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The step-by-step transition from the resonance excitation of the levels of a discrete spectrum by an 
external electromagnetic field to the ionization of the atom is studied on the basis of a unified theoretical 
approach. It is shown that in the intermediate region, where the interaction encompasses a large number 
of levels, the excitation process is on the whole irreversible, but retains to some extent the properties of 
the transitions between isolated discrete levels: the excitation probability depends nonrnonotonically on 
the time. The nonexponential decay of the bound state in the near-threshold region is investigated. A 
quasistationary regime characterized by a constant mean probability for fmding the atom in the ground 
state is found to exist in some interval of time. The threshold for the excitation and ionization decay 
processes is found to be depressed by an amount determined in a weak field by the parameter t -'I3 and 
in a strong field by the parameter F4'" where t and F are the pulse length and amplitude of the 
radiation intensity. 

PACS numbers: 32.80.Fb, 31.50. + w 

1. INTRODUCTION V  id.^ is the atom-field interaction operator; d is the 
dipole moment; F i s  the intensity amplitude of the al- 

The probability, w ,  for a direct single-photon ioniza- ternating electric field, F(t) = ~ e ( ~ e " ~ ~ ) ,  of frequency 
tion of an atom, which depends linearly on the time t in w; $, and E ,  a r e  the wave function and energy of the 
the initial phase of the process, is a t  large t usually de- ground state; i s  the wave function of the continuous 
scribed by the s ~ e c t r u m  with energy E = E ,  + w. Here and below we use -- 

lo=.l-e-r' (1) the atomic system of units. The ionization width r is a 
slowly varying function of the energy E =El + o, and 

which corresponds to a simple exponential decay of the tends to a constant limit as + - O ,  in accord with 
ground state. Here l? is the ioniaztion width: the threshold property of the cross section for the photo- 

r=2n I <$* I Vl ips,+.) 1 '. (2) electric effect in neutral atoms.3 In view of the slowness 
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of the variation of r, below we shall consider i t  to be  a 
constant.' 

Let us, as  usual, assume that F << 1. The ionization 
width I' can, in this case, easily be estimated: for w 
- 1, we have F-F2<< 1. Correspondingly, the character- 
istic ionization time 7 = I"' >> 1. Below we shall consider 
times t that a r e  large o r  small compared to 7, but al- 
ways large a s  compared to the wave period o r  the char- 
acteristic intra-atomic times: t >> 1. 

The expression (1) is usually derived under the as- 
sumption that the ionization threshold is sufficiently well 
exceeded, i.e., that E, + w >> r.'" We shall show below 
that the conditions for the applicability of this result 
imposes definite limitations on the duration, t ,  of the 
interaction. 

Of indubitable physical interest is the investigation of 
the time dependence of the processes of excitation and 
ionization of an atom in the near- threshold region I E, 
+ w l - r a n d i n  theregion, E l+w<O,  IEt+wl  > > r ,  be- 
low the ionization threshold. The present paper is de- 
voted to the study of these problems. 

The quite rigid condition, w-1, used above for the es- 
timation of the quantity r is actually not necessary. We 
shall also consider frequencies significantly lower than 
the atomic frequencies, bearing in mind the ioniaztion of 
arbitrary atoms from their excited states. The only 
condition that will be  used is that the frequency w signif- 
icantly exceed the ionization potential of the resonance, 
highly-excited, discrete levels with energy -El + w. 

2. THE GENERAL EQUATIONS 

Let us consider an atom with one optical electron in 
the field F(t). We shall assume that the relation between 
IE, +wl and I? can be arbitrary, but that I E, +wl << 1. 
This means that we shall consider either the ionization 
of the atom in the case when the excess over the thresh- 
old is not too much (in comparison with the atomic en- 
ergy), or the excitation of the high-lying levels of the 
discrete spectrum. In this case we can consider the 
spectrum of the atom in the region below the continuum 
threshold to be hydrogenic, and use for the values of the 
energy En the expression En =- 1/2n2, with n >> 1. For 
El  + w < 0, i t  is  also convenient to use the notation 

where no >> 1, I0 I 5 1; no is the number of the discrete 
atomic level closest to the energy El + w. 

Let us expand the wave function of the atom in the field 
F(t) in terms of the wave functions of the f ree  atom qi,  
$", $E: 

Let us substitute the expansion (4) into the ~chrSdinger  
equation and use the following approximations based on 
the limitation F << 1. 

