
collectors (see Ref. 1) the f i rs t  transfers were car- 
ried out after evaporation of each eight-liter portion 
of water a t  a filter temperature 50°C (each portion to 
a new collector). The second transfers were made with 
accumulation of the residual salts after evaporation of 
-40 liters of water (filter and crucible temperature 
200°C). Then the salt  was removed from the crucible, 
powdered, and studied a s  a new material with the com- 
plete scheme. In order to reduce the contamination 
of the collectors by vapors of the salts, during the last  
stage the crucible was heated only to 600°C. 

EXPERIMENTAL RESULTS 

In the measurements with the technique described 
above, which a s  previously1 were designed for  quark 
ions of both signs of charge, in none of the tests did we 
observe effects which would be explained by the exis- 
tence of the desired particles, and a s  a rule the inten- 
sity of light did not exceed the intrinsic background 
of the heated source. For this reason in estimates 
of the upper limits of the concentration of fractionally 
charged particles (quarks) in the materials studied, 
we considered all particles recorded in the measure- 
ments to be quarks. The results of the estimates a re  
given in the table. In comparison with the results of 
Ref. 1 the values of the lower limits for quark con- 
centration for water and the clay-silts a re  lower, 
roughly in accordance with the increase in sample size, 
and for the concretions they a r e  lower by almost two 
orders of magnitude-the latter being due to the un- 
favorable background situation in the previous experi- 
ments with concretions. Unfortunately, as a result 
of the lack of material, we were unable to study large 

TABLE I. 

samples of volcanic lava, for  which in the previous 
work1 we observed weakly expressed effects similar 
to those sought. 

Materid studied 

Thus, the result of the search is negative also in this 
series of measurements. However, taking into account 
the success of the quark model (which has again brought 
to life the question of the reality of quarks), one can 
with a certain amount of optimism consider our results 
a s  a further proof of the unobservability of free quarks. 

t 
The authors express their gratitude to E .N.  Braver- 

man for  designing the instruments and equipment used 
in this work. 
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Wave function with spin on a light front 
V. A. Karmanov 
Institute of Theoretical and Experimental Physics 
(Submitted 6 February 1979) 
Zh. Eksp. Teor. Fiz. 76, 1884-1897 (June 1979) 

A method is developed for constructing relativistic wave functions with spin on a light front. The spin 
structure of the wave function of a deuteron in the relativistic region is obtained. The calculation 
procedures are illustrated by a determination of the pd-scattering cross section. The described 
construction is equivalent to solving the problem of allowance for the spins and angular momenta in the 
parton wave functions in a system with infmite momentum. 

PACS numbers: 11.90. + t, 13.85.Kf 

1. INTRODUCTION framework of the composite models, is brought about 
by modern experimental data. Wave functions in re- 

The author has previously1 developed a formalism of lativistic coordinate space were discussed in the papers 
wave functions (WF) on a light front, which describe by Shapiro . A review of the experimental situation in 
relativistic systems consisting of zero-spin particles relativistic nuclear physics, of the theoretical problems 
and having zero total angular momentum. The need for that a re  raised, and of the existing approaches i s  
developing a covariant formalism, convenient for use presented in Ref. 3. 
in practice, for the description of nuclei when the re- 
lative momenta of the nucleons a re  of the order of The wave fronts on the light front a r e  the components 
their masses and of elementary particles within the of a Fock column of the wave vector of state in the 
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invariant Schr6dinger representation (ISR), which 
differs from the ordinary Schrsdinger representation a t  
t=O in the fact that the state vector in the invariant 
Schrgdinger representation is defined on an arbitrary 
flat space-like hypersurface, which is conveniently 
chosen to be the hypersurface of the light front wx= wot 
- wx = 0, where w is a four-vector: w = (wo, w), w2 
=o, WO>O. 

The advantage of covariant wave functions on a light 
front lies in the fact that they have a probabilistic in- 
terpretation, they depend on three-dimensional vec- 
tors,  and they a r e  connected in simple fashion with 
the vertex parts of a special diagram technique that 
makes it possible to express the amplitudes of the 
processes in terms of these wave functions. Problems 
that ar ise  when the amplitudes a r e  expressed in terms 
of wave functions on the light front were investigated 
in Ref. 4. The diagram technique is based on a three- 
dimensional formulation of field theory developed by 
~ a d ~ s h e v s k i r . ~  For the case of the light front, it is an 
invariant generalization of old perturbation theory in a 
system with infinite momentum (SIM), and the wave 
functions on the light front can be regarded a s  a 
covariant generalization of the equal-time Fock com- 
ponents in the SIM. We note that wave functions in a 
system with infinite momentum have found extensive 
use in parton models. 

