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General quantum-mechanical equations are derived for an electron in a spatiaily periodic magnetic field 
and in the field of an electromagnetic wave. The limits of applicability of the calculations in the lowest 
order of perturbation theory are obtained. It is shown that for gain calculations these limits are much 
wider than in the general case owing to the substantial cancellation of the higher-order corrections that 
contribute to the gain. The saturation parameter p is determined. The asymptotic dependence of p on 
the gain is obtained at p> 1. The spectral properties of the gain, namely the width and the shift of the 
resonant maximum, which depend on the field intensities, are investigated. An analytic expression is 
obtained, at p > 1, for the maximum (in the spectrum) gain, which decreases in proportion to EC"~ with 
increasing intensity E, of the amplified wave. 

PACS numbers: 42.50. + q 

1. INTRODUCTION 

~ m ~ l i f  icationl and generation2 of radiation produced 
when a beam of relativistic electrons i s  scattered by a 
spatially-periodic potential of a time-independent mag- 
netic field were recently observed experimentally, for 
the f irst  time ever, at Stanford University. The theory 
of the process was developed in a large number of pa- 
perss''5 both on the basis of a classical description5-" 
and a quantum one. 3'4*12-15 At the same time, and inde- 
pendently, a theoretical and experimental investigation 
was made of spontaneous radiation in systems of this 
type-undulator (Wiggler) radiation. 16-" 

One of the principal results  of Refs. 3-15 i s  the deri- 
vation of formulas for the gain of a weak t r ia l  wave (in 
the "weak signal" approximation). As  shown by u s  
earlieri5 these calculations a r e  equivalent to a direct 
quantum-electrodynamic calculation in the lowest order 
of perturbation theory (in f i rs t  order in the magnetic 
field and first  order in the field of the electromagnetic 
wave). Saturation effects were considered in a number 
of papers by way of qualitative  estimate^^'^"^ and also 
on the basis of a numerical solution of simplified equa- 
tions in a classical model. lo'" No analytic solutions 
have been apparently published to date. The present 
paper i s  devoted to a theoretical description of the 
amplification of an  intense external wave when elec- 
trons a r e  scattered by a spatially periodic strong mag- 
netic field. We shall use one of the simplest variants 
of the quantum-mechanical description of the electron 
motion in the classical fields, proposed in our earl ier  
papers'5 and based on the interpretation of these pheno- 
mena in terms of stimulated bremsstrahlung and ab- 

sorption. On the basis of the analysis of the exact 
equations we find the conditions for applicability of the 
calculations in the lowest order of perturbation theory. 
In the general case these conditions a r e  much more 
stringent than in the calculation of the gain. We shall 
obtain the solutions for the equations in different ranges 
of variation of the field intensities, including the asymp- 
totic solution for  a strong field and a description of 
the saturation effect. 

To  estimate various parameters we shall frequently 
use below the data of Ref. 2. We shall therefore as-  
sume that the following relations hold, 

where c and m a r e  respectively the energy and mass  of 
the electron, qo = 2n/X,, X, is the period of the mag- 
netic field, and u is the frequency of the amplified 
wave; we use a system of units in which 6= c = 1. Jus t  
a s  in a l l  the preceding papers1-" (with the exception of 
Ref. 12), we use the approximation of the given field 
of the electromagnetic wave, assuming i t s  amplitude 
to be constant; this  is justified by the a posteriori 
smallness of the gain per pass. 

2. FORMULATION OF PROBLEM. PRINCIPAL 
EQUATIONS 

We consider the initial problem, assuming that the 
interaction of the electron with the magnetic field is 
turned on a t  a certain instant of time (the instant when 
it enters the region where the magnetic field exists), 
and lasts  for a limited time t =L/v =L, where v is the 
electron velocity and L i s  the length of the magnet. A 
direct check shows that the equations obtained in this 
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manner a re  identical with those that can be derived 
within the framwork of a different formulation-by sol- 
ving the boundary-value problem, if we consider the 
stationary incident and transmitted electron fluxes and 
we introduce in place of the time t  the running coordi- 
nate a=v t .  