1. We shall take into consideration the coupling of the 
ground state with the highly-excited discrete levels and 
the states of the continuum, but shall neglect the transi- 

tions from these states into remote states of the contin- 
uous spectrum with energy -El +2w. 

2. We shall assume that the coupling between the 
ground and excited states is effected by only that part of 
the interaction operator which has the "correct" fre- 
quency sign, which is the sign that allows the fulfillment 
of the energy conservation law En= El + w o r  E =  El + w. 

3. We shall take into account in the energies El and 
En the level shift due to the nonresonance Stark effect.' 
For the ground state this shift is equal to -$alF2, where 
a1 is the dynamical polarizability of the state. The shift 
of the highly excited (i.e., n >> 1) levels does not depend 
on n when w >> l/n2, and is well approximated by the vi- 
brational energy of the electron in the wave field -F2/w2 
(Ref. 4). I t  should be  noted that the nonresonance Stark 
effect can determine not only the shift, but also the mix- 
ing of neighboring levels. However, as will be shown 
below (see Sec. 5), this mixing and the associated split- 
ting a r e  small  on the scale of the energies (-I? and l/ni) 
and times under consideration, and will therefore not be 
taken into consideration below. 

With allowance for the assumptions made above, the 
equations for the coefficients assume the form 

We shall assume for simplicity that the fieldis switch- 
ed on instantaneously a t  t = O  and that a t  the initial mo- 
ment of time the atom is in the ground state: A,(O) = 1, 
An(0) =AE(0) = 0. In problems in which the interaction is 
switched on instantaneously, i t  is convenient to use the 
Laplace transformation5 of the coefficients Altn,E(t) (see, 
for example, Ref. 6). 

- The system of equations for the Laplace transforms, 
At,,,E(p), of the functions A1,n,E(t) has the form 

The solution of these equations is elementary. For the 
function At(#),  for example, we obtain 

The probability amplitudeAi(t) is found with the aid of 
the inverse Laplace transformation: 

where the integration contour in the complex p plane 
shou? l ie to the right of a l l  the singularities of the func- 
tion A, (P) .~  If fazt, as can easily be  verified, all the 
singularities of A,(p) l ie on the imaginary axis, s o  that 
we should have u > 0 in the formula (8). 

The integral entering into the denominator of the ex- 
pression (7) is the Stieltjes transform of the function 
1 VE1 1 (Ref. 7), and has a branch cut along the imagin- 
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ary semiaxis, p" =Im,P < 0, of the p plane. On account 
of this, the function At@) also has a branch cut on the 
imaginary negative semiaxis, its values on the shores of 
the cut being given by the expressions 

-f 
pt'+E,+oFiI'/2 

p'- R e p  =*O. 

We have dropped in the denominator of the formula (9) 
the slowly varying terms having no singularities in the 
region pr' < 0, and determining part of the Stark shift, 
which, by definition, is fully allowed for in El. The ion- 
ization width I?, which is given by the formula (2), is a 
slowly varying function of the energy, and is therefore 
approximated by a constant (see Ref. 1). 

The function A"l($) has on the positive imaginary semi- 
axis p" > 0 poles whose locations a r e  given by the zeros 
of the denominator in the formula (7): 

The sum over n in this equation has simple poles a t  
the points p" =-En = 1/2n2, while the integral term is a 
slowly varyin_g function of p". Therefore, the poles of 
the function Al(p)  in the region P"> 0, P' = O  a r e  located 
between two neighboring values of the energy of the free 
atom (with the opposite sign): -En+, <p{ < - E, 

The contour of the integration in the complex p plane 
in the formula (8) can be modified in accordance with 
Fig. 1. The function Ai(t) can, as  a result, be repre- 
sented in the form of a sum of the residues a t  the poles 
and integral taken along the shores of the branch cut: 

A,  ( t )  =Bl ( t )  +Bl( t ) ,  (11) 

where the index n numbers the poles of the function 
A,($). 

The functions B,(t) and B2(t) determine respectively 
the contribution to Al(t) from the multiple transitions in- 
to the continuum and back and the contribution from the 

FIG. 1. Integration contour in the complex p plane. The 
dashed line is the original contour, the heavy straight line 
represents th_e branch cut, and the points indicate the poles of 
the function At (P). 

transitions involving the virtual excitation of discrete 
levels. 

