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Inelastic collisions (charge transfer) between atoms and ions in an electromagnetic field are considered. 
An expression for the probabiity for a field-induced transition at the point of quasi-intersection of the 
terms (the case of positive- and negative-ion neutralization) is derived which is a generalization of the 
adiabatic Landau-Zener formula. The possibility of the existence of a field-induced nonadiabaticity region 
whose position depends on the field intensity is demonstrated in the particular case of ion-atom 
collisions. The cross sections for specific processes are estimated. 

PACS numbers: 34.70. + e 

The investigation of the interaction of electromag- 
netic waves with atomic and molecular systems has 
received quite a great deal of attention (see, for ex- 
ample, the monographs by Kondrat'ev and ~ i k i t i n '  and 
~ a s t e d  and the review article by ~akovlenko~) .  There 
are, apparently, two main problems connected with the 
use of an electromagnetic field (EMF) in atomic and 
molecular collisions: the investigation of the mecha- 
nisms underlying the elementary processes and the con- 
trolled variation of the reaction channel. Recently, a 
number of cases of the effect of an EMF on the prob- 
abilities for nonresonance electron transitions between 
two states, occurring a s  a result of the absorption or  
emission of a light-energy quantum, Ew, in the course of 
a collision between two particles, have been discussed 
in the literature.3 A characteristic feature of the pro- 
cesses considered in these papers is that the EMF de- 
pendence is contained only in the off-diagonal inter- 
action matrix element (in the basis of atomic functions 
or  other functions not depending parametrically on the 
internuclear distance R), which has the form Hi2 
= H!, coswt. In this case, by setting k2 - 21 =Hz - Hi 
* Ew, kI2 =H!~, we can reduce the problem to a problem 
of the two-level models well-known in the theory of 
atomic collisions (see, for example, Ref. 4)-basically, 
to a problem of the linear Landau-Zener model. 

I t  is to be expected that, in order to obtain results 
that exhibit specific distinctive features of the effect 
of an EMF on inelastic collisions, we should take into 
account the field dependence of the diagonal matrix el- 
ements Hi and Hz. This situation is realized, in par- 
ticular, in a charge-transfer process, i. e., in the pro- 
cess  involving the transition of an electron from one 
particle to another. In the present investigation (some 
preliminary results of which a re  given in Ref. 5), we 
first  consider charge transfer between a positive and 
a negative ion, i. e., the process 

Using this process a s  an example, we shall investi- 
gate the effect of an EMF on the transition probability 
for the system a s  it passes through the localized non- 
adiabaticity region that exists in zero field, and gen- 
eralize the adiabatic Landau-Zener formula to the case 
when an EMF is present. Secondly, we study the mech- 

anism underlying the nonadiabatic transition that oc- 
curs between quasimolecular states a s  a result of a 
multiphoton absorption, i. e., underlying the process 

and show that a new nonadiabaticity region (which exists 
only in an EMF) is responsible for this process. The 
cross-section estimates obtained for (1) and (2) indi- 
cate thatothese cross sections can have quite large val- 
ues (- 1 A') in EMF of presently attainable strengths 
E.. 

1. A schematic representation of the behavior of the 
electronic terms of the ionic, Hi, and covalent, Hz, 
states of the quasimolecule AB for the process (1) is 
shown in Fig. 1. To these states correspond wave func- 
tions, and *2, that a r e  responsible for the locali- 
zation of the valence electron on the individual particles. 
Let us  denote the interaction between these states by 
Hi2. Let us consider the behavior of the system in the 
region, R - Ro, Himo) = H2(Ro), of quasi-intersection of 
the indicated terms, using in this case the approxima- 
tions and the corresponding parameters of the Landau- 
Zener model: AH = Hi - Hz = Fx, x = R - Ro = vt, H12(Ro) 
=a, where v is the relative radial velocity and t is the 
time. Then the adiabatic functions assume the form 

while the splitting between the adiabatic terms AU 
= [(Fx)' + 4a2Iin. We shall also assume that the col- 
lision process is adiabatic in the absence of an EMF, 
i. e., that the Landau-Zener parameter 6 =4a2/Fv >> 1, 
and, consequently, that the probability, p,  = exp(-r6/ 
2), of the transition between the adiabatic terms is 
exponentially small. Notice that this "adiabatic" for- 
mula cannot be obtained with the aid of perturbation 
theory in terms of the nonadiabaticity operator a/a t  
because of the singularities of the syste? of equations 
for the amplitudes a t  the complex point t =i2a/Fv, 
where AU(t) =O. 