We consider thus an electron in an external magnetic 
field and an external electromagnetic field, defined by 
the vector potentials 

where a and e a re  unit vectors of the polarization, Bo 
and Eo a r e  the amplitudes of the intensity of the con- 
stant magnetic field and of the electric field of the 
wave. In accordance with Ref. 2, we assume that the 
wave propagation direction, a s  well a s  the electron di- 
rection, coincides with the direction along which the 
magnetic field varies (the z axis). 

The behavior of the electron is determined by the 
solution of the Dirac equation with account taken of the 
external fields (1) and (2). This equation can be simp- 
lified by neglecting the spin effects. It is known" that 
by squaring it i s  possible to transform the Dirac equa- 
tion in an external field into a Klein-Gordon equation 
with spin-dependent correction terms. The relative 
values of these terms in our case a r e  determined by 
very small parameters, e ~ ~ / r n ~ - 1 0 " ~  and e ~ ~ / r n ~  
-lo-'', where Eo = 1 . 3  x lo5 V/cm and Bo = 2.4 x lo3 G 
a re  the values of the intensities in Ref. 2. Therefore 
the spin corrections can be neglected, so  that we can 
assume a s  the initial equation the Klein-Gordon equa- 
tion 

for one-dimensional motion of the electron along the z 
axis in the fields (1) and (2). It is assumed here that 
the initial momentum of the electron p is directed along 
the z axis. The scatter over the propagation directions 
of the electrons in the beam is neglected. 

We consider next the most interesting case, which 
corresponds to  the experiment of Ref. 2, of circular 
polarization of the wave and of a helical magnetic field. 
Let 

e= ( x + i y ) / a  a= ( x - i y ) l f i  

where x and y a re  unit vectors along the axes x and y .  
(It is precisely in the case a = e* that the gain obtained 
within the framework of perturbation theory and pro- 
portional to \ a. e l 2  is maximal. '') The quadratic 
terms =A; and A: in (3) a re  in this case constant and 
determine the mass shift 

We assume that this mass shift is included in m and 
leave out the * index. Equation (3) consequently trans- 
forms into 

We note that within the framework of the assumed model 
(neglecting the spin effects and when the electrons m w e  
in a direction perpendicular to AH and A,) the mass 
shift is the only effect that ar ises  when an electron i s  
acted upon by an arbitrarily strong field, either AH or 
A,. The wave functions in the field A, (Ref. 19) and 
the exact solutions in the field A,, when account is 
taken of the shift of the mass, do not differ in this case 
from the wave functions of the free electron. However, 
the joint action on the electron by the two fields AH and 
A, leads to  much more substantial changes of the char- 
acter of i t s  motion. 

We expand the electron wave function \k in plane waves: 

y - c , ( t ) exp [ i (p z - e , t )  I, (6) 
P 

where E, = (p2 + rn2)112 is the energy of the free electron 
with momentum p . 

Equation (5) is identical with the following system of 
equations for the coefficients C,(t): 

Comparing the term a C p  with the right-hand side of (71, 
we can estimate the characteristic time scale of the 
variation of C,(t) : 

tp-q .~~, , /ezEdi 'Bo.  

It follows therefore that the relative value of the term 
C, in (7) is determined by the parameter 

(€ , to)  -L-e%,B,/qooePz, 

which is equal to 10" under the conditions of the exper- 
iment of Ref. 2. This makes it possible to neglect, 
with good accuracy, the second derivatives of the co- 
efficients C,(t)  with respect to  time. Taking this cir- 
cumstance into account, putting 

we rewrite the system (7) in the form 

Taking into account the definition of c, and the small- 
ness of go and w compared with p,  we use for &, the ex- 
pansion 

As a result, Eqs. (9) take the form 

where we have put E, " to = E in the right-hand side of 
the equation. The possibility of such a substitution, 
a s  well a s  the possibility of confining ourselves to the 
lowest powers of n in the expansion (101, is connected 
with the relative smallness of the number of effective 
excited levels: In 1 << c / w  . As will be shown below (see 
Sec. 5), under the experimental conditions of Ref. 2 
we have n - lo6, whereas E / W  - lo6, so  that the indicated 
condition is well satisfied. 

Equations (11) a r e  similar to the equations that de- 
scribe the excitation of an anharmonic oscillator by a 
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resonant field. The role of the natural frequency of the 
system, with which the external field is a t  resonance, 
is played by the frequency of the wave that is amplified 
in a free-electron l a ~ e r , ~ " ~  w,,, =2qo.52/m2. The con- 
ditions for the resonances on the f i rs t  excited levels 
(n =*l), &,I r w - c0 = 0, determine more accurately 
those frequencies a t  which absorption or emission of a 
photon is possible in first-order perturbation theory: 

o...=2qo- I * - a,, if Ores :'( :) ( e I 
(this case is discussed in greater detail in the next sec- 
tion). 