In the present paper we consider wave functions on 
the light front for a system with spin. Because of their 
connection with the wave functions in the system with 
infinite momentum, the construction of such wave func- 
tions is equivalent to automatic solution of the problem 
of taking the spins and angular momenta into account 
in parton wave functions. The need for solving this 
theoretical problem was noted by Feynman. 

In Sec. 2 we recall briefly the principal results of 
Ref. 1 ,  which pertain to wave functions on a light 
front for the case of zero-spin particles. In Sec. 3 
we construct the wave functions with spin. In Sec. 4, 
the developed formalism i s  illustrated by using a s  an 
example the calculation of the cross section of the 
elastic pd scattering within the framework of the mech- 
anism of single-nucleon exchange. 

2. WAVE FUNCTION OF ZERO-SPIN SYSTEM 

The wave function $(xl,x,,p, w) on a light front is a 
coefficient in the expansion of the state vector + ( p ) ,  
defined on the hypersurface wx=O, intermsofthe states 
of the free particles: 

where 

and c+(k) is the creation operator. The state vector is 
determined by an aggregate of components correspond- 
ing to states with differentnumbers of particles. Their 
contribution to (1) is  designated by the three dots. For  
simplicity we consider below only the two-particle com- 

ponent. In momentum space, taking (2) and the condition 
o x  = 0 into account, we have 

where k12 = kZ2 =m2, pZ =M'. Let us ascertain the 
limitations that a r e  imposed on the wave function by the 
law governing its transformation under translations, 
Lorentz transformations, and rotations. 

We begin with translations. We assume that we have 
separated from the wave function $(x,, x2,p, w )  the 
dependence on the "oblique" time (along the w direc- 
tion), analogous to the e-fEt dependence in the non- 
relativistic wave function: e'jEt$(r). Therefore 
$(x,,x,,p,w) does not change when the arguments xl 
and x, a re  shifted along w. Under translation in an 
arbitrary direction p orthogonal to w ,  we obtain the ' 

usual phase factor 

At the same time, substituting in the integral of (3) the 
wave function $(x1 + p ,  x, + y , p ,  w) and making the 
change of variable xl, , + p = xI,,, we obtain the phase 
factor exp(-i(k, + k,)p). Consequently, the projections 
of the four-vectors p and (kl + k,) on the hypersurface 
of the light front should be equal: p p  = (k, + k2)p. 
Separating in \k the 6 function that takes into account 
the equality of these projections: 

we find that translational invariance leads to the fol- 
lowing relation1) between the four-momenta in $(kl,k,, 
p,w7): 

This enables us to express the wave function $(kl, k,, 
p ,  w 7) in the form of a four-point diagram (Fig. 1). 
With a changeover to particles with spin in view, we 
have indicated the spin indices in Fig. 1. For a zero- 
spin system the wave function $(kl,k,,p,w7) is invariant 
to rotations and Lorentz transformations. Therefore, 
in analogy with the amplitude of the reaction 1 + 2 - 3 
+ 4, the wave function depends on the scalar products 
of the four-vectors it contains. Introducing the vari- 
ables 

we obtain $ = $(sl, tl). 

It i s  convenient to introduce variables that have the 
meaning of the momenta of the particles in the c.  m. s. 
of the "reaction" shown in Fig. 1. Putting2) 

FIG. 1. 
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we have 

q-L-' (Q) k,-k,- - k,,- - [ m+e(Q) I 
where 

L-'(Q) is the Lorentz transformation that "extinguishes" 
the velocity v =Q/Q,. The vector q has the meaning 
of the momentum of particle 1 in the c . m. s . of the 
"reaction" of Fig. 1, and n is a unit vector in the di- 
rection of w in the c .  m. s. We note that when a Lorentz 
transformation o r  a rotation g is applied to all the 
four-vectors, the vectors q and n undergo only rotations: 

6 = R ( g ,  Q ) P ,  nf=R(g, Q)n ,  

where 

Therefore q2 and n0q a re  invariants and can be expres- 
sed in terms of s,, t , ,  and u,: 

Thus, the wave function of a spinless relativistic sys- 
tem depends on two variables, q2 and n -  q: 

The physical reason fo r  the dependence of the re- 
lativistic wave function on the variable n is the im- 
possibility of separating the motion of the mass center 
in the system of the interacting particles. For the 
simultaneous wave function $(k,, $, p) this means that 
after introducing a relativistic relative momentum q, 
the wave function remains dependent on the total mom- 
entum of the system p: $ = $  (q,p). In a system with in- 
finite momentum the dependence on the modulus of p 
vanishes, but a dependence remains on the unit vector 
n=p/ Ip l .  