Upon the application of an EMF, there appears in the 
electron Hamiltonian a new term H, = r - E  cos(wt+ cp), 
which describes the interaction of the valence electron 
with the field. In this case 
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FIG. 1. Electronic terms of the quasimolecule AB for the pro- 
cess (1): the dashed curves are the ionic and covalent terms; 
the solid curves, the adiabatic terms. 

Applying the traditional-in the two-level model-trans- 
formations, we obtain in first-order perturbation theo- 
ry in terms of & the following expression for the prob- 
ability of transition between the adiabatic terms in an 
EMF, 

The locations of the stationary-phase points a r e  given 
by the expression 

It can be seen that 1rnt,<1m?, i. e., a s  o is increased, 
the point t, moves towards the real  axis. In the pro- 
cess, the degree of adiabaticity of the transition de- 
creases, and when X k  1, the process becomes non- 
adiabatic. In the case when 11 - X ( >> 1/6, the integra- 
tion in (3) is performed by the stationary-phase meth- 
od. We obtain for X < 1: 

C << 1 is the applicability condition for the perturbation 
theory, f (X) = a r c  sin(1- X2)'/ - X(1- X2)"', and the 
factor 1/3 is due to the averaging over the angle be- 
tween t and R. Notice that the parameter 6, can be 
regarded a s  a generalized Landau-Zener parameter 
characterising the degree of adiabaticity of the process 
a s  a function not only of the behavior of the electronic 
terms, but also of the EMF frequency. If, on the other 
hand, X > 1, then the expression 

gives the probability for a transition to occur during the 
crossing of the two neighboring nonadiabaticity regions, 
whose positions a r e  given by (4) (we can neglect the 
interference between them because of the large advance 
in phase). In the case when 11 - X I  << 1, the integration 
in (3) can be carried out by expanding hU(t) in a ser ies  
in the vicinit7y of t = 0. Then 

where y =21J26 and 6 is the Airy function. As can be 

seen from the applicability conditions for the obtained 
expressions, the regions where the formulas (5) and 
(6), a s  well a s  the regions where (6) and (7), a r e  ap- 
plicable overlap. This can also be easily verified by 
using the asymptotic representation for the Airy func- 
tions. Notice that the expression (7) takes the inter- 
ference effect into account in the X > 1 case. Using the 
characteristic values of the parameters1' of the pro- 
cess  (I), w z  2a = v = Ro = 10, and F= R - ~  
(Ref. 6), we obtain the cross  section o x  1 A2 for c 

lo5 ~ / c m .  

In  conclusion of this section, let us  note the following 
circumstance. Since the expressions (5)-(7) were 
derived in first-order perturbation theory in terms of 
E ,  they describe the line shape of the radiation emitted 
during the photoneutralization of positive and negative 
ions, i. e., emitted in the process 

I 
AB + fio 

It follows from the properties of the Airy function7 that 
this line has it peaks in the vicinity of w, (1 + 1.02 ~ - ' ~ ) 2 a  
and decays rapidly into the long-wave region. The 
shape of this line is similar to the shape of satellites 
of spectral lines. To determine the cross  section, 
a,, for photoneutralization in crossing the region (R 
=Ro, AR = 2a/F = 2 ~ ~ ~ 2 0 )  of strong coupling between the 
ionic and covalent states, let us  use the following ex- 
pression for the emission probability per unit time9: 

where w =AU(R), c is the velocity of light, and we have 
set  the statistical weights of the upper and lower adia- 
batic terms equal to unity. In the region under con- 
sideration w a  Za, Idi2 ( =R/2, and the time taken to 
cross  i t  A ~ = A R / U .  As a result, we obtain 

The substitution of the above-used values for the indi- 
vidual parameters into this expression yields the esti- 
mate a,= 2 X lo4 W2. The purely "collision" (i. e. , ra- 
diationless) cross  section us is in this case of the order 
of 10" A'. Thus, upon further increase of the param- 
e ter  6, the cross  section uo exceeds a,, and the photo- 
neutralization process becomes the decisive process. 
The use of an external EMF source enables us to ef- 
fectively change the channel in which the reaction oc- 
curs. Investigating then the frequency dependence of the 
cross  section, we can determine the quantity AU(R = Ro). 

