prac- 
tically all  the atoms, since it can be shown that in the 
region t TO, where they a r e  valid, we have i i  (t) = 1. 

Starting with formula (6.2a1, it can be shown that for 
not too large values and not too small values of v, the 
saturation rate is proportional to 47: 

a%2nV(I'v)"v(a) lk, vlim<v< ( 2 V ) z / r ,  (6.3) 

where v,,, =2w(a a t  Iu I s c and vlim =2w(u)/[nucp(u)I2 
at 1 %  1 >> F. Consequently, the saturation process is 
accelerated by the frequency migration. 

The result (6.3) has a simple physical meaning. It 
is seen from it that a -  vcp(u)h,, where A,= (2V/k)(r/ 
v)'" is the half-width of the dip in the populations, in 
accordance with (6. l a )  and (3.5). In other words, the 
saturation rate a is equal to the product of the frequen- 
cy v of the hops over the spectrum by the probability 

AVv(u) of landing in the region of the dip. During the 
stay in this region, the atom is almost certainly satu- 
rated. 

This picture of the saturation process recalls the 
hopping mechanism of energy transfer in a solid. 31'39 

Moreover, a t  u = 0, expression (6. la),  with suitable 
change of rotation, it is identical with the result ob- 
tained in Ref. 37. This analogy enables us  to  use u 
= 0, also other results obtained in Refs. 37-39 for 
dipole-dipole transfer. In particular, the kinetics in 
the region of the transition from the quasi-static to  the 
migration-accelerated stage was numerically calcula- 
ted in Ref. 38, while the initial section of the kinetics 
on the migration-accelerated stage, which was omitted 
from (6. lb), was obtained in Ref. 39. 

Remark. We note that a t  1 ul >> F the region of the 
quasi-static stage for the integral populations is much 
wider than the same region (4.2) for the velocity dis- 
tribution. In fact, according to (6.1) and (6.2b), the 
result (4.10) of the static limit is approximately valid 
under the condition V << 2w(u)/[ruq~(u)]~, which is much 
less  stringent than (4.2). 

We point out finally that the kinetic stage is reached 
a t  uncorrelated spectral migration, as seen from (6.21, 
when v >> ( 2 ~ ) ~ / r  (see Fig. 1). 

7. GAUSSIAN-MARKOV PROCESS 

If the change 6 of the velocity in the collisions is 
small, and the kernel f(vt, v) is a function if (v) has a 
second moment, then the spectral migration has the 
character of diffusion. 9'18*21 In particular, if we as- 
sume the Keilson-Storer then f(vt, v) = f(v 
- 7 ~ ' ) ;  in the diffusion limit, however, y-1, 7 0-0, 
v = (1 -  const) con st), Eq. (3.9) takes the form2' (Ref. 
32 

For  this equation to be valid a t  all  values of v and a t  
positive t, it is necessary that the mean squared change 
of the velocity in the collision, 6 = [2(1- y)]1'2 c, be 
much less than the width r / k  of the function w(v). 
Equation (7.1) is valid also to  1 v - u 1 >> r / k  and t >> To 

if r / k s  6<<V. 

Analysis has shown that in this case the kinetic stage 

FIG. 1. Separation of the situations for the integral popula- 
tions in uncorrelated spectral migration. Solid lines-bound- 
aries between the kinetic (0, migration-accelerated (111, and 
quasi-static (III) stages. 
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sets  in a t  
Z E ~ V .  (7.2) 

On this inequality is inverted, i. e . ,  during the migra- 
tion-accelerated and static stages, i t  is possible, a s  
above, to neglect the term in the denominator of 
(3.5) for w(v). It is unnecessary to  impose the follow- 
ing boundary condition on m (u, t ) :  

m(u, t )  =O. (7.3) 

Proceeding in this manner, we exclude from consider- 
ation only a small initial section (4.3) of the integral 
kinetics and the integral ( v - u 1 s 1 in the partial func- 
tion m(v, t). 