We point out a number of differences between the 
system (11) and the ordinary equations for the anhar- 
monic oscillator. First, the matrix elements of the 
transitions n-n i 1 do not contain the usual square root - 
dependences dn = 1 and 4% and do not depend a t  all on 
n within the framework of the assumed approximation 
InIw/c<< 1. 

Another difference from the ordinary oscillator is 
that the quantum number n can assume both positive and 
negative integer values. 

Finally, it is important to emphasize that the param- 
e ters  of the equivalent anharmonic oscillator (w,, and 
the anharmonicity constant) depend on the field frequen- 
cy, on the electron energy, and on the period of the 
magnetic field. When these external factors change, 
the levels of the anharmonic oscillator a r e  shifted in a 
wide range, since the real  spectrum of the electron is 
continuous in the continuum. 

The fact that the analysis of the transitions of the 
electrons in external periodic fields leads to a system 
of equations that is typical of a transition in a discrete 
spectrum, was noted also earliers. 20 This result is 
connected with the fact that in the periodic fields (1) 
and (2) the momentum conservation single out in the 
entire continuous spectrum only a definite sequence of 
levels which a r e  connected with the initial state (with 
a given momentum p ) .  

If i t  is assumed that the interaction i s  turned on in- 
stantaneously a t  the instant t = 0 (the corresponding 
conditions will be estimated below, see  Sec. 5), then 
the initial conditions for Eqs. (9) take the usual form 
an(t = 0) = 6n,0. The total energy A%' radiated in this 
case by the electron after a time t E L ,  with allowance 
for the rule for the normalization of the wave functions 
that satisfy the Klein-Gordon eq~a t ion ,~ '  can be expres- 
sed in terms of the coefficients a,(t) in the following 
manner: 

The gain per pass i s  

where n, is the electron density in the beam. 

Let us determine the principal-parameters that char- 
acterize the system (11). Obviously, these parameters 
include the energy of interaction of the electron with the 

fields (1) and (2) 
8h,=e'E80/2qooe, 

The anharmonicity energy 

8mh=mao2/2es, 

The detuning from resonance 

qo-mh/2e'=2qoA/e=mtoA/e'; 

A=e-m g e ~ ( o r e s - o )  2ores 

and the interaction time t. We introduce also the char- 
acteristic dimensionless parameters 

Under the conditions of the experiment2 the values 
w e r e p ~ l ~ " , p - 5 , ~ = 1 0 ' 5 .  

It will be shown below that the parameter p deter- 
mines the character of the solutions in an asymptoti- 
cally strong field, the parameter p characterizes the 
conditions of the transition to  the saturation regime, 
and the parameter B determines small quantum correc- 
tions which we shall neglect. 

We shall also make extensive use from now on of the 
stationary, i.e., quasi-energetic, solutions of Eq. (9): 
a,(t) =eei7'bn, where y is the quasi-energy and b, a r e  
constant coefficients that satisfy the equations 

m'o 
e'EdPo (b.-,+b.,,). (16) 

3. PERTURBATION THEORY 

If the field intensities Eo and Bo a r e  small enough, 
then the right-hand sides of (9) and (16) can be treated 
be perturbation theory. Obviously, in f i rs t  order the 
quantities that differ from zero, besides ao(t) = 1, a r e  
only the coefficients a.+l(t), which can be easily shown 
to be of the form 

where the frequencies we,, a r e  defined by Eqs. (12). 
Taking into account the relative smallness of the dif- 
ference we - w,  with the aid of the definitions (13) and 
(14) we can easily obtain from (17) the total gain (per 
pass): 

