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A new method is proposed for investigation of the asymptotic behavior of the exchange interaction 
leading to charge exchange of one electron in collision of an atom with a multiply charged ion. The 
method of determination of the wave function of the electron in the internuclear region is more general 
than the eikonal method of Landau and Herring. Values of the exchange matrix elements obtained by 
this method are in good agreement with those obtained by Olson and Salop by a numerical method for 
charge exchange of the hydrogen atom on bare nuclei. 

PAC3 numbers: 34.70. + e 

A study of the interaction of neutral gas atoms with the barrier separating theatom and the ion along the 
multiply charged ions presents great interest for inves- internuclear axis. 
tigation of the role of these ions at a high temperature. 
Charge exchange of atoms on multiply charged ions is EXPANSION OF THE ELECTRON WAVE FUNCTION 
one of the effective methods of obtaining particles with AT LARGE INTERATOMIC DISTANCES 
high excitation energy, which is interesting for creation 

In calculation of the term splitting in quasicrossings i t  
of a population inversion.' At the present time a con- 

is necessary to determine the wave function of the elec- 
siderable amount of experimental2-'* and t h e o r e t i ~ a l ' ~ ' ~ ~  

tron in the region between the nuclei. Here the interac- information has been accumulated on the cross sections 
tion with the foreign nucleus is not small and cannot be 

for charge exchange and ionization of atoms by multiply 
considered as a perturbation. 

charged ions. All of the experimental results and part 
of theoretical ones"-23 apply to ions of relatively low In the internuclear region the interaction of the elec- 
multiplicity Z 2  s 10. It is of interest to extend these re- tron with each atomic core can be assumed to be Cou- 
su lk  to the region of higher Z2. lomb, and theref ore the SchrSdinger equation has the 

Vinogradov and Sobel'manl and also Presnyakov and 
~1antsev'~chose as an approximant a charge-exchange 
cross-section dependence u ,,,, a Z2. This dependence 
is determined by the geometrical size of the electron or- 
bit in the multiply charged ion with a binding energy E2 
of the order of the binding energy of the electron in the 
atom El ,  which is of the order of unity (we use atomic 
units: e2 =me =E = 1). All of the theoretical calculations 
and some of the experimental measurements4 show that 
in charge exchange the deeper lying states of the ion a r e  
populated. For this reason the breakup model previous- 

form 

where r, is the radius vector of the electron with re- 
spect to atom 1, R is the internuclear distance, and Z,,, 
a r e  the charges of the atomic cores in the field of which 
the electron i s  moving. 

We seek the solution of this equation in the form 

ly proposed by the authort6 (which is asymptotically ex- 
where Z and m are  the angular momentum of the elec- 

act for Z2>> 1) leads to a dependence Och_ex.~Z21nZ2 for a 
tron in an isolated atom and its  projection, Y ,  ,, is a 

relative collision velocity v s 2.2x 10' cm/sec. Olson 
spherical harmonic, and ql(rl) is a new unknown func- 

and ~ a l o ~ ' ~ ' ~ ~  approximated their own numerical calcula- tion. We assume that the distances between the nuclei 
tions by a dependence 0ch.e~. a z 3 I 2 .  a r e  large, s o  that near the atom the wave function co- 

Up to this time the problem remains of calculating the incides with that of the unperturbed atom. This gives a 
exchange matrix element responsible for charge ex- boundary condition: for r ,  << R, q, (r,) approaches the 
change. An exception in the case of interaction of a hy- asymptote of the unperturbed atomic function q:", i.e., 
drogen atom (or any one-electron ion) with an ion not 

q,+q!o' -alrnazte-rdnt possessing an electron-the so-called ZleZ, problem.24 , 
In this case separation of the variables occurs, s o  that 2n,'<r,<R, n,= ( 2  IE, I )  -'" 

(3) 

i t  is possible with a computer to calculate the energy 
eigenvalues and the exchange matrix elements.24 (E,  is the binding energy of the electron in atom 1). To 

satisfy Eq. (3) i t  is  necessary that the internuclear dis- 
The purpose of the present work is to calculate the ex- tance be much greater than that a t  which the potential 

change matrix element for the general case of interac- barrier disappears along the axis between the nuclei, 
tion of an arbitrary atom and a multiply charged ion - - 