An examination of the dynamic models shows that 
the characteristic parameter that determines the de- 
pendence of the nuclear wave function on the variable 
n. q ,  which does not appear in the nonrelativistic case, 
is the nucleon mass. Therefore a t  q2<< m2 the de- 
pendence of the wave function on the variable n. q be- 
comes inessential and we return to the nonrelativistic 
wave function that depends on the single variable q2. 

The wave function on the light front, which is not 
simultaneous in an arbitrary system, becomes simul- 
taneous in an infinite-momentum system moving along 
w. It coincides therefore with the simultaneous wave 
function $(k,,$,p), defined in the system with infinite 
momentum, i . e . ,  a s  p- 03. This wave function in the 
infinite-momentum system is usually parametrized with 

We now connect the variables x and R12 with q2 and 
n. q. To this end we f i rs t  consider the wave function 
JI(k,, k2,p, AT); defined on the hyperplane Ax= Oh2 = I), 
which is simultaneous in the system where A = O ,  i .  e . ,  
in a system moving with velocity v =xc/(l + ~ ~ ) l / ~ .  The 
variable x, which goes over into expression (14) in 
this system, i s  

The transition to a wave function that is simultaneous 
in the system with infinite momentum is effected by 
taking the limit a s  A-  m. Letting A go to infinity in 
(16), neglecting the difference between I A I  and X,, 
and replacing h by w, we obtain 

For RL2 we get similarly 

R12=q'- (nq)'. 

The variables q and n a r e  more convenient than R, and 
x for two reasons. First ,  in a wave function that de- 
pends on q and n i t  is convenient to go to the nonrelati- 
vistic limit (neglecting the dependence of the wave func- 
tion on n). In terms of the variables R, and x, the 
nonrelativistic wave function depends on the following 
combination of these variables: 

which ar ises  when the system of equations (17) and (18) 
is solved relative to q2. Second, the simple trans- 
formational properties of the variables q and n make 
it easy to construct states with spin. 

3. ALLOWANCE FOR THE SPIN 

We consider first  the case of a system with spin and 
parity Z' = 1/2+, consisting of particles with spins O+ 
and 1/2+, and then change over to the general case. 
We operate in a representation in which the particles 
have definite spin projections on the z axis in their 
own rest  systems. The state vector of the system 
under consideration is given by 

d'k, d'k, 
X6"' (k,+k,-p-at) dz -- 

(2el)" (Ze,)" 

In the construction of the wave functions with spin we 
start  from the fact that, in accordance with the definition 
of the spin, the state vector of a system with definite 
spin is transformed by the change of coordinate x- x1 
=gx in accordance with the law 

- - 
the aid of the variables R, and x: I)= JI(R12,x). Here x 
is the fraction of the momentum of particle 1 relative to @ , ( P ) +  Q ; ( ~ P ) = U @ , ( P ) = ~  D S , { R ( ~ ,  p))m,.(gp),  (21) 

r 
the infinite momentum of the entire system, and R, i s  

where D:!: are  the matrix elements of the rotation the projection of the momentum of the particle 1 in a 
direction perpendicular to the infinite momentum: group and R(g,p) = L-'(gp)gL(p). 

(14) We emphasize that the transformation law (21) is 
determined exclusively by the group properties of the 

(15) spin. It does not depend on the concrete represen- 
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tation in field theory, and is the s ame  both f o r  the 
Schriidinger representation in the plane t = O  and fo r  
the invariant Schr6dinger representation on the light 
front. The concrete representation governs the law that 
follows from (21) for  the Fock-component transformation 
and the form of the generators that determine the 
operator U. The explicit f o rm of these generators in 
the invariant Schrodinger representation and the group- 
theoretical questions connected with the transforma- 
tion of a s ta te  vector in the invariant Schr6dinger 
representation were elucidated by the author with I. S. 
Shapiro and will be  published elsewhere. In the pres-  
ent paper we donot need the explicit form of the oper- 
a tor  U. 