8"nn.Bo'e'q,"tS d sina n 
G =, -- 

mSoK au us ' 

tm' es m'ot 
4e2 

A. 
2e' 

This expression, a s  expected, coincides with the result 
of the direct quantum electrodynamic calculation by 
perturbation theory for the case of an abrupt boundary 
of the interaction region. l5 Formula (15) is valid for a 
monoenergetic beam or, more accurately for a beam 
with an energy distribution width A& << &/n = 2a&/qot, 
where n is the number of periods of the magnetic field. 
In the opposite case A c  >> &/n, the expression sin2u/u2 
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in (18) can be replaced by 716(u) and the gain G must be 
averaged over the electron distribution function f(&), 
which also leads to one of the results of Ref. 15: 

where E = m J x  

We now estimate the limits of applicability of the cal- 
culations by perturbation theory. It is necessary to 
recognize here that under the conditions of the experi- 
ment2 the parameter ff?anht(-1~'5) was very small. For  
this reason, the reciprocal duration of the interaction, 
l/t, must be regarded a s  the effective width of the 
levels, which at small In 1 greatly exceeds the anhar- 
monicity energy. Under these conditions, the only cri-  
terion for the applicability of perturbation theory is 
smallness of the interaction energy compared with the 
effective widths of the levels: 

Gtt<1. . (20) 
Under the conditions of the experiment2 this require- 
ment is not satisfied, since g,, t - 10' >> 1. This means 
that in a wide range of parameters the criteria for the 
applicability of the calculations in the lowest order of 
quantum-mechanical perturbation theory a r e  not satis- 
fied. In the model of the equivalent anharmonic oscil- 
lator, this result means that we cannot confine our- 
selves to allowance for transitions between the levels 
n=O and n =il but, on the contrary, we must solve the 
problem of the excitation of a multilevel system in ac- 
cordance with Eq. (11). 

The fact that perturbation theory cannot be used to 
calculate the amplitudes of probability a,(t) does not 
mean automatically that the formulas obtained within 
the framework of perturbation theory for the gain a r e  
no longer correct. In Sec. 5, on the basis of an analy- 
s i s  of the excitation of a multilevel system, it will be 
shown that formula (18) remains in force in fact even if 
the inequality (20) is violated. The only limitation on 
the applicability of formula (18) is the condition 1 < 1. 
We note that in the p scale the limits of applicability 
of perturbation theory gin, t - 1 corresponds to p " 3 lo-' 
a t  the values of all the parameters that correspond to 
the conditions of Ref. 2, with the exception of the field 
intensity E, .  

A. QUASIENERGY SOLUTIONS 

We consider the stationary equation (16) for the 
quasi-energy wave functions of the electron. For its 
solutiop we uge a method similar to that developed 
previously for the solution of the problem of excitation 
of an anharmonic oscillator by a strong resonant field 
in diatomic  molecule^.^^ The idea of the method i s  to 
multiply the coefficients bn by functions cpn(u) of a cer- 
tain basis (u i s  an auxiliary variable) and sum over n, 
thereby going from a system of equations for bn to a 
homogeneous differential equation of the type of the 
stationary Schrodinger equation. Its solution can then 
be obtained by the standard methods of quantum mecha- 
nics. In the case of Eq. (16) it is convenient to choose 
qn(u) = einU, 0 < u < 271, which yields for the function 

the expression 

The boundary condition for (22) is the periodicity con- 
dition 4~(0)=$(271). The transformation inverse to (21) 
is obviously of the form 

After replacing the unknown function 

Eq. (22) takes the form of the Schradinger equation 

where 
A" eJy 

U(u) =2p eos u, q = --;- + 2 - 
o mZoZ' 

Equation (23) with the potential energy U(u) (24) is the 
well known Mathieu equation. However, the use of its 
exact solutions is  difficult, since we a r e  interest not in 
the eigenfunctions of this equation themselves, but in 
the physical quantities A g  and G [(13), (14)] that a re  
expressed in their terms. As will be shown below, to 
calculate A g  and G it is necessary to perform a large 
number of operators on the solutions of Eq. (23)-sum- 
mation and integration, something hardly possible to do 
in analytic form when Mathieu functions a r e  used. We 
consider therefore below simpler approximations of the 
solution of Eqs. (22) and (23). 