3. PERTURBATION THEORY 

Before investigating the decay regime at  large t, let 
us consider the case of short pulses or  weak fields, i.e., 
the case when 1 << t << I"'. Under these conditions i t  is 
not difficult to find from the system of equations (5) with 
the aid of perturbation theory the probability fo r  the ex- 
citation and ionization of the atom by the moment of 
time t: 

In view of the fact that, when \E l  + wl << 1 ,  mainly the 
high-lying atomic levels with numbers n>> 1 get excited, 
the matrix elements I Vnl 1 can be written in the form 
I Vn1i = r /2m3 (Ref. 8). The part of the sum over n in 
the formula (14) from n -t113 >> 1 to can be transform- 
ed into an integral, similar to the second term in this 
expression, within the limits from to zero. 
For  El + w >> (-t-'I3), the lower limit of the integral can 
be replaced by (-m), which yields for the excitation and 
ionization probability the expression w = lY. The dis- 
carded part of the sum, i.e., the sum from n = 2 to n 
-ti13, yields in this case a small contribution to w that 
is of the order of l?t2I3<<rt. The obtained linear law of 
variation of the probability w(t) i s  similar to the usual 
perturbation- theory result for photo-ionization. The 
difference lies only in the conditions for the applicability 
of this formula. In the considered case we used a s  the 
"thresholdJ' condition the inequality El + o > or  no 
> t113 instead of the inequality El + w 2 0. This means 
that the excitation of the high discrete levels lying above 
the "threshold" no > t1'3 >> 1 occurs in the same way as 
the ionization, and this allows us to speak of an effective 
depression of the threshold by an amount -1"13 >> r. 
This result is qualitatively explained by the fact that, in 
the case of short, smooth pulses, the spectral width of 
the radiation, Aw - t-I", in the "trans-threshold" region 
(no > t'13) exceeds the level spacing (i.e., Aw > l/n$ and, 
consequently, covers many discrete levels. Therefore, 
the excitation of these levels occurs in much the same 
way a s  the transitions into the continuum. In contrast, 
below the threshold (no< P I 3 ) ,  Aw < l /n& i.e., the spec- 
t ra l  width i s  less than the level spacing. The external 
radiation feels the discrete structure of the spectrum, 
and the excitation of the levels proceeds in the normal 
resonance fashion. 

4. STRONG FIELD. TRANSITIONS FROM THE 
GROUND STATE INTO THE CONTINUUM AND BACK 

Let us now proceed to the analysis of the decay re- 
gimes for the ground state in a strong field F(t)  in the 
case when the interaction duration t is sufficiently long, 
assuming that r t  2 1. Let us first  consider the contribu- 
tion to the amplitude, Ai(t), of the probability of finding 
the atom in the ground state from the transitions between 
the ground state and the continuum (the function Bl(t) in 
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the formula (1 1)). As a result of simple mathematical 
transformations, the expression (12) for Bi(t) can be 
transformed to the form 

1 
B, ( t )  = - e x * [ - i ( E , + u ) t ]  {e-~'" 

2ni 

(15) 

where E i  (x) is an exponential integral function3; B(x) = 1 
f o r x 2 0  and B(x)=Oforx< O . . .  

For a long interaction duration, o r  sufficiently far  
from the threshold, when I El + w 1 t >> 1, the expression 
(15) is significantly simplified: 

If then the contribution from the discrete levels can be  
neglected, i.e., i f  I B,I << I B,  I ,  which is possible for 
large excesses over the threshold (Sec. 5), then Ai (t) 

Bl(t), and the formula (16) describes the decay of the 
ground state a t  large t. I t  can be  seen from this that the 
conditions for the applicability of the exponential-decay 
model impose limitations not only on the excess over 
the threshold, E +w, but also on the interaction time t. 
The ionization process is characterized by an exponen- 
tial dependence w ( t )  provided 

then the exponential decay i s  replaced by the more slow- 
ly varying power-law decay: 

/ A ,  ( t )  1'-ra/(E,+o)'t ' .  (1 7) 

This result is due to the fact that the continuous elec- 
tron spectrum i s  bounded from below, and agrees with 
the general theorems on the decay laws for physical 
systems,'0'" which theorems forbid strictly exponential 
decay a t  large t. As will be  shown below, the formulas 
(16) and (1 7) for E, + w >> .> remain valid also when the 
transitions into the highly-excited states of the discrete 
spectrum a r e  taken into account (see Sec. 5). Accord- 
ing to (16), when El + o < 0 ,  IE, +wl >>r, the contribu- 
tion toA,(t) of the transitions into the continuum de- 
creases, and can be neglected (cf. formulas (28) and 
(29) of Sec. 5). 