I.&, 
which, generally speaking, has many electrons. The in- 
vestigation carried out below shows that for internuclear R B R , = ( ~ ~ z , + Z , ) / I E ~ ~ .  
distances which a r e  important for charge exchange the When this condition is satisfied the polarization energy 
asymptotic is inapplicable. The exchange shift of the electron is small in comparison with El. 
matrix element obtained in this work turns out to be di- 
rectly proportional to the quasiclassical transmission of For 2 , - Z 2  we have R ~ - z /  IE, I ; the condition (4) then 
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means that the internuclear distance must be greater 
than the size of the orbits a t  both centers with energy 
-El. However, i f  Z2 >>Z, the condition (4) permits ap- 
proach of the atoms to distances of the order of the s ize  
of the electron orbit with energy E in the multiply charged 
ion (2, >> 1). It is just this last  case which we intend 
to study, whereas in the f i rs t  case (2,-2,) the asymp- 
totic theory24-26 is applicable. The exchange matrix ele- 
ments for those quasicrossings which can be calculated 
by means of the asymptotic theory (R >>Zdl  El ) turn out 
for large Z, >>Z, to be so  small that they do not result 
in charge exchange. 

Let us substitute Eq. (2) into Eq. (1): 

where A@,* is the angular part of the Laplacian. We re- 
tain in this equation in the region r l - R  quantities of or- 
der unity and R" and we neglect quantities of order R - ~ .  
The angular dependence of the function ql(rl) i s  not 
sharp and has the form q,(r,, I r, - RI ). Therefore 
r;2~,,,q, for rI- R. Then we obtain 

This equation is one-dimensional and the angular depen- 
dence is parametric. Near atom 1 when condition (4) i s  
satisfied i t  goes over to the radial SchrSdinger equation 
of an isolated atom 1. 

In the transition to the one-dimensional equation (6) i t  
is impossible, unfortunately, to retain the term with the 
centrifugal energy l(i + l) /r i ,  since i t  is of order R-2, 
like the term ri2vYvqt. Inclusion of these terms would 
lead to an equation in partial derivatives. 

We shall write Eq. (6) with the help of Eq. (7) in the 
form 

In the region of distances r ,  where the perturbation Wi 
is much less than the total energy El,  the solution of Eq. 
(8) can be sought in the form q1 =qjO'Xi, neglecting the 
second derivatives of the function xi. This turns out to 
be possible since this f~nct ion,~ '  which is equal to 

depends on the ratio r , / ~  and each subsequent derivative 
is R times less than the preceding one. Thus, the meth- 
od of ~ a n d a u ~ ~  and ~ e r r i n g , ~  (which also consists of use 
of the function (10) is an approximation of the eikonal, 
which is valid in the region where Wl <<El. Here we can 
have % -z,/Y,, and xi differs from unity by several 
times. 

The Landau-Herring method is suitable for asymptotic 
interatomic distances R >>z$E, where there is a wide 
region of r, values for which W1 << El. For interaction of 

atoms with multiply charged ions distances R a re  also 
of interest a t  which the region where W, << El is signifi- 
cantly smaller than the region of sub-barrier motion of 
the electron between the two turning points 

here x is the distance along the internuclear axis, meas- 
ured from atom 1. For example, for Z2 >>R >>z''~ (Ref. 
16) the barr ier  is formed mainly by an approximately 
uniform electric field: 

and has a shape close to triangular. It is clear from 
geometrical considerations that here the region where 
W, << E ,  is significantly narrower than I x2 - xi I.  

Thus, for the substantially asymmetric case Z2 >> 2, 
there is interest in that solution of Eq. (6) which is valid 
also for W, -El. 

For  the further discussion i t  is necessary to investi- 
gate the solution of Eq. (6) near the internuclear axis. 
We shall use for this purpose the expansion 

where p is the distance from the internuclear axis. Ob- 
viously dr, =d(p2/2?c) for x =const, and then the solution 
of Eq. (6) near the internuclear axis can be written in 
the form 

9, (TI) =PL ( 4  exp (-pZp ( 4  1 2 4 ,  PKR-x, (14) 

where the function qi(x) is the solution of the equation 

The function (14) dies out exponentially at distances from 
the axis p -xi '2 <<R, and therefore the exponential of this 
function can be retained in unexpanded form. 