2. Let us now consider the process, (2), of nonreso- 
nance (the Massey parameter is large: 5 = A E / @ V  >> 1) 
charge transfer without a change in the ionic character 
of the states of the quasimolecule. Here AE is the en- 
ergy defect for R - ==, i. e., the difference between the 
ionization potentials or  between the electron affinity en- 
ergies of the colliding particles, l / ~ '  is the character- 
istic dimension of the region of variation of the inter- 
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action potential, and v is the relative velocity of the 
particles. The probability of such a process in the 
absence of EMF is exponentially small  (-exp(-S); see  
Ref. 1). In a strong EMF the charge-transfer cross  
section can significantly increase. This can be 
achieved, for example, by choosing a frequency w = AE.' 
Another case is investigated below. I t  is connected 
with the appearance of a new, field-induced, nonadia- 
baticity region a t  large values of R. Indeed, the dif- 
ference between the diagonal elements of the Hamil- 
tonian is given by the expression 

HI-Hi--AE-eR cos ( o t f q ) .  (11) 

I t  can be seen from this expression that multiple "inter- 
section" of the terms occurs a t  R 2 R,= AE/E. We shall 
further assume that cuR, >> 1. 

The off-diagonal matrix element of the interaction 
has the form 

H,,=R-'A ( R )  exp ( -aR) .  (12) 

For  charge transfer by a negative ion A = const, while 
in the case of a positive ion A-  R*, where s=  l / a .  ' O  

At large distances Hi, is exponentially small, and we 
can use perturbation theory to determine the transi- 
tion amplitude a, and the probability YlZ = la2 I Z :  

In analyzing this expression we shall distinguish two 
limiting cases. 

Case A. The field frequency is low, and the EMF 
does not change over the transition time At ( w ~ t < < l ;  
the expression for At will be derived below). Then 
f rom (11) and (13), for a rectilinear trajectory, R = b  
+vt (b is the impact parameter), of the relative motion 
we have 

where z o = &  cosqo; po i s  the EMF phase a t  the moment 
when the transition occurs. The stationary-phase point 
in (14) is to = (aE-  E~*~) /E , .V ,  while the transition 
time At= (&.v)-'/~. If H12 changes little during this 
time, i. e. , if O I V / ( E . V ) - ~ ' ~  << 1, and the dimension of the 
nonadiabaticity region is small, i. e. , AR/R,= vat/  
R,<< 1, then, computing the integral (14) by the method 
of steepest descent, we obtain for the charge-transfer 
cross  section, the following for mula: 

As can be seen from the conditions of i t s  applicability, 
the expression (15) is valid for  sufficiently large values 
of the quantity &. v, a condition which is violated a t  
small  values of cos3 (8 is the angle between & and v). 
However, this expression does not itself depend on 9, 
and, a s  will be shown below, is valid for any 8. Let us 
also note that the inequality aRc<<S follows from the 

conditions given above. Thus, although the index 
(~NR, )  of the exponential function in (15) is large, it is 
much smaller  than the Massey parameter, s o  that the 
application of a strong EMF does indeed lead to the in- 
crease of the charge-transfer c ross  sec t  ion. 

For  a constant field (w = 0) we should se t  po = 0. If, 
on the other hand, the advance in phase of the EMF 
over the relaxation time of the process (7: =N(vu), 
where N is the concentration of the particles to which 
charge is transferred and o is the c ross  section for the 
process) is large (i. e., if WT,>> l ) ,  then the expression 
(15) should be averaged over 90. Because of the large 
values of R,, the contribution is made by small  values 
of qo, s o  that we have as a result  the expression 

Case B.  The field frequency is high ( 1  & * v  l/wz << 1). 
Then from Eqs. (11) and (13) for  the probability ampli- 
tude we obtain the expression 

where Jn is a Bessel function. As can be seen from 
1171, the coefficient c, has the meaning of an amplitude 
for a transition involving the absorption of n light quan- 
ta. Owing to the randomness of the phase p, the c ross  
section for the process also has the form of a sum of 
multiphoton- transition c ross  sections, on, for  whose 
computation i t  is convenient to go over to the Fourier  
components, c,, of the amplitudes: 

the vector q coinciding with the vector x in the plane 
perpendicular to v, and having a component along the 
direction of v equal to (AE - nw)/v. The quantity fn de- 
termines the inelastic-scattering amplitude in the Born 
approximation in the presence of an  EMF. 