In the region close to the edge of the continuum spec- 
trum, i.e., for I E, + u l << r ,  the asymptotic representa- 
tion of the function B,(t) for r t>>  1 has the form 

B, ( t )  = - 2 i / n r t .  (18) 

This result also corresponds to a power-law decay of 
the ground state: I ~ , ( t )1 ' -  (l?t)'2. However, we cannot 
in this near-threshold region neglect the contribution to 
A,(t) from the discrete levels. This contribution is de- 
termined by the function B2(t), (13), which we now pro- 
ceed to investigate. 

5. STRONG FIELD. TRANSITIONS BETWEEN THE 
STATES OF THE DISCRETE SPECTRUM 

To compute B2(t), it is necessary to find the positions 
of the poles of the function Al(p), which a r e  the solu- 
tions to Eq. ( lo),  and compute the residues a t  these 
points. 

On account of the fact that I VE1 1 is a slowly varying 
function, the integral term in Eq. (10) is easily estimat- 
ed: 

where b =const- 1. 

I t  is convenient to separate out from the sum over n 
in Eq. (10) the terms corresponding to En-energy values 
that a r e  closest to (-p"). The entire remaining part  of 
the sum can, on account of the fact that p" << 1 and n >> 1, 
be transformed into an integral, and is also easy to es- 
timate. As a result, i t  is easy to verify that the contri- 
bution from the remote terms in the sum over n exactly 
cancels out the logarithmic contribution from the inte- 
gral term, (19). This means that the dE  integral in Eq. 
(10) can, f o r  al l  practical purposes, be dropped, and 
that it is sufficient to retain in the sum over n one o r  
two terms corresponding to the values of the energy En 
that a r e  closest to (-TI. 

The solutions in Eq. (lo), the form of the function 
B,(t), and the nature of the excitation process essential- 
ly depend on the relation between the parameters r and 
E, + w, or r and no. Let us consider a number of the 
most typical cases,  beginning with a relatively low val- 
ue of the frequency w and gradually increasing it with 
the object of following all the distinctive features that 
ar ise  as  the threshold region is crossed. 

1. Fi rs t ,  let r'ni<< r'ni<< 1, i.e., let E l  +w <O and IE, 
+ wl >> r, and let the level spacing 6E- l/ni in the vicin- 
ity of the value of E, + w be large compared to I?. This 
is a resonance case, when the E, and En, levels a r e  
strongly coupled to each other through the interaction 
with the field and form a two-level system." The reso- 
nance condition i s  I fi l << 1 ,  where the quantity P is given 
by the formula (3) ,  and plays the role of a detuning. The 
roots of Eq. (10) a r e  close to -En, =1/2ni. Tofind them, 
it i s  sufficient to retain in the sum over n in (10) only 
the term with n =no. Solving the resulting quadratic 
equation, and verifying that the contribution of the re- 
maining poles is small, we represent the function A,@) 
in the form 

where 

is the Rabi frequency of a two-level system. 

Thus, the system oscillates between two levels, and, 
in the resonance approximation, transitions into other 
states do not occur, i.e., the ground state does not de- 
cay. At exact resonance (I E l << n, I PI << (I'ni)1'2) -4, 
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- coswt; the system goes over completely from the low- 
e r  level into the upper level and back: IAl( t ) l i=i .  The 
decay of the atom in this case is due to ionization from 
the resonance state no, and occurs within a time - n ; r  
>>1/52 (see Refs. 1, 13, and 14). 

Let us now proceed to the region of higher frequencies, 
where J?n: >> 1 (but, a s  before, El + w < 0). This condi- 
tion implies that the ionization width covers many levels 
in the vicinity of the value of the energy El  + a .  For 
this reason, the excitation of the atom can no longer be 
described within the framework of the two- level model, 
or,  in other words, the residues of many poles contrib- 
ute to the functions B2(t) and At (t). 