The solution of Eq. (15) inthe quasiclassical approxi- 
mation satisfying the boundary condition (3) has theform 

When condition (4) is fulfilled the potential barrier sat- 
isfies the quasiclassical condition, so  that Eq. (16) is 
valid for the sub-barrier region. This follows from the 
fact that in the region between the two turning points (11) 
the quasimomentum i s  p(x) s nit-  1, and the force is a ~ /  
ax << I. 

For the case of interaction of a negative ion with a 
positive one ( 2 ,  =0, Z 2 f  0) Eq. (15) can be reduced to 
the Whittaker equation,29 the general solution of which 
for 2, = 0 is 

The function ql(() with appropriate choice of the con- 
stants C,,, coincides with accuracy to quantities of order 
R" with the corresponding Green's function for the Cou- 
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lomb field of the ion, and consequently the wave function 
(17) coincides with the function obtained by the methodof 
singular  potential^.^^'^^ 

Kereselidze and chibisov3' pointed out the difference 
of the wave functions and of the exchange matrix ele- 
ments for interaction of a negative ion with a positive 
ion obtained by the Landau-Herring method33 and by the 
singular-potential m e t h ~ d . ~ ~ ' ~ ~  As i s  clear from what 
has been said here, this difference is explained by the 
inapplicability of the Landau-Herring method for non- 
asymptotic interatomic distances, which a r e  important 
in the present case. The singular-potential method gives 
a correct result because i t  permits correction inclusion 
of the change of the electron energy below the barrier. 
Only for asymptotically large R do the results of the two 
methods coincide. 

The solutions of Eqs. (6), (8), and (15) obviously a r e  
not expressed in terms of elementary functions o r  known 
special functions. However, strictly speaking, it is 
sufficient to use for calculations only the quasiclassical 
solution (16), since the criterion for i ts  validity coin- 
cides with the criterionfor validity of Eq. (6) itself. Use 
of the exact solutions of this equation would represent 
excessive accuracy (except for the case of interaction of 
a negative ion with a positive one). 

SEPARATION OF ,TERMS AT PSEUDOCROSSINGS 

In the zero approximation of the atomic term (the elec- 
tron is in the field of the atomic core Z, with engergy El) 
crosses the ionic terms (the electron is in the field of 
the ion Z2 with energy E,,) a t  interatomic distances 

We shall calculate the separation of the terms on these 
pseudocrossings, using the Firsov surface integral34 

where the plane S is perpendicular to the internuclear 
axis and intersects i t  between the turning points (11). 
Substituting here the wave functions found above (differ- 
entiating only ql, ,(x), we obtain 

(21,+1) (21,+1) (l,+m)l (h+m) 1 
LIE.-D. ( R )  (2n.R) [ (m!)"(~,-rn) ! ( ~ ~ - m )  1 

Dn ( R )  =ql ( 2 )  qI,,' ( 5 )  -1,' ( 5 )  qzn ( x )  =const(x) =e-"", (21) 

where I ,, I 2, and rn are  the "spherical" quantum num- 
bers of the crossing states. The Wronskian D,(R) is a 
constant (it does not depend on x) since the functions qir 
are  solutions of the same equation (15). This also leads 
to the result that the exponential part of AE, does not de- 
pend on the specific location of the plane S between the 
points x, and x,. An undesirable dependence of AE, on 
the location of the plane S in the entire segment x1 e x  
-( x, nevertheless remains, but in the preexponential 
factor: on substitution of the function (14) into Eq. (19) 
and carrying out the integration over pdp, the splitting 
AE, turns out to be proportional to Ip(x) If we 
shift the plane S closer to atom 1 (closer to the point xi) 
where I u(x)l << I El I , then here p(x) =nl and the depend- 
ence of AE, on S discussed above disappears. We chose 

the plane S in just this way in obtaining Eqs. (20) and 
(21).') We note that use of the Landau-Herring functions 
would lead to such a dependence in the agrument of the 
exponential. 