We estimate the relative role of the different terms in 
Eqs. (91, (111, (161, and (22). Obviously, the maxi- 
mum number of levels n,, that a re  substantially per- 
turbed by the external action is n,, "(ZR,,, /t3'anh)1'2 = 6. 
The time of excitation of the levels with n =i1 is of the 
order of 8: , the time of excitation of n levels is 
"n , and the number of levels excited within a time t 
is obviously tglnt . If tgh, < n,, (i. e. ,  i f  p < 11, then 
the influence of the anharmonicity is weak, (the term 

2 n ZR,, -(n/n,,)211n, in Eqs. (11) and (16) i s  small in 
this case). This makes it possible to take into account 
the anharmonicity in the region /J < 1 a s  a small per- 
turbation, which is equivalent to taking into account the 
term d2$/du2 in (22) by perturbation theory. It i s  easy 
to verify that when the periodicity condition is taken 
into account, the solutions of (22) take the form 

In formulas (25), the perturbation -d2/da2 was taken 
into account in f i rs t  order. It follows from calculations 
that this must be done at because in general, i f  no ac- 
count i3 taken of the anharmonicity, the radiation and 
the absorption cancel each other completely, a s  a re- 
sult of which the gain becomes equal to zero. 

In the region p > 1, the anharmonicity plays an essen- 
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tial role for a large number of excited levels, and 
therefore must be taken into account exactly. In this 
case it is possible to formulate another approximation, 
which corresponds to the asymptotic strong-field ap- 
proach, in which it i s  possible to obtain simple solu- 
tions of (23). 

According to (23), the motion of an electron (in the 
space u) i s  bounded by potential curve U(u) (241, which 
has a deep minimum at u =  n. The depth of the mini- 
mum, equal to 2p >> 1, greatly exceeds the distance be- 
tween the lower levels in the unperturbed system. It 
follows therefore that the wave functions of a large 
number of levels near the bottom of the well a r e  local- 
ized a t  distances Au much smaller than 2n. This 
makes i t  possible to expand U(u) in a ser ies  about the 
value u = n: 

and write down for $(u) oscillator solutions. Without 
dwelling on the details of the transformations, we write 
down the final expressions for the quasi-energies Y, 
(with account taken of the anharmonicity) and for the 
corresponding functions $,(u): 

where &([I are  the ordinary oscillator  function^,^' and 
Hn( 5 )  are  Her mite polynomials. 

We note that the anharmonic corrections to the quasi- 
energy can arise not only a s  a result of the expansion 
of U(u) up to (u - d4, but also a s  a result of allowance 
for the higher derivatives in (23), which ar ise  when 
account is taken of the higher powers of n in the expan- 
sion (10) of the energy c,,. It i s  easy, however, to ver- 
ify that the contribution made to the anharmonicity y, 
of the matrix elements from the higher derivatives d3/ 
du3 and d4/du4 is small compared with the accounted- 
for contribution from (u- n)' in terms of the parameter 
pw2/c2, which is equal to lo4 under the conditions of the 
experiment of Ref. 2. 

It follows from (26) that with increasing interaction 
energy the quasi-energies 7, increase in proportion to 
P. The system of levels is nearly equidistant. The 
distance between the neighboring levels (the oscillator 
frequency) increases like 6. The anharmonic correc- 
tion to the quasi-energies Y, does not depend on p and 
is therefore relatively small. The wave functions of 
the lower levels $,,(u) a r e  localized according to (26) 
bver a distance Au " p-"'. At the boundaries of the re- 
gion where they a re  defined, a t  u = 0 and u=  2r, the 
functions $,(u) a r e  exponentially small, i. e. ,  they prac- 
tically vanish, therefore the boundary conditions (the 
periodicity conditions) a r e  automatically satisfied. 

5. TIME EVOLUTION OF THE SYSTEM. THE GAIN 
Starting from (111, we can obtain an equation that de- 

scribes the time evolution of the function 

in the form 

(28) 
A transformation inverse to (27) 

( t )  = $ T$(u, t )  rinU du, (29) 
0 

makes it possible to express in terms of $(u, t) the co- 
efficients a&), and consequently also the radiated en- 
ergy A g  [and the gain G which is connected with it by 
Eq. (1411: 

0 

To solve (28) we can use the quasi-energy solutions 
{$,(u), yn) (251, (26) which were obtained in the preced- 
ing section. The solution method and the final result 
depend very substantially on the manner in which the 
interaction is turned on: adiabatically or instantane- 
ously. The conditions of the experiment of Ref. 2 cor- 
respond to the amount of instantaneous turning-on, 
since the time to  turn on the interaction At A. = 2 ~ / ~ , ,  
is small compared with the period of the natural oscil- 
lations of the system -(y,+l - y,)" [see (25) and (2611: 
At(y,+l - s A/& << 1. Since a,(O) = 4 . 0 ,  it is obvious 
that $(u, 0) = 1. Let the interaction be turned on instan- 
taneously at t = 0. The expansion of $(u, 0) = 1 in the 
complete system of functions $,(u) (25) or  (26) makes it 
possible to represent the energy A1R radiated by the 
electron per pass in the form 

In accordance with the results of the preceding section, 
we now examine separately the regions CI < 1 and P > 1. 