In the general case i t  is not possible to solve Eq. (10) 
and exactly find the positions of all the poles. For  a 
qualitative description, however, i t  turns out to be suf- 
ficient to divide the entire region of summation over n 
in the formula (13) into two principal subregions char- 
acterized by two types of roots of Eq. (10): I) poles 
close to the values of the ionization energy, -En, of the 
free atom and II) poles separated from the nearest -En 
value by distances of the order of the distance to the 
neighboring level, En,, - En = l/n3. To find the type-I 
roots of Eq. (lo), we retain in the sum over n a single 
term and seek corrections to the value P; = -En = 1/2n2 
with the aid of perturbation theory, which yields 

This result is  valid provided 

The residue of the function Zi(p) a t  these poles is equal 
to 

The positions of the poles that do not satisfy the con- 
dition (22) a re  determined by the type-I1 roots of Eq. 
(10): 

1 a 
p." - - + 2 , p.'=O, 

2n2 nS 

The residue at these poles is, in order of magnitude, 
equal to 

res X, (p.) =a2/I'n3. (25) 

The constants in the formulas (24) and (25) a r e  de- 
termined up to a factor of the order of unity (a, - 1, n, 
- 1). The splitting of the region of summation over n in- 
to subregions of the types I and I1 also constitutes a fair- 
ly crude procedure. Needless to say, there exist inter- 
mediate parameter ranges in which the transition from 
(21) to (24) occurs. Nevertheless, such a computational 
procedure turns out to be sufficient for a qualitative de- 
scription of the excitation processes. Here the theory 
allows us to predict all the dependences on the principal 
parameters of the problem, but makes no pretensions to 

ten not write out the numerical coefficients explicitly, 
assuming them to be equal to unity. 

The specific splitting into subregions of the types I and 
I1 and the specific results depend on the relation between 
the physical parameters r and El f w ,  i.e., on the pa- 
rameter h i .  Let us consider the cases hi<< l and rrt; 
>> 1, one after the other in order of increasing frequency 
(and no). 

2. Let f i i > > l > > f i i ,  i.e., l e tE ,+w<O,  I E i + w l > > r ,  
but r >> 6Eno-l/n& The splitting of the summation re- 
gion into subregions of the types I and I1 yields 

(26) 
where ~ n a r ' n i > >  1, &<<no, Ci,,- 1, with C1 < 1 and C, 
> 1. Those parts of the sums entering into this expres- 
sion whose term numbers n > t i i3 can be replaced by in- 
tegrals. As to the remaining parts of the sums (n < tiI3), 
we can estimate their contribution to the mean probabil- 
ity IAiI2 by replacing 

by Z l an 1 ', after which we can again go over from sum- 
mation to integration. Such a replacement of the square 
of a sum by a sum of squares corresponds to averaging 
over rapid oscillations, and allows the description of 
the slow variations of the meanprobability w,(t) =IA,(t) 1'. 
Using this procedure, and evaluating the integrals for 
n:7>t >>n:, we obtain from (26) the expression 

where we have, in accord with the remark made earlier,  
dropped the coefficients of the order of unity. 

For  t-ni ,  but t iI3 <no - mi, instead of the formula 
(27), we find in similar fashion the formula 

Finally, for  tli3 >no - rn;  (and, in particular, for t > ni) 
we have 

W , = W I  , , = I E 1 + ~ l " f I r = ~ ~ n ~ t ~ l ,  (29) 

It is easy to verify that the formulas (27)-(29) join each 
other a t  the boundaries of the regions of their applicabil- 
ity. The qualitative form of the dependence wi(t) is 
shown in Fig. 2. The minimum value of this function can 
be determined from either the formula (27), or  the for- 
mula (28). Thus, for r4/%2i > 1 (which is not a t  variance 
with all the other assumptions made), the behavior of 
wl(t) in the vicinity of the minimum is described by the 
formula (27). The value of t a t  which wi(t) is a minimum 
is t i -r-*I3, - with ~ ~ , ~ ~ = r ~ ' ~ .  

the correct determination of the numerical coefficients. The function wi(t) is nonmonotonic. The initial de- 
In all the formulas that follow, as well a s  in (24) and crease of the probability wi(t) is  due to the nonexponen- 
(251, the coefficients have been determined up to factors tial decay of the ground state (according to the law l/t2). 
of the order of unity. In view of this, below we shall of- The increase of wi(t) is due to the discrete structure of 
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FIG. 2. Qualitative shape of the time dependence of the mean 
probability, wi ,  for finding an atom in the ground atate. 