The same dependence would also be obtained by in- 
cluding in Eq. (6) the centrifugal potentials. In fact, for 
states in the atom and in the ion with different angular 
momenta the electron a t  any point of space has different 
quasiclassical energies, since the quasimomenta a r e  
different. 

Substituting the quasiclassical solution (16) into Eqs. 
(20) and (21), we finally obtaid5 

here e =2.718 ... . 
Thus, we have expressed the separation of the terms 

in terms of the quasiclassical transmission of the bar- 
r i e r  separating the atoms. This result is a three-di- 
mensional generalization of the well known one-dimen- - 
sional result.25 The relation between the exchange ma- 
trix element Hi2 = ( 1 / 2 ) ~ ~  and the barr ier  transmission 
is natural, since we a re  dealing with a case in which the 
exchange-transfer of anelectron from the atom to the 
ion-occurs below the barrier.  

We note that Eq. (22) involves the transmission of the 
one-dimensional barrier-along the internuclear axis, 
although the problem a s  a whole is three-dimensional. 
This occurred because the barr ier  transmission along a 
path deviating substantially from the internuclear axis is 
exponentially less likely than along the axis. The bar- 
r i e r  in the direction from the nucleus of the atom to the 
nucleus of the ion is the most penetrable for the elec- 
tron. 

Let us apply Eq. (22) to the case of interactionof the hy- 
drogen atom in its ground state with multiply charged 
ions which have no electrons (with bare  nuclei). In this 
case the states in the ion a r e  degenerate. The exchange 
matrix element HI, i s  nonvanishing only for the one of 
the degenerate states with a given energy which has 
parabolic quantum  number^^*'^^: v2 = m  = 0, V, = V  - 1 
(the energy of the level is E ,  = -z2/22,  v = 1,2,3  . . . ). 
Equation (22) takes the form 

Salop and 01sont9 found that the results of calculations 
of the energy according to Power's program36 lie satis- 
factorily on a straight line; specifically, ~ o ~ ( z " ~ H , , )  is  
approximately a straight line a s  a function of R / O - s e e  
the figure-for 1 s RZ-'~ s 6. In the figure we have plot- 
ted also the results of our calculations according to Eq. 
(25) and the values of Hi, given by the asymptotic theory, 

964 Sov. Phys JETP 49(6), June 1979 M. I. Chibisov 964 



FIG. I. The exchange matrix element H12. multiplied by a, a s  
a function of R/G (R is the internuclear distance) for interac- 
tion of the hydrogen ion with a bare nucleus of charge 2. The 
solid line is an approximation in accordance with Ref. 19 of the 
exact numerical resul ts ;  the dashed line is  the extrapolation of 
this approximation. The resul ts  obtained with Eq. (25) a r e  a s  
follows: +-c6*(v= 5), 4-08+(v= 6). A-~e"*(v= 7),  0-sii4+(v 
= 9), X - A ~ ' ~ + ( V =  I I ) ,  e - ~ e ~ ~ * ( v =  15), 0 - ~ e ~ ~ * ( v =  16). 
@ - ~ e ~ ~ ' ( v =  17). The asymptotic resul ts  in accordance with 
Eq. (27) (cf. Ref. 26) a r e  a s  follows: O-O~+(V= 6). A-~e '"  
(v= 7) (all quantities a r e  measured in atomic units). 

which for this case a re  

As can be seen from the figure, the quasiclassical ap- 
proximation (25) is in good agreement with the results of 
the exact claculations in this case. For RZ" '~ > 6 a de- 
viation from the straight line is observed. The approxi- 
mation used by us, like the asymptotic theory of Ref. 27, 
cannot give results for this case in the region RZ-"~ < 4 
in view of the violation here of the condition (4): R&-'I2 
a 4 (and also as  R -- Ro we have x, -x2). The asymptotic 
result (27) i s  larger by two to three times than the exact 
and quasiclassical results. 

Let us compare the result (22) with the asymptotic re- 
s ~ l t ~ ~  for the case of interaction of a proton with a hy- 
drogen atom. The asymptotic result for  this case is AE 
= 4 ~ ~ - ~ - ~ , ~ ~  and Eq. (25) takes the form ( Z  = v = 1) 

In the table the results of a numerical calculation on 
the basis of Eq. (28) a re  compared with the asymptotic 
result. I t  is evident that the agreement is more than 
satisfactory, which must be considered a coincidence. 
In the asymmetric case-an atom and an ionofdifferent 
types-the disagreement of the results i s  substantial, a s  
was evident above. 