1. Weak fields, 1. Substituting in (31) the quasi- 
energies Y, and the functions $,(u) (25) and integrating 
with respect to  the 2x3, we transform (31) into 

where 

and Jn(u) a r e  Bessel functions. 

Calculating the sums over n in accordance with the 
standard formulas,23 we again obtain for the gain G for- 
mula (181, which is valid in the weak-signal approxima- 
tion. This result shows that the region of applicability 
of formula (18) i s  much wider than the region of appli- 
cability of perturbation theory, and is determined only 
by the condition of the smallness of the parameter p. 
The number of levels of the equivalent anharmonic os- 
cillator which a re  effectively excited by the external 
field can be easily estimated from formula (23): n-pw/ 
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A, which a t  A-c3/m2@t yields, a s  expected, 

The fact that perturbation theory does not hold for the 
solution of Eq. (111, simultaneously with the possibility 
of using formula (18) obtained in the lowest order of 
perturbation theory, means that a very substantial can- 
cellation of the contributions of the higher orders to the 
different amplitudes an(l) takes place when the proba- 
bilities of finding the electrons a t  different levels, 
which determine the values of A% and G [(13), (1411 
a re  summed. We note that a perfectly analogous can- 
cellation effect takes place also in the theory of induced 
inverse bremsstrahlung when nonrelativistic electrons 
a re  scattered by Coulomb centers. 24 The nonlinearity 
of the cross  sections of the multiphoton radiation and 
absorption i s  determined in this case by the quantum 
parameter y = ez~Eo/iTo2, whereas the nonlinearity of the 
absorption coefficient is determined by the much weak- 
e r  classical parameter yttw/mr2 = eEO/m wt,, where 
R W  << rnzq2. 

2. We consider now the region of strong fields p > 1 .  

Substituting in (31) the quasi-energy solutions (26), 
we integrate with respect to the variable u3, using the 
localization of the functions $,,,,,,(u3), and letting the 
limits of integration go to **. This yields 

Summation over n in (34) is realized with the well 
known Moller formula,25 a s  a result of which we get 

The integration in (35) with respect to one of the vari- 
ables (for example, with respect to t2) is carried out 
with account taken of the smallness of the parameter 
p.  The integrand in (35) is localized with respect to 
the variable 4, on the interval -a<< 1 This 
makes it possible to replace again in the integral with 
respect to E the limits of integration by **, which 
yields ultimately in the lowest order in the small pa- 
rameter ? 

In the integral (36) the integrand i s  no longer necessar- 
ily localized, and therefore the limits of integration in 
this formula cannot be made infinite. Equation (36) can 
be expressed formally in t e rms  of elliptic integralsz3: 

Actually, however, the extension of formula (37) to  the 
region of small  values of p is not justified. The rea- 
son i s  that in the initial formula (31) the integrand is 
obviously localized with respect to  all  three variables: 
tl, t2, and t3. Therefore in the final expression (36) 
the integrand should also be localized, and this corre- 
sponds to the condition P > 1. The appearance of a non- 
localized integrand in the case IJ. < 1 means that in the 
sum over n an important role i s  played here by too 
large a number of terms, as a result of which the as- 
sumption of small anharmonicity of the potential energy 
E(x) (24) i s  not justified. On the contrary, localization 
of the integrand in (36) in the region P > 1 confirms the 
validity of all the approximations made above. Chang- 
ing over in formula (37) to the asymptotic form of large 
p,  we obtain 

with increasing parameter p the energy A g  radiated by 
the electron in one pass changes in oscillating fashion, 
tending to  a constant value A as -* ( ~ i ~ .  1). 