the excited levels, and reflects the partial reversibility 
of the decay process. Also connected with this is the 
appearance of the quasistationary regime with a nonzero 
"residual" probability, given by the formula (29), for 
finding the atom in the ground state. The transition to 
this regime in the case under consideration occurs a t  
the moment t,-n;. The appearance of the residual prob- 
ability is in accord with the Fock-Krylov theorem, ac- 
cording to which a system with a discrete spectrum does 
not decay to the end.10'""5 This result  is, however, 
valid only within the framework of the model used. When 
allowance is made for the two-photon transitions into 
high-lying states of the continuum, the quasienergy 
spectrum of the system becomes continuous, and com- 
plete decay of the ground state (i.e., complete ionization 
of the atom) occurs. I t  is easy to estimate the times a t  
which the two-photon transitions become important. The 
probability of such a transition is determined by the two- 
photon composite resonance matrix element 

Here i t  is  necessary to take into account the above con- 
sidered resonance mixing of the levels, which gives 
r ise  to some effective width, y ,  of the resonance de- 
nominator. The number of levels that make a substan- 
tial contribution to the sum over n is, in order of mag- 
nitude, clearly equal to yn3. Allowing also for the fact 
that Vln- VnE- (r/n3)1/2, we obtain for v::' the estimate 
Y:$'- r. The time for the complete ionization of the 
atom on account of the two-photon transition is 

This estimate for the complete-ionization time does not 
depend on the position of the resonance with respect to 
the continuum edge, and is also valid in all cases con- 
sidered above. 

Generally speaking, at large times, besides the reso- 
nance two-phonon transitions, i t  may also be necessary 
to take into account the nonresonance two-photon mixing 
of the levels. The mixing of neighboring, highly- ex- 
cited, discrete levels is described by the nonresonance 
composite matrix elements v$!. At frequencies signifi- 
cantly exceeding the ionization potential of the excited 
levels (i.e., for w>>l/ni), the diagonal part, v::', of the 
matrix elements corresponds, according to Ref. 4, to a 
constant shift of the levels by an amount equal to the 
vibrational energy of the electron in the wave field 
(-F'/W~). The off-diagonal (with respect to the principal 
and orbital quantum numbers) matrix elements deter- 
mine the mixing of the near-degenerate, highly-excited 

levels. The magnitude of the off-diagonal matrix ele- 
ments can easily be estimated: v,$ - Vn1V,,, - l?/(~zn')~" 

(Ref. 8), which is considerably less than the char- 
acteristic energy scales of the problem, r or l/ni. The 
discrete- level mixing time i s  n;/r >> t3 ,  and, conse- 
quently, this effect can be neglected on the time scale 
under consideration. 

~ i m i l a r l y ,  we can estimate the time required for the 
mixing of the highly-excited discrete levels with the 
neighboring continuum states. For this purpose, i t  is 
necessary to add to the second of the equations (5) the 
term 

where v:$' is the nonresonance composite matrix ele- 
ment: v%'- VnlVIE. Estimating the quantity AE with the 
aid of the third of the equations (5), and comparing the 
nonresonance term (31) with the resonance term VnIA1, 
we find the time a t  which this mixing effect becomes im- 
portant: 

where we have assumed that the range of energy values 
that contributes substantially to the integral (31) i s ,  in 
order of magnitude, equal to I?. The obtained estimate 
shows that the mixing of the discrete levels with the 
states of the continuum becomes important at the same 
times a t  which complete ionization of the atom occurs as  
a result of rea l  two-photon transitions: t - t3.  There- 
fore, within the framework of the considered model, 
this effect can also be neglected. 

Thus, on the whole, we can distinguish four phases in 
the ground-state decay process: 1) an initial decay in 
the single-photon transition model; 2) a partial return 
to the ground state; 3) a quasistationary regime char- 
acterized by some nonzero constant mean probability 
w,,,; 4)  an irreversible decay (ionization) on account 
of two-photon processes. Qualitatively, this picture re- 
mains valid in the entire near-threshold region (pro- 
vided many levels a r e  excited a t  once). Only the quan- 
titative values of the parameters determining the limits 
of the various regions change. 

Let us now consider the region of still higher values 
of the frequency w. 