For interaction of a negative ion with a positive one 
( 2 ,  =O,  m =0) the integral in Eq. (22) is calculated an- 
alytically and we obtain (we use the model of the 6 po- 
tential for the negative ion: xt = 0, x2 =R - Zdl E I ) 

TABLE I. Comparison of splitting 
of terms for  the interaction 
H+ + ~ ( 1 s )  calculated with Eq. (25). 
and the asymptotic expression 
A E = ~ R ~ ' ~ - '  (Ref. 24)*. 

*The value of R o  defined by Eq. (4) is in this ca se  Ro=  6. 

In Eq. (29) the argument of the exponential involves only the 
binding energy of the negative ion E -: e x p [ - ~ ( 2 1 ~  -1)lf2], 

which corresponds to the physical picture of a sub- 
barr ier  transfer of the electron. A power of the in- 
ternuclear distance, ~ " 2 ~ 2 - ' ,  is present in Eq. (29) be- 
cause of Coulomb shape of the barrier.  Use of the exact 
Coulomb Green's function for interaction of an ion A- 
with a bare n u c l e u ~ ~ ~ ' ~ ~  with use of the 6-potential model 
for A- should, of course, provide a more accurate re- 
sult. The previous analytical r e s ~ l t s ~ ~ ' ~ ~  were obtained 
either with an asymptotic expansion of the Green's func- 
tion30-32 or  with use of the Landau-Herring method.33 

These results a r e  valid therefore for remote, asympto- 
tic crossings of the terms, for which E _ =  E2. However, 
Eq. (29) is applicable also a t  smaller distances: i t  is 
necessary that the barr ier  width be greater than the 
size of the negative ion, which is of the order ni; there- 
fore Eq. (29) is valid for R >n , .  

"1n this region the Landau-Herring approximation is sufficient 
for  correction of the wave function of atom 1 for interaction 
with the ion. However, this approximation is  inadequate in 
this region for the ion function. 
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Threshold features of the excitation and ionization of 
atoms by high-intensity electromagnetic radiation 
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The step-by-step transition from the resonance excitation of the levels of a discrete spectrum by an 
external electromagnetic field to the ionization of the atom is studied on the basis of a unified theoretical 
approach. It is shown that in the intermediate region, where the interaction encompasses a large number 
of levels, the excitation process is on the whole irreversible, but retains to some extent the properties of 
the transitions between isolated discrete levels: the excitation probability depends nonrnonotonically on 
the time. The nonexponential decay of the bound state in the near-threshold region is investigated. A 
quasistationary regime characterized by a constant mean probability for fmding the atom in the ground 
state is found to exist in some interval of time. The threshold for the excitation and ionization decay 
processes is found to be depressed by an amount determined in a weak field by the parameter t -'I3 and 
in a strong field by the parameter F4'" where t and F are the pulse length and amplitude of the 
radiation intensity. 

PACS numbers: 32.80.Fb, 31.50. + w 

1. INTRODUCTION V  id.^ is the atom-field interaction operator; d is the 
dipole moment; F i s  the intensity amplitude of the al- 

The probability, w ,  for a direct single-photon ioniza- ternating electric field, F(t) = ~ e ( ~ e " ~ ~ ) ,  of frequency 
tion of an atom, which depends linearly on the time t in w; $, and E ,  a r e  the wave function and energy of the 
the initial phase of the process, is a t  large t usually de- ground state; i s  the wave function of the continuous 
scribed by the s ~ e c t r u m  with energy E = E ,  + w. Here and below we use -- 

lo=.l-e-r' (1) the atomic system of units. The ionization width r is a 
slowly varying function of the energy E =El + o, and 

which corresponds to a simple exponential decay of the tends to a constant limit as + - O ,  in accord with 
ground state. Here l? is the ioniaztion width: the threshold property of the cross section for the photo- 

r=2n I <$* I Vl ips,+.) 1 '. (2) electric effect in neutral atoms.3 In view of the slowness 
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