Let us s ee  how the wave function $aF (k,, k,, p ,  w 7) is 
changed by the Lorentz transformation and by the 
rotation g of the arguments. The s ta te  vector @, (P) 
in the invariant ~ch rod inge r  representation is defined 
in the different reference f rames  on one and the s ame  
hyperplane, in contrast to the state vector in the 
Schrodinger representation a t  t = 0. The lat ter  is de- 
fined in the sys tems A and A' on different hypersur- 
faces t = O  and t1 = 0. Therefore the law governing the 
transformation of the state vector in the invariant 
Schrodinger representation i s  purely kinematic, and 
the operator U does not contain any interaction and 
does not change the number of part icles.  Consequently, 
the given Fock component is transformed in t e rms  of 
itself. Fo r  a zero-spin particle this means invariance 
of the wave function. The presence of part icle spins 
leads, obviously, to the appearance of D functions that 
correspond to the rotations of the spins.  Thus, we 
obtain 

In exactly the s ame  manner we transform the amplitude 
of the reaction 1/2 + 0 - 1/2 + 0 .  Therefore the problem 
of constructing the wave function with spin reduces to 
a known problem-expansion of the amplitude of the 
reaction 1/2 + 0  - 1/2 + 0 in t e rms  of invariant ampli- 
tudes. This expansion takes the form 

where il +i2=(kl  +k2)ara, F, and F2 a r e  functions of the 
invariant variables s, and t, o r  q2 and n. q ,  and u,,(k,), 
u, ( p )  a r e  spinors . For example, the spinor u, (p )  
takes the form 

We recall that the spinor is transformed in the following 
manne r : 

a s  a result  of which the wave function (23) is indeed 
transformed in accordance with the law (22). 

It is convenient to transform the expansion (23) into 

a fo rm that comes closest  to being nonrelativistic. For  
this purpose we use  the variables q and n to build up 
the spinor s t ruc tures .  We change over  from the wave 
function $5 t o  a wave function $! that t ransforms in 
accordance with the spin indices with the aid of D func- 
tions that depend on the s ame  rotation ~ ( g ,  Q) = L-' 
( f l ) g ~ ( Q )  that determines the laws governing the trans-  
formation of the variables q and n [see formulas (lo)]. 
We shall show that the connection between $* and 
qUu i s  given by the following relations 

where, in accordance with the definition ( l l ) ,  

R ( L - ' ( Q ) ,  kt) =L-'(L-'(Q)kl)L-L(Q)L(kl), 

~ = m ( k , + k , ) / s , " ,  ~ , = ( k , + k , ) ~ ;  

C1(Q) and ~ ( k , )  a r e  a s  usual the direct  and inverse 
Lorentz transformations with parameters  Q and k,, 
while L - l [ ~ - ' ( ~ ) k , ] i s  the Lorentz transformation L-' 
with parameters  obtained f rom k, by the Lorentz 
transformation Lml(Q). 

We note that the following equality holds7: 

Dh { R  (L-' (Q)  , k )  } = 
(ko+m) (Qo+m) - (ak) (oQ) 

[2 (ko+m)  (Qo+m) (k.Q,-kQ+mz) I s h '  (29) 

When the parameters  Q and k, a r e  subjected to the 
transformation g ,  the quantity R [L-'(Q)L,] is t rans-  
formed in the following manner: 

To check on this formula, we rewrite i t  in explicit form 

L - ~ C L - ' ( ~ Q ) ~ ~ , ) L - ~ ( ~ Q )  ~ ( g k , )  
=L-'(~;Q)~L(Q)L-'(L-'(Q) ~ , ) L - L ( Q )  ~ ( k , )  ~ - ~ ( k , ) g - ~ ~ ( g k ~ ) .  

(31) 

Bearing in mind that L- ' (g~)gk ,  = R  (g, Q)q, q = L-'(Q)~,, 
we obtain after  simple transformations f rom (31): 

L-'(R(g,  Q ) q ) = R ( g ,  Q)L- ' (q )R-*(g ,  Q ) .  