If we solve Eq. (7.1) under these assumptions by the 
method of separation of variables, then a t  u = 0 it re- 
duces, by making the change of variable 

m(v,  t )  =o exp (-vz/45') Y (v ,  t )  

to an equation whose eigenfunctions and eigenvalues 
a r e  known (see Ref. 41). The coefficients of the ex- 
pansion of the initial condition in the eigenfunctions of 
this equation a re  obtained from formulas of Sec. f of 
the mathematical supplements of Ref. 41. The se r i es  
obtained for m(v, t) with the aid of the method of sepa- 
ration of variables is summed in accordance with for- 
mula (5) of Sec. 6.2 of the Bateman and Erdelyi book, 42 

and the result is 

Here r(x) is the gamma function and @(a, c; x) is a con- 
fluent hypergeometric function. 42 

As seen from (7.4), the function m(v, t)/cp(v) is self- 
similar. In other words, the dips a t  different instants 
of time all  have the same shape and only the character- 
istic width of the dip v(e2~: - 1)"' changes. This prop- 
erty can be used to derive the result (7.4) by another 
meth~d.'~ It can be shown that the self-similarity prop- 
erty of the function (7.4) is in a certain sense "acciden- 
tal," i. e. ,  it is connected with the specific form of the 
operator L, and the function w(u) in Eq. (7.1). Thus, 
for the functions w(v - u)  with non-Lorentz shape or  for  
a Lorentz function w(v - u) at  u + 0, the solution of (7.1) 
is not self- similar. 

In the quasi-static region (4.21, where s = (q/8v)"' >> 1, 
expression (7.4) can be reduced with the aid of Eq. (33) 
of Sec. 6.13 of the book4' (where a factor v'"' has been 
left out from its right-hand side) and with the aid of the 
asymptotic expression for the gamma function (Ref. 42, 
Sec. 1.18), to the form 

(7.5) 
where y = (2q/~)"'(e"~ - l ) ( ~ / v ) ~ .  With the exception 
of the vicinity of the point v =0, inside of which m(v, t) 
=O,  we can confine ourselves in the argument of the 
exponential and in the pre-exponential factor of (7.5) to  
the lowest terms of the expansion in powers of y 

The result (4.1) of the static limit follows from this a t  
t << v-'. 

If the field power decreases to  such an extent that 
2s mp/2v<c 1, we obtain from (6.4) 

Here vl,, =Z[2(eft - 1)~,,,$'~, and z,,, is the larger 
root of the equation 2::; exp(- z,,,) = Gq/2v. The re- 
sult (7.6) describes the kinetics of the formation of dip 
of the diffusion-accelerated stage of the saturation. If 
we disregard the far  wings of (7.6b), the shape of the 
dip does not depend on the field power. 

It should be noted that the function (7.6a1, which de- 
scribes the shape of the main part of the dip, can be 
obtained by solving Eq. (7.4) without the first  term in 
the right-side, but using the boundary condition (7.3). 
This means that during the migration-accelerated stage 
the saturation process is monitored by the diffusion 
of the atoms in velocity space towards the point v = 0, 
where the interaction with the field i s  maximal. 

The function a t )  can be obtained by integrating (7.4) 
with respect to  v. The result for %(t) i s  given and 
analyzed in Ref. 10. It is shown there, in particular, 
that the characteristic time of saturation on the mi- 
gration-accelerated stage is of the order of the time 
v", during which the atom migrates over the spectrum: 
v" = i ? / ~ ,  where the diffusion coefficient D in velocity 
space, a s  seen from (7.1) is v~ ' .  

CONCLUSION 

Comparison of the partial kinetics (6.la), (6.3), and 
(7.6) obtained for the migration-accelerated stage in the 
cases of uncorrelated and Gaussian-Markov processes 
demonstrates the substantial difference between the 
two. Whereas in the f i rs t  case the process is for the 
most part quasistationary, i.e., no change occurs in 
the shape and width of the dip of the velocity distribu- 
tion, in the second case the width of the dip increases 
without limit. There a r e  also other substantial dif- 
ferences between these cases: the form and the rate 
of relaxation of the function (6.la) depends on the field 
intensity, but (7.6) is practically independent of this 
intensity. The shapes of the dips of (6.la) and (7.6) a s  
well a s  the cri teria for the applicability of the kinetic. 
limit and other factors a r e  also different. 

Thus, the distinguishing features of the spectral mi- 
gration process manifest themselves in the migration- 
accelerated stage of saturation of an inhomogeneously 
broadened contour. 