As can be seen from (18), charge transfer occurs a t  
large distances when n>> 1. In this case R-RE (in a 
strong EMF), o r  ~ " n / a !  (in a weak EMF), in the in- 
tegration domain determining the quantity fn; the cor- 
responding criterion will be formulated below. Indeed, 
let us, for the purpose of the integration, choose the 
z axis along the vector E ,  denote the components of the 
vector qalong, andperpendicular to, &by  q,, andq, respec- 
tively, and direct the x axis along Q. We perform the 
integration in the b, Y) plane with allowance for the con- 
dition that a lz I >> 1. The largest  contribution to the 
integral is made by the region of small  y and x % i  ( z  Iq,/ 
(aZ +4f)112, i. e., by the region where R =  (z  (cr/(a2 
+q2)1/2. Carrying out direct computations, we obtain 
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where sinh5 = @((a2 + q!)1/2 - iq,,)/E, it being necessary 
to take the rea l  part  of the integral when n is even and 
the imaginary part  when n is odd. For  n >> 1, the in- 
tegral in (20) can be evaluated by the method of steepest 
descent. Replacing the Bessel function by the asymp- 
totic expressionH 

J , ( x )  =[2nn(i- (xfn)') "I-'" exp {n[l- (x/n)']'"-n Arch (nlx)), 

(21) 
we find that the saddle point is located a t  zo = no/  
E cosht, while the integration range AZ/Z = (tanh[/n)'12 
<< 1. Then from (20) we obtain 

where again the real  o r  imaginary part is taken, de- 
pending on the parity of n. 

To compute a,, we go over to new integration vari- 
ables 5' and 5" defined by the relation 5 = 5' -itN, and 
discard the rapidly oscillating terms (i. e . ,  the term 
proportional to cos2nt" and sinant"). We then obtain 
for the c ross  section an expression that is the same for 
any n: 

2oz IA (pz,lsh E' cos E") I' exp(-2nE')dE' dE" 

On == jj sh E'lcos :''I 1 (a,-sin E") (sinr-a') (shz E'+cos2fi) I th  

(23) 
where ai,, a r e  the roots of the equation 

(shZ E'+cos2 6) a'-2p, ch E' cos 6a+p,'+pz sinZ 6-sh' b' sin' 6=0, 

(24 ) 
and p = a w / ~ , p ,  =b,p, I ,  = (AE - n w ) / ~ v .  The integration 
in (23) over 5" is performed for al>sin5">a2, while 
the integration over 5' is carr ied  out for ( '> to ,  where 

Notice that 2nt0>> 1. Setting everywhere in (23), except 
in the exponent, 5' = to, a s  a result of which ai -a2 - a. 
=p, coshEo cos9/(sinh2to+ cos29), we obtain 

where ~ * = n w p / &  ~ i n h 5 ~ [ ( c o s h ~ ~ ~  - ai ) ( l -  4)]'l2. The 
formula (26) describes the line shape for n-photon 
absorption in an electron transition from one atom to 
another. In particular, for  cos9 = 0. 

The expression (27) gives the c ross  section for  charge 
transfer in intersecting atomic beams if the light beam 
is directed along the relative velocity. Notice also that, 
for cos9 =0 ,  the formula (27) is valid for al l  frequen- 
cies, including the case when w - 0. In this case many 
a, terms for  n-AE/W make. a contribution to the total 
c ross  section. By replacing the sum by an integral, we 
can obtain the expression (16), which is thus valid for 
all angles between & and v. 

As can be seen from (27), the c ross  section decreases 

TABLE I. Charge-transfer c ross  sections a, 
(in A') in an electromagnetic field. 

Footnote. The as ter isks  indicate the values of 
*me 

Colliding 
e, V/cm 

2 . 5 . i p  1 s.iw ( i . io7  12.107 

rapidly with increasing detuning. The width of the n- 
photon resonance is of the order of v ( ~ / R ~ ) " ~ ,  while a t  
a sufficiently exact resonance, i. e., for It, I << 1, we 
have from (26) (after averaging over 9) the expression 

where R, = ~ , / ( l  +p2)'12. Thus, the EMF in the charge- 
transfer process can be considered to be strong when 
p S 1. Then the location, R, = R,, of the transition 
region is determined by the field intensity. In the other 
case, when p>> 1, the value of Ro is determined by the 
quantum nature of the process, and is estimated by the 
relation ROzn/a .  

I 
11 

111 
IV 
V 

In Table I we present the computed charge-transfer 
c ross  sections for certain systems in a C02-laserfield. 
For  the process I, A 0.28; for the processes I1 - V, A 
- 0 . 0 ' 7 ~ ~ ~ ~ .  It can be seen that the c ross  section a t f i rs t  
increases very sharply with increasing E, and attains 
the value om = TR;. The quantity om gives the order of 
magnitude of the greatest  possible c r o s s  section for the 
process. As E increases further, the c ross  section 
varies very slowly. This can be verified by computing 
Pi, for very large impact parameters (i. e., for b&/ 
w  > 1). 