Denoting the rotation by R(g, Q)= R ,  we have 

The validity of this relation i s  obvious, hence the va- 
lidity of the identity (30). F rom (26), (22), and (301, 
taking into account the equality D(R,R,) =D(R,)D(R,), we 
obtain the law governing the transformation of the func- 
tion &,": 

%"(gk~,  gkz, gp, 

= C D ; ( R ( ~ ,  Q ) } D ~ , ( R ( ~ ,  Q))+of4(k, ,  kz, P, o r ) .  (33) 

Thus, by "additional turning" the spins in accordance 
with (261, we have obtained a function kw which is  
transformed with respect  to the spin indices with the 
aid of D functions containing the rotation R(g, Q) that 
t ransforms the variables n and q. It is therefore easy 
to  construct, in t e rms  of the variables q and n, a func- 
tion $au that t ransforms in accordance with -(33): 
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where C:$$,, and C:: ,, a r e  Clebsch-Gordan coef- 
1 2  

ficients. With the aid of Pauli matrices,  this function 
takes the form 

Comparing the expansions (35) and (23) in a sys tem 
where kl+k, = O  (in this system all  the D functions in 
(26) and (27) turn into unit matrices) ,  we obtain the r e -  
lations between the coefficients f,, f,, and F,, F,: 

fl-N'"(F,+$ F,) +N-'~(F,-S: F2) (qn) Iql, 

where 

and m is  the mass  of the particle with spin 1/2. 

In the nonrelativistic case,  only ze ro  orbital angular 
momentum i s  possible in the wave function of the sys-  
tem in question. This means that a t  I q l  << m the coef- 
ficient f, goes over into the nonrelativistic S-wave func- 
tion (and ceases t o  depend on n- q), while the coefficient 
f, vanishes. Of course, there i s  no automatic vanishing 
of the coefficient f, in (34) and (35), since the nonrela- 
tivistic character  of the system manifests itself in the 
dynamic properties of the invariant functions fl and f,, 
i . e . , in the character  of their  dependences on the vari- 
ables # and n. q. The coincidence of the relativistic 
wave functions on the light front with the nonrelativistic 
wave functions a t  I ql << m i s  guaranteed by the fact that 
the relativistic dynamics which determines the rela-  
tivistic wave functions and their  dependence on n leads 
in the nonrelativistic limit to the Schrsdinger equation, 
and consequently to the vanishing of those functions 
whose appearance i s  due to the existence of spin struc- 
tures constructed with the aid of the vector n.  

I t  i s  easy to generalize the described method of con- 
structing the relativistic wave functions with spin to 
include the case of a rb i t ra ry  spins.  Fo r  a sys tem with 
total angular momentum J ,  consisting of particles with 
spins j, and j,, i t  i s  necessary to change over from the 
wave function #&,,, which i s  a coefficient in an  expan- 
sion s imi lar  to (20), to the function k,,, in accordance 
with the formula 

The function @,,, i s  transformed with the aid of D func- 
tions that contain the rotation R(g ,Q) ,  and i s  construc- 
ted in accordance with the known rules for  expanding 
the nonrelativistic amplitude of the reaction J +  0 - j, + j, into invariant amplitudesS (with replacement 
of the nonrelativistic relative momenta by q and n). 
The wave function $$la, takes the form 

1,d.L 

L Y  
~C,-~,~,,,+~,,,Y,~~,~,(n)Y~+~.~,(q/lql), (38) 

where r= 1 / 2 [ ~ +  1/2(1+ nn,n,(-l)L+')], A runs through 
the values f rom -7 to r; n, n,, n, a r e  the intrinsic 

pari t ies  of the part icles.  The functions f(j,,, L ,  A) de- 
pend on q2 and n. q .  The number of invariant functions 
f(jl,, L, A), with account taken of the conservation of 
spatial parity fo r  the case  of one integer and two half- 
integer spins,  i s  N =  ( 2 J +  1)(2j, + 1)(2j, + 1)/2. If al l  
the spins a r e  integers, then 

Thus, f o r  the deuteron we have N = 6 a s  against N = 2 
in the nonrelativistic case.  

It is  c lear  from (38) that the angular-momentum 
operator  takes in the representation chosen by us  the 
fo rm 

where jl and j, a r e  the operators of the spins of part i-  
cles 1 and 2. This expression can a lso  be obtained by 
start ing f rom the Pauli-Lubansky vector, made up of 
the generators that t ransform the state vector in the 
invariant schrsdinger representation. F o r  a spinless 
system the action of this operator  on the wave function 
$(q2,n. q)  considered in Sec. 2 and corresponding to 
zero  total angular momentum does in fact yield zero.  
In the nonrelativistic l imit ,  the action of the operator  
n x a/an on a wave function that does not depend on n 
leads to a ze ro  result ,  and we return to the nonrela- 
tivistic expression for  the operator  of the total angular 
momentum. 