We consider in conclusion the condition (3.6b) for the 
applicability of the balance approximation, which can be 
determined only after solving Eq. (3.7) or (3.9). Ac- 
cording to the results obtained above, optically induced 
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relaxation of the integral population proceeds at the 
highest rate, equal to 2W, during the initial stage of the 
process [cf. Eq. (4.3)]. For the integral kinetics ob- 
tained in the balance approximation to be valid we must 
therefore put P = 2@ on the entire time axis in (3.6b). 
According to (4.1), the highest saturation rate for the 
partial populations i s  equal to 2w(0) = (2v)'/r >> 2~7, so 
that if the results obtained above are  to be valid for 
m(v,  t )  at all t we must put p = ( 2 ~ ) 2 / r  in (3.6b). But 
if we require that the expressions obtained in the 
balance approximation describe correctly the satura- 
tion of most atoms, with the possible exception of those 
which are  saturated during the initial stage of the pro- 
cess, then the condition (3.6b) can be made much weak- 
e r ,  assuming p to be equal to the average saturation 
rate during the lifetime r;', i.e., to 2w,. 

' ) ~ t  I u I >> uli, a comparison of (4.1) and (5. lb), with (4.6b) 
taken into account, shows that the kinetics of the saturation 
is practically unchanged with increasing v and remains equal 
to rSi (t) = exp - 2w (u) tl [cf. the remark made after formulas 
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''It can be shown &at the random process v(t) is in this case 
not only a Markov process but also a Gaussian process. 40 

'v. S. Letokhov and V. P. Chebotaev, Printsipy nelinehoi 
lazernof spektroskopii (Principles of Nonlinear Laser 
Spectroscopy), Nauka, 1975. 

2 ~ .  V. Grigor'yants, Author's abstract of doctoral disserta- 
tion, Inst. of Radio Engineering and Electronics, USSR 
Academy of Svciences, MOSCOW, 1972. 

3 ~ .  I. Burshtein, Lektsii po kursu 'Xvantovaya kinetika" 
(Course Lectures on Quantum Kinetics), Novosibirsk State 
Univ. , 1968. 

'A. I. Burshtein and Yu. S. Oseledchik, Zh. Eksp. Teor. Fiz. 
51, 1071 (1966) kov. Phys. JETP 24, 716 (1967)l. 

'E. L. Wolf, Phys. Rev. 142, 555 (1966). 
6 ~ .  P. Kol'chenko and S. G. Rautian, Zh. Eksp. Teor. Fiz. 

54, 959 (1968) kov. Phys. JETP 87, 511 (196811. 
'A. I. ~ u r s h t e k ,  ibid. 54, 1120 (1968) [27, 600 (196811. 
'A. B. Doktorov, Candidate's dissertation Inst. of Chem. 

Kinetics and Combustion, Novosibirsk, 1973. 
9 
A. I. Burshtein and A. G. Kofman, Kvantovaya Electron. 
(Moscow) 2, 482 (1957) [SOV. J. Quant. Electron. 5, 274 
(195711. 

''A. I. ~ u r s h t e h  and A. G. Kofrnan, Pis'ma Zh. Eksp. Teor. 
Fiz. 25, 251 (1977) IJETP Lett. 25, 231 (197'711. 

11 S. G. Rautian and I. I. Sobel'man Usp. Fiz. Nauk 90, 209 
(1966) kov. Phys. Usp. 9, 73 (1967)l. 

I? W. B. Mims, K. Nassau, and J. D. Mffiee, Phys. Rev. 
123, 2-59 (1961). 

1 3 ~ .  M. Daraseliya, A. S. Epifanov, and A. A. Manenkov, 
Zh. Eksp. Teor. Fiz. 59, 445 (1970) [SOV. Phys. JETP 32, 
244 (1971)l; A. S. Epifanov and A. A. Manenkov, ibfd.  60, 
1804 (1971) [33, 976 (1971)l. 

''v. R. Belan, Ch. y. Briskina, V. V. Grigor'yants, and 
M. E. Zhabotinskii, ibid. 57, 1148 (1969) [30, 627 (1970)l. 

"A. G. Kofman and A. I. Burshteh, Fiz. Tverd. Tela 
(Leningrad) 15, 2114 (1973) kov. Phys. Solid State 15, 1407 
(1974)l. 

160. K. Alimov, T. T. Basiev. Yu. K. Voronko, L. S. 
Gaigerova, A. V. Dmitryuk, Zh. Eksp. Teor. Fiz. 72, 
1313 (1977) [Sov. Phys. 45, 690 (1977)J. 