0 - + H  
K++Na 
K++Li 
Cs++Na 
Cs++Li 

' I~ to rn ic  units with fr = 1 a r e  used everywhere, except where 
i t  i s  otherwise indicated specifically. 
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Results are presented of an experimental and theoretical investigation of the interaction of ultrashort 
laser pulses with an inhomogeneously broadened two-photon resonance transition. The experiments were 
performed on neodymium glass. At low temperature the interaction is coherent, as manifest by a partial 
bleaching of the sample and by a decrease of the pulse propagation velocity; in some cases the pulse 
broke up into two subpulses on leaving the sample. With rising temperature, these phenomena 
disappeared. The results of a numerical analysis have shown that the evolution of the laser pulse as it 
propagates in the sample depends substantially on the Stark shiR of the levels and on the width of the 
resonance lime. The experimental results agree qualitatively with the calculations. 

PACS numbers: 42.65.Gv, 42.70.a 

1. INTRODUCTION 

Processes of coherent interaction of radiation with 
matter, such a s  optical nutation, photon echo, and self- 
induced transparency, have been intensively investigated 
in the last few years (see, e. g., Ref. 1). For  the in- 
teraction to be coherent it is necessary that the dura- 
tion of the radiation pulse 7, be  shorter than the time 
or  irreversible relaxation of the polarization Ti of the 
medium. These processes were customarily investi- 
gated under conditions of single-photon resonance. 
However, the development of two-photon resonance 
spectroscopy2 raises the natural question of how the 
coherent interaction is changed under these conditions. 

If the interaction is coherent, then when a pulse pas- 
ses  through a resonant medium self-induced transpar- 
ency (SIT) se ts  in. This phenomenon was f i rs t  predic- 
ted and experimentally investigated for one-photon res- 
onance by McCall and Hahn. The possibility of obser- 
ving such an effect in two-photon resonance is not self- 
evident. Nonetheless, if the scatter of the levels of 
the resonant atoms can be neglected (i. e. ,  if the time 
T; of reversible relaxation of the polarization is infi- 
nitely long), and if the doubled frequency of the radia- 
tion field coincides exactly with the frequency of the 
resonant atoms, then the effect of self-induced trans- 
parency in two-photon absorption (TPSIT) is possible, 
a s  was theoretically shown by Belenev and P0lu6ktov.~ 
It turned out that the additional nonlinearity introduced 
by the two-photon interaction leads to new consequen- 
ces, such a s  narrowing and peak enhancement of high- 
energy pulses. '" 

contrast to homogeneous broadening, this situation has 
been investigated in less  detail. The particular case 
when the homogeneous broadenings a r e  equal (Ti = Tf 
< m, was considered theoretically. Under these condi- 
tions the coherent interaction can take place only when 
the spectral line width is less  than the spectrum of the 
pulse (narrow line). 

TPSIT was experimentally observed in media in which 
the excited levels were inhomogeneously broadened: 
in semiconductors (on interband t ran~i t ions) ' '~  and in 
potassium vapor (the resonance was produced here by 
a sum of two photons of unequal energy). 

Anomalously weak absorption of the pulse energy and 
a decrease in i ts  propagation velocity were reported in 
Refs. 7 and 8. The impossibility of resolving the pulse 
time structure prevented the authors of these papers 
from investigating this phenomenon fully. 

In the present paper we present the results of an ex- 
perimental and theoretical investigation of TPSIT on an 
inhomogeneously broadened line. We investigated ex- 
perimentally a sample of neodymium glass, where it is 
easy to realize the case of a broad line, i. e., to satis- 
fy the condition T; < 7,. Allowance for the inhomogen- 
eous broadening greatly complicates the theoretical 
analysis. In this case there a r e  no analytic solutions 
and computer calculations a r e  necessary, but we did 
not perform them. The influence of inhomogeneous 
broadening manifests itself noticably in the case of a 
broad line. Under these conditions, owing to the high- 
frequency Stark effect, the excited atoms a r e  those 
whose frequency scatter exceeds the spectrum of the 
pulse. The damping of the induced polarization by the 

In a real experimental situation one encounters more dephasing of the atomic radiators is accelerated, the re -  
frequently a line with inhomogeneous broadening. In by significantly influencing the evolution of the pulse. 
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