To construct the N-particle wave function $~,...,, we 
must  use a formula s imi lar  to (37) to change from 

to ,, and to construct b..,r we must use 
the formulas obtalned by Kolybasov fo r  the expansion 
of the nonrelativistic amplitude of the reaction J +  0 
-jl +. . . + j, into invariant amplitudes, where the 
nonrelativistic relative momenta must be replaced by 
n and q, = L-' (Q, )k, , Q, = nz, (p + w TI/[(# + w T ) ~ ] ~ / ~ ,  i 
= I , .  . . ,N.  

Instead of expanding the function $ with the aid of 
Clebsch-Gordan coefficients and spherical functions, 
we can, in the case  of a rb i t ra ry  spins,  write down a 
direct  expansion of the function $ in the bispinor for- 
malism, s imi lar  to the expansion (23). To this end 
we must go over from the amplitude M;g to 2;:;;: 

where 

To construct M i t  i s  necessary to use formulas ana- 
logous to (38) fo r  the nonrelativistic amplitudes. This 
method of expansion into invariant amplitudes i s  s imi lar  
to that developed in Ref. 11. The invariant amplitudes 
in euz: will have, generally speaking, kinematic sing- 
ularities, a fact illustrated by formulas (36), in 
which f, and f, have square-root singularities when 

I q (  and n -  q a r e  expressed in t e rms  of the variables 
s, and t,. In problems for  which the presence of kine- 
matic singularities is immaterial ,  this expansion may 
be useful. In the nonrelativistic limit, the amplitude 
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,I?;$: does not change i t s  form,  but the relativistic 
relative momenta change into nonrelativistic ones, 
while the D functions that relate M and fi turn into unit 
matrices.  

We note that the choice of the vector Q=m(k, +k2)/s:12 
in formulas (37) which connect Il, and $ [or in the analo- 
gous formulas (40) f o r  the connection between M and 
a] was made f o r  the sake  of convenience. If we 
choose in (40) Q =p3 in  the D functions "associated" 
with the indices u:, a:, and Q =p, in the D functions 
associated with the indices uL,u:, we a r r ive  a t  the 
representation in which Skachkov12 obtained expres-  
sions for  the amplitudes in the model of the one-boson 
exchange. 

In concluding this section, we present  an expression 
fo r  the relativistic wave function of the deuteron on the 
light front: 

Allowance fo r  the Pauli principle leads to 

In the nonrelativistic limit we a r e  left with the functions 
G,  (S wave) and G ,  (D wave). 

In the bispinor formalism, the wave function of the 
deuteron $zO2 takes the form 

where U, = y2yo is the charge-conj ugation matrix 

el. =c ,,,, p,/M e,'e,*, (e-)' = (e+)' = (el)2 = -1 , and the 
four-vectors e-, e', e, ,p/M a r e  mutually orthogonal. 
In this representation, $a i s  a four-dimensional pseu- 
dovector [in formula (43) the index 0 runs through the 
values 0,1,2,3] .  The wave function Il," satisfies the 
condition pa$= = 0. I t  follows f rom the Pauli principle 
that the functions F,,,,,,, do not reverse  sign when 
q -  -q, while F,,, reverse  sign when q -  -q. 

In the nonrelativistic limit, the functions Fl and F2 
survive, and the spatial components of the four-vector 
qa go over into the well known nonrelativistic wave 
function of the deutron: 

where 

4. CROSS SECTION OF pd SCATTERING WITH 
ALLOWANCE FOR SPIN 

We il lustrate the method developed above f o r  taking 
the spin into account, using a s  an  example the c ros s  
section fo r  backward pd scat tering within the framework 
of the single-nucleon exchange mechanism. The dia- 
gram-technique rules fo r  zero-spin particles in the in- 
variant Schradinger representation on the plane Ax=O, 
which make i t  possible to express the amplitudes of the 
processes in t e rms  of the wave functions, were for- 
mulated in Ref. 5 ,  and fo r  the case  of a light front 
they were  formulated in Ref. 1. For  part icles with 
spin in the invariant ~ c h r z d i n g e r  representation on the 
plane Ax = O(A2 = I ) ,  these rules were developed in Ref. 
13,  and f o r  the case  of the light front  in Ref. 14.  The 
diagram technique fo r  the invariant SchrGdinger r e -  
presentation on the light front is  a n  invariant generali- 
zation of the old perturbation technique for  infinite- 
momentum systems.  According to the rules of this 
technique,13* l4 the amplitude of the pd scattering within 
the framework of the mechanism of the single-nucleon 
exchange is s e t  in correspondence with the diagram of 
Fig. 2. The vert ices I' of the diagram of Fig. 2 a r e  
represented in the s ame  manner as the wave functions 
(Fig. I ) ,  and a r e  connected with the wave functions by 
the formula (see Ref. 1) 

The intermediate dashed line in Fig. 2 corresponds to 
the factor 1/2n. (7 -  iO)", while the intermediate neutron 
corresponds to the propagator G,, + m) . B(wpn)6(Pz - m2), 
where the neutron four-momentum is p, = p  - k' + W T .  