3. 1 El +wl < < r ,  and El + w  can have any sign. For El 
+ w < 0, the condition I El + w  l << I? implies that I'ni >> fii 
>> 1. All the computations and the qualitative nature of 
the dependence wl(t) a r e  similar to the preceding case. 
The formula (27) also remains valid, i t  remaining un- 
changed when allowance is  made for the transitions, de- 
scribed by Eq. (18), into the continuum. Only the pa- 
rameters t, and w,,,, change quantitatively, and a r e  now 
equal to t, = T 3 l 2 ,  ~ ~ , , = r ' / ~ .  An existence domain 
does not exist for a formula of the type (28) in the case 
under consideration: the transition to the quasistation- 
ary  regime occurs directly from the formula (27). A 
comparison with the preceding case shows that the non- 
monotonic nature of the variation of the probability w1(t) 
gets smoothed over as  the frequency increases: w, , 
decreases,  while w, ,,, does not change. 
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4. Finally, in the case of a large excess over the 
threshold, i.e., for El +w >> r (but Ei +w<< 1). the prin- 
cipal relationships are,  a s  before, similar to those con- 
sidered above. For (El  + w)" << t << (El  + w)"", 

w,  ( t )  =rZt+rzl  (E,+a)'tz+ e-=', 
. . 

where we have taken into account both the transitions in- 
to the continuum, (16), and the transitions into thestates 
of the discrete spectrum (which a r e  responsible for the 
first  term in the formula (32)). 

The transition from exponential to power-law decay 
occurs a t  t zt,, where 

The moment of time ti (Fig. 2) and the minimum value 
of the function w,(t) a r e  equal to 

t,= W ,  ,,.-r2/ ( E , + ~ ) ~ ~ S .  
(34) 

The transition to the quasistationary regime occurs a t  
t -  t,, with 

The complete decay of the system occurs a t  t z t,, where 
t3 is determined a s  before by the formula (30). As is 
easy to see, we can have to > tz in the case of a suffi- 
ciently large excess over the threshold. There is then 
no region in which the function w,(t) is nonmonotonic. A 
direct transition from the exponential decay in the sin- 
gle-photon ionization model' to the quasistationary re- 
gime characterized by the residual probability w,,,, oc- 
curs as t increases. 

As the excess over the threshold increases, the quan- 
tity wlm, decreases. 

6. THE MAIN CONCLUSIONS 

In conclusion, let us briefly state the principal results 
of the investigation. 

The analysis performed allows us  to follow the step- 
by-step transition from the resonance excitation of the 
discrete levels in a two-level system to the irreversible 
process of ionization related to transitions into the con- 
tinuum. W e  have shown that, in the intermediate region, 
where the interaction encompasses many discrete levels 
and part of the continuum, the ground-state decay prob- 
bility is, on the whole, irreversible, but bears traces of 
transitions into the discrete spectrum. The probability, 
averaged over the rapid oscillations, for finding the a- 
tom in the ground state depends nonmonotonically on 
time. A partial return of the atom into the ground state 
occurs a t  some stage. We have shown that, as the light 
frequency, w , increases, this partial reversibility and 
the nonmonotonic character get smoothed over, and dis- 
appear ultimately. 

An interesting distinctive feature of the decay of the 
ground state in the near-threshold region is i ts  nonex- 
ponential character: the probability for finding the atom 
in the ground state decreases like l/tz. Another inter- 
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esting feature of the excitation and ionization of atoms is 
the appearance in some time interval of a quasistation- 
ary regime characterized by a nonzero constant mean 
probability for finding the atom in the ground state. 

In view of the great similarity between the processes 
of ionization and excitation of high-lying discrete levels, 
we can speak of an effective depression of the threshold 
for these decay processes. In the case of a weak field 
and a short pulse length ( r t<< 1), the threshold is de- 
pressed by an amount Y 2 I 3 ;  in the opposite case of a 
strong field ( r t  >> 1), by an amount - r2 I3  - F ~ ' , .  Quali- 
tatively, this result follows from the argument that the 
excitation decay regime is possible until the spectral 
width of the radiation hw-l/t ,  or  the interaction ener- 
gy, determined by the ionization width r, exceeds the 
spacing, l/ni, of the highly excited levels. I t  is easy to 
see  that in both cases the threshold is depressed by an 
amount significantly greater than the Stark shift (equal 
to the electron vibration energy, F2/w2 -F2 - r) of the 
highly excited levels of the atom. 
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