One of the main premises in the derivation of this 
asymptotic formula is the assumption of the smallness 
of the anharmonic corrections to the expansion of the 
quasi-energy A g  (26). The expansion parameter in this 
case is the quantity n / f i  The characteristic values n 
can be easily estimated by calculating with the aid of 
(26) the function $ ( x ,  t )  and the coefficients %(t) which 
a r e  given, apart from a phase factor, by 

At large n and 5, the oscillator functions ~ " ( 5 )  a r e  max- 
imal a t  \in= 5,  and it is this which determines the char- 
acteristic values of n: n= A~/W'J;;-. Consequently, the 
expansion parameter of Y, (26) i s  a2/w2p, and the con- 
dition for the validity of this expansion limits the de- 
tuning I A )  < A,,, where 

At I A I -A,,,, the detuning, the anharmonicity, and the 
energy of the interaction with the field in (11) turn out to 
be of the same order. At 1 A 1 >A,, the anharmonicity 

FIG. 1. Normalized plot of hg (p); the same curve repre- 
sents the normalized plot of G(t)  at constant Eo (K= ,?@4m&). 
Dashed-region intermediate between the regions of applica- 
bility of the weak-signal approximation (p < 1) and the strong- 
field asymptotic limit ( p  > 1). 
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FIG. 2. Spectral dependence of the gain G(w) in the asymptot- 
ic strong-field limit ( p  > 1). 

is relatively small, s o  that we can again consider the 
second derivative in (22) as a small  perturbation, and 
we arrive at the results of Item 1. Consequently, the 
quantities A'8 and G in the region I A I 7 A,,,, decrease 
with increasing I A I  (Fig. 2). Therefore the quantity 
A,, can be regarded a s  the width of the resonant func- 
tion G(A). We note that at IJ. < 1 the width of the reso- 
nance in the formula (18) is the quantity w/g=,,t, which 
a t  p > 1 is replaced by hmax(40). According to (40), the 
width of the resonance a t  p > 1 does not depend on I and - 
with increases like J E , B ~  increasing E ,  or  Bo.  

Formulas (38) and (40) enable us  to estimate a t  p >> 1 
the maximum radiated energy A%,, and the maximum 
gain G,, 

4 n n , A m a x -  2finn.eiz 
A 8 m a x B A m . x ;  G m a x - G ( A = A r n a x ) = -  - 

Eo qoEo.'. ' 

According to  (40) and (41), the maximum energy radia- 
ted by the electron per pass, even under the saturation 
condition IJ. >> 1 increases with increasing Eo 
like G. The gain G,, decreases in this case like 
&'I2 (Fig. 3). Neither A'%',= nor the gain G,, depends 
in this case on the duration of the interaction t (i. e . ,  
on the length L of the magnet). The frequency w a t  
which the gain is maximal shifts with increasing Eo in- 
to the infrared region 

The relative shift under the conditions of experiment of 
Ref. 2 i s  3 x 1 ~ ~ .  The value of the parameter IJ. under 
these conditions is p o Z 5 ,  which corresponds to  the 
s tar t  of the saturation region. The estimate of the gain 
G by formula (41) yields in this case G - 10%. 

6. CONCLUSION 

Thus, the principal new results of this paper a r e  the 
determination of the saturation parameter p (151, the 
derivation of the asymptotic formula (38), and the esti- 
mate of the functional dependences and of the values of 
the maximum gain (41) and of the spectral width and 
shift of the resonance (40), (42) at p > 1. 

Formulas (38) and (41) for A% and G, a s  well a s  the 
experessions for the parameters p (15) and A,, (40), 
a r e  classical. This does not mean, of course, that the 
electron behavior on the whole is in any way classical. 
For  example, the distribution of the scattered elec- 
trons in energy can be essentially quantum-mechanical. 
An initially monoenergetic beam can break up into an 
assembly of satellites separated by nKo,  n =ill *2 etc., 

FIG. 3. Qualitiative plots of the maximum (over the spec- 
trum) gain G ,  and of the maximum radiated energy A%', 
against Eo. 

and the distribution over which is characterized by 
quantum formulas of the type (33) or  (39). The obser- 
vation of this effect is possible in principle,26 but calls 
for a beam that is highly monoenergetic he  "- w, a con- 
dition not satisfied in the experiment of Ref. 2. 