The integration with respect  to d r  is between infinite 
l imits .  The external particle lines correspond to the 
s a m e  spinors a s  in the Feynman diagram technique. 
The backward pd scattering reaction was considered 
within the framework of the invariant ~chr i jd inger  
representation in Ref. 15, where a study was made of 
the qualitative consequences of the dependence of the 
deuteron wave function on the variable n. The following 
expression was obtained fo r  the c ros s  section (dis- 
regarding spin): 

where ~ = ( p + k ) ~ , u = ( p - k ' ) ~ ,  

c(q) = (q2+m2)112; m and M a r e  the masses  of the nucleon 
and deuteron; 1 kl and B a r e  the momentum and scat- 
tering angle in the c .  m .  s. of the reaction. 

FIG. 2. 

us and U, a r e  S- and D-wave functions 
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Formula (45) without allowance for the dependence of 
the wave function of the deuteron on the variable n was 
obtained also by Kondratyuk and Shevchenko.16 In the 
spinless case, the vertices 1 and 2 of Fig. 2 correspond 
to product r1r, of the vertex parts.  After taking into 
account the spin, the product becomes 

where pn = p  - k' + W T  is the neutron four-momentum. 

Representing 6, +m) in the form 

(we recall that p t  = m2 ,ph > 0) , we find that I,6' in the 
amplitude for  the zero-spin particles goes over into 

The sum over on which appears here means that in the 
assumed representation the propagator is a multiple 
of the unit matrix. 

The wave function J,& is connected with the time- 
reversed vertex part that describes the process NN - d, and is expressed in terms of $$:,,,with the aid of 
the relation 

9sy0n - (-1) L+*P+-~ $-ap,-an -p (48) 

where the spatial components of the four-momenta, on 
which the wave function in the right and left sides of 
(48) depend, have opposite signs. It is easy to change 
over from the function JI  in (471, by using (37), to the 
function $ defined by (41). We then obtain in place of 
(47) an expression that contains the wave function $ 
and D functions that depend on the spin indices of both 
the external particles and of the intermediate neutron. 
After averaging the square of this expression over the 
initial spin projections and summing over the final ones, 
the D functions corresponding to the external particles 
vanish by virtue of the orthogonality. 

We note that the D functions corresponding to the 
neutron depend on the rotations R[ L-'(Q'), p,] and 
R[L-'(~')p,,], where 

It is therefore convenient to continue the calculations 
in the rest  system of the intermediate neutron, i . e . ,  
in a system where p,=O. Such a system exists, inas- 
much a s  p t  = m2 > 0. In this system, the D functions 
corresponding to the neutron turn into the unit matrices, 
as i s  seen, for example, from formula (29). As a 
result we find that the cross section is determined by 
the quantity 

where 

q-L-'(Q)pn=-Q, ql=L-'(Qt)pn=-Qp. 

n=s>l-' ( Q )  o/ (up)  , n'=l'T L-' (Q')  o/ (op')  . 
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The function qT is determined by formula (41) without 
complex conjugation in the spherical functions, a fact 
easily obtained with the aid of formulas (48) and the 
relations (37) between J ,  and $. 

The product z@,~,~?;,~, in (49) can be represented 
in the form 

The coefficients A and B a r e  real. Their expressions 
in terms of the functions GI, . . . , G, , which determine 
the wave function of the deuteron (411, a re  given in the 
Appendix. The summation in (49) reduces to the 
calculation of the trace of the Pauli matrix, which yields 

Qz' /~  (AA1+BB'[ (nn') (qq') - (nq') (n'q) I) ,  (51) 

where A, and B and A',# depend respectively on n, q 
and n' , q' . 