1 7 ~ .  W. HSnsch, I. S. Shahin, and A. L. Schawlow, Phys. 
Rev. Lett. 27, 707 (1971). 

lap. R. Berman, Phys. Rev. A9, 2170 (1974). 
"J. R. R. Leite. M. Ducloy, A. Sanchez, D. Seligson, and 

M. S. Freed, Phys. Rev. Lett. 39, 1469 (1977). 
'OR. Feinberg, R. E. Teets, J. Rubbmark, and A. J. 

Shawlow, J. Chem. Phys. 66, 4330 (1977). 
"A. P. Kol'chenko, A. A. Pukhov, S. G. Rautian, and 

A. M. Shalagin, Zh. Eksp. Teor. Fiz. 63, 1173 (1973) 
[SOV. Phys. JETP 36, 619 (1973)l. 

2 2 ~ .  A. Alekseev and T. L. Andreeva, and I. I. Sobel'man, 
ibid. 64, 813 (1973) [37. 413 (1973)l. 

2 3 ~ .  M. Portis, Phys. Rev. 104. 584 (1956). 
2 4 ~ .  L. Buishvili, M. D. Sviadadze, and G. R. Khutsishvili, 

Zh. Eksp. Teor. Fiz. 54, 876 (1968); 56, 290 (1969) [Sov. 
Phys. JETP 27, 469 (1968); 29. 159 (1969)l. 

2 5 ~ .  G. Rautian, ibid. 51, 1176 (1966) [24, 788 (1967)l. 
'6V. A. Alekseev, T. L. Andreeva, and I. I. ~obel'man, 

ibid. 62, 614 (1972) 135, 325 (19'7211. 
"P. R. Berman, Phys. Rev. A5, 927 (1972); 6, 2157 (1972). 

R. Berman, Appl. Phys. 6, 283 (1975). 
2 9 ~ .  I. ~ u r s h t e h ,  Zh. Prikl. Spektrosk. 2, 424 (1965). 
305. M. Salikhov, A. G. Semenov, and Yu. D. Tsvetkov, 

Elektronnoe spinovoe 6kho i ego primenenie (Electron Spin 
Echo and Its Use), Nauka, Novosibirsk, 1976. 

3 1 ~ .  R. Berman, J. M. Levy, and R. G. Brewer, Phys. Rev. 
All, 1968 (1975). 

3 2 ~ .  Keilson and J .  E. Storer,  Quart. Appl. Math. 10, 243 
(1952). 

3 3 ~ .  Karplus a$ J. Schwinger, Phys. Rev. 73, 1020 (1948). 
3 4 ~ .  I. Burshtein and A. G. Kofman, Zh. Eksp. Teor. Fiz. 
70, 840 (1976) [SOV. Phys. J E T P  43, 436 (1976)l. 

3 5 ~ .  I. ~ u r s h t e h  and Yu. S. Oseledchik, Zh. Prikl. Spektr. 7, 
218 (1967). 

3 6 ~ .  Smoluchow,ski, Zs. Phys. Chem. 92, 129 (1917). 
3 7 ~ .  I. Burshtein, Zh. Eksp. Teor. Fiz. 62, 1695 (1972) [Sov. 

Phys. JETP 35, 882 (1972)l. 
"R. K. Watts, J. Chem. Phys. 64, 902 (1976). 
3 9 ~ .  D. Zusman, Zh. Eksp. Teor. Fiz. 73, 662 (1977) kov. 

Phys. JETP 46, 347 (197711. 
4%. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 

(1945). 
4 1 ~ .  D. Landau and E. M. Lifshitz. Kvantovaya mekhanika, 

Nauka, 1974 [Quantum Mechanics, Nonrelativistic Theory, 
Pergamon, 19771. 

4 2 ~ .  Erdelyi, ed. , Higher Transcendental Functions, McGraw , 
1953, Vol. 1. 

4 3 ~ .  G. Kofman, Candidate's dissertation, Inst. of Chem. 
Kinetics and Combustion, Siberian Div. USSR Acad. Sci. , 
Novosibirsk, 1978. 

Translated by J. G. Adashko 

1026 Sov. Phys. JETP 49(6). June 1979 A. G. Kofman and A. I .  ~urshteyn 1026 