As to  the gain GI i t  is classical in a wide range of 
variation of the parameters of the problem. It is 
therefore obvious that there should exist also another 
method of deriving the asymptotic formulas (38) and 
(40)-(42), based on a classical approach. At the pres- 
ent time there a r e  no results of this type in the litera- 
ture. In this connection we can compare our conclu- 
sions only with the results of the numerical solution of 
the classical equations in Ref. 11. 

The saturation parameter (at) used in Ref. 11 coin- 
cides with our parameter p (15). In Ref. 11 they plot- 
ted the function A@/) a t  different values of the other 
parameters. Some of these curves a r e  qualitatively 
similar to the curve shown in Fig. 1. Qualitatively we 
can trace also the decrease of the gain with increasing 
Eo.  On the whole, however, the comparison of the ana- 
lytic and numerical results is difficult, since the num- 
erical  calculations were not performed with such a 
comparison in mind, and do not reflect the entire mul- 
tiparametric dependence of the physical quantities. In 
Ref. 11 they did not investigate the spectral properties 
of the gain. Some of the results of that reference can- 
riot be understood. Thus, for example, the estimate of 
the maximum field energy reached in an ideal resonator 
i s  not understood. According to our results. even in 
the saturation region p '- 1, the quantity A l , ,  increa- 
s e s  with increasing Eo [(40), (41)]. Under ideal condi- 
tions the gain can continue for an arbitrarily long time 
with increasing number of passes. Actually the gain 
limit can be determined either by the number of passes 
or  by the real  losses that can become comparable with 
the gain G ,  which decreases with increasing Eo. 

There is undoubted interest in an analytic solution of 
the classical equations of motion in the asymptotic limit 
of a strong field, and in a comparison of the results of 
the classical and quantum description. The analytic 
solutions, in contrast t o  the numerical solutions, make 
i t  possible to trace the functional dependences of the 
physical quantities and provide a better insight into the 
physics of the phenomenon. 
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The influence of spectral migration on the saturation kinetics is investigated. It is assumed that the 
radiation is monochromatic and that its interaction with the medium can be described in the balance 
approximation. A dependence of the spectral migration and of the method of realizing the latter on the 
frequency v is observed at not too large and not too small field powers and of v (migration-accelerated 
stage). The width of the saturation-induced dip in the population spectrum is either constant in time if 
the frequency jumps are comparable with the width of the spectrum, or else increases monotonically if 
the jumps are so small that they result additively in spectral diffusion. 

PACS numbers: 82.20. - w 

1. INTRODUCTION t ion of the  populations over the  frequencies, es tabl ishes 
a stat ionary f o r m  of the  dip. 

It  is known that  when a powerful coherent  field inter- 
Nonlinear spectroscopy methods can  b e  used t o  study acts with a n  ensemble of inhomogeneously broadened 

all the  fac tors  on which t h e  shape of t h e  d ip  depends: 
two-level s y s t e m s  the f i r s t  to b e  saturated are those 

t h e  charac te r i s t i cs  of the saturat ing field itself, as well 
t ransi t ions whose frequency detunings are within the  

as the p r o c e s s e s  of spec t ra l  migration and relaxation 
l imits  of the  homogeneous width. T h i s  l eads  t o  the ap- 

due t o  the interaction with the  medium. The  study of . 
pearance of a dip i n  the density of t h e  distribution of 

the  l a t t e r  is important  not only f r o m  t h e  point of view of 
the  population difference of the two-level s y s t e m s  with 

population of quantum generators ,  but also because they 
respect  to  the t ransi t ion frequencies-a phenomenon 

yield valuable information on t h e  i r rad ia ted  sample, 
which serves as the b a s i s  of numerous nonlinear spec-  

information difficult o r  impossible to obtain by other  
troscopy effects. ls2 On account of absorpt ion on the  

methods. 
wing of the inhomogeneous line, and also because of 
spec t ra l  migration i n  the  course  of t ime,  t h e  t rans i -  However, whereas  the  influence of relaxation on the 
tions fa r ther  away f r o m  resonance become successively formation of a dip can in mos t  cases of p rac t ica l  im- 
saturated i n  the course  of t ime.  T h e  width of the re- portance b e  adequately described by introducing into 
sultant dip increases  until  the  interaction with the me- the  theory the relaxation constants,  the  role of the  
dium, which tends t o  produce a n  equilibrium distribu- spec t ra l  migration is a much m o r e  difficult t o  evaluate. 
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