The problem of choosing the four-vector w, on which 
F4 depends via the variables q ,  n,  q', and n', was dis- 
cussed in Refs. 4 and 15. It was shown that the value 
of the four-vector w must be chosen such that the ratios 
y = wk/wpl and y' = wkf/op be equal: P :  y = y' = P ,  where 
0 is given by (45a). At y = y' the expression(n . nf)(q . q') 
- (nl-q)(n .q f )  is transformed into o z ( ~ .  Q3 - (LO -Q)(w Q3, 
a fact that can be demonstrated by using the explicit ex- 
pressions for  the variables q,  n,  q' ,n' in terms of pn, 
w , Q, Q' [see formula (811. Writing down this expres- 
sion, defined in the rest  system of the neutron, in 
invariant form with the aid of the relations 

1 i 
a2 - ( W P ~ ) ' ~  ( Q Q 1 ) - 2 ( Q ~ n )  ( Q f ~ n ) - ( Q Q ' )  ma 

etc . , and recognizing that a t  y = y' we have qz = q' ', n. q 
=nl-  q' , we get 

i61=1/S{Aa(q2, nq)+B2(q', nq) [P(I-i3)mz-(l-B)W 

+1/,(i-p)2~+1/l(~+p2)~~). (52) 

The expressions of the variables P,q2, and n. q in terms 
of the energy and the scattering angle a re  given by 
formulas (45a)- ( 4 5 ~ ) .  In the nonrelativistic limit, 
formula (52) leads to the known result: 

i61=9/'($82(q) +rp~l(q) )¶, 

where 11$, zjD are  the S and D wave functions, J,, = GI, J,, 
= G5/4a, and the normalization i s  

The dependence of $4 on nn .  q leads to a qualitative 
change in the behavior of the pd-scattering cross  sec- 
tion as a function of the scattering angle near 180°.'5 

5. CONCLUSION 

The construction of the wave function with spin on the 
light front, which was presented above and which is 
needed for  the investigation of nuclei in the relativistic 
region, solves the problem of taking the spins and 
angular momenta into account in the parton wave func- 
tions. This construction was carried out using varia- 
bles different from those customarily employed for the 
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parametrization of the parton wave functions (R, and x). 
Although it  is possible to change in the expression from 
the cross section from the variables q and n to R, and 
x, in practice there is  no need for this. Thus, in the 
case of pd scattering the variables qZ and n. q are  
simply expressed in terms of the energy and the scat- 
tering angle [see formulas (45a)-(45~11. 

The wave functions on the light front, with account 
taken of the spin within the framework of the "relativis- 
tic quantum mechanical approach" with fixed number 
of particles, was constructed for a two-particle system 
by Terent'ev17 and turned out to be independent of n. 
We note that this approach is not based on field theory 
and does not have such an essential property as re- 
tardation of the interaction. Namely, the phenomenon 
of relativistic retardation leads in final analysis to the 
impossibility of separating the motion of the mass center 
in a system of relativistic interacting particles and to 
a dependence of the wave function on the argument n. 

The appearance in the relativistic wave function of 
spin structures connected with the dependence of the 
wave function on n may lead to qualitative polarization 
phenomena in nuclear reactions with large momentum 
transfer. Experiments that a re  sensitive to the de- 
pendence of the relativistic wave functions on the vari- 
able n, and experimental observation and investigation 
of the character of this dependence, a re  of considerable 
interest. 

The author is sincerely grateful to M. S. Marinov and 
I. S. Shapiro for useful discussions. 

APPENDIX 

We present the expressions for the coefficients A and 
B that determine the pd-scattering cross section: 

" I r-A' 1 r-h A x ~ ~ ~ a , o , ~ - ~ . ~ o ~ ~ + x , o , ~ + h ~ , o  
ri-h L r+h' 

)PI (cos nq) , (53) 

a' ri-h r+b' 
A 

x( I L L. \ {: : ] c:,&..P, (WS nq). (54) 
a r-h r'-h' 

where 

The functions ~ Q , L , A )  in (53) and (54) a r e  connected 
with the functions G, in formula (41) in the following 
manner: G,=f(l,0,0)/4n, Gz=f(l,l,0),~,+,=f(l,2,h) 
(A=-1,0,1),  G,=f(O,l,O). 

To obtain (53) and (54) i t  is convenient to use graphic 
methods for the summation of Clebsch-Gordan coef- 
ficients. l8 It is easily seen from (53) and (54) that A 
and B a re  real functions. 

' ' ~ t r i c t i n ~  speaking, this analysis is  not strictly correct ,  inas- 
much a s  the four-vector w is  <'orthogonal to itself" (w.w= 0). 
Relation (5) can be obtained by considering the translational 
properties of a wave function defined on an arbitrary flat 
hypersurface XX=O[A = (A,,, A), h2 = 11, and then change over to 
a wave function on the light front with the aid of the limit 
X-m. 

2 ' ~ h e  notation in formulas (7)-(9) differs from that used in 
Ref. 1. 
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