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A model is proposed of the ferromagnetic state of valence electrons of a narrow-band semiconductor 
( m e t a l )  with low symmetry of the extremal point in the Brillouin zone, when dipole interband 
transitions are forbidden. It is shown that in a system with imaginary order parameter the ferromagnetic 
ordering of electrons is produced to a degree determined by the interband transitions with respect to the 
angular momentum. The uncompensated magnetic moment of the electrons of a completely filled band is 
produced even in an undoped semiconductor (semimetal), in contrast to an excitonic ferromagnetism. It 
must be emphasized that in systems with imaginary order parameter, states with spontaneous currents 
arise in the case of allowed interband dipole transitions. The expressions obtained for the magnetic 
moment and for the magnetic susceptibility are determined by the modulus of the imaginary gap and by 
the square of the matrix element of the angular-momentum operator. Allowance for the spin-orbit 
interaction does not alter qualitatively the results obtained neglecting this interaction. The temperature 
dependence of the susceptibility at temperatures close to OX and close to the transition temperature T, 
is calculated. It is shown that the susceptibility diverges in accordance with the Curie-Weiss law at the 
transition point. 

PACS numbers: 75.10.Lp, 75.30.Cr 

INTRODUCTION 

The problem of the orbital magnetism of electrons i s  
one of the fundamental problems of solid-state physics. 
A theoretical investigation of magnetism calls for a 
cautious analysis of the dynamics of the electron in the 
presence of a periodic potential and of a magnetic field, 
and this is a rather complicated problem. The conduc- 
tion electrons in some metals have a paramagnetic be- 

sional. The following cases  a r e  considered in Ref. 2: 
1) when the number of electrons in the upper band is 
small  and all electrons a r e  under the influence of the 
Bragg scattering, and 2) when the upper band contains 
many electrons and only a small  fraction of them i s  un- 
der  the influence of the periodic potential. Allowance 
for the interband effects leads to substantial changes of 
the properties when the Fermi  level lands in the region 
of the forbidden energy band. 

havior, since the Pauli paramagnetism in them is  larger 
The effect of the spin-orbit interaction on the magnet- 

than the Landau diamagnetism, while substances such a s  
ic susceptibility of the conduction-band electrons was bismuth and graphite a r e  known to be anomalously dia- 
taken into account in Ref. 3. The experimental and the- 

magnetic. The variety of magnetic properties of the 
oretical investigations show that the spin-orbit interac- band electrons finds its explanation in the manifold of 
tion in crystals  with very small  energy gaps leads to 

factors that influence in one way o r  another the behavior substantial changes in the mixing of the spin and orbital 
of the electrons. For  example, the periodic potential of properties of the electrons. The large effective g-factor 
a crystal can change the relative values of the paramag- 

is evidence that the spin-orbit interaction exerts a sub- 
netic and the diamagnetic effects, thereby coupling these 

stantial influence on the magnetisation of the system on 
two phenomena via the spin-orbit interaction. account of the orbital motion of the electrons. 

A qualitative explanation of many magnetic properties 
of band electrons can be  found in the Landau-Peierls 
theory. This theory is based on two assumptions: f irst ,  
the interband effects a r e  neglected; second, no account 
is taken of the collective effects. It i s  clear that allow- 
ance for these effects should lead to a more adequate 
explanation of the known experimental data. The collec- 
tive effects, in particular, a r e  of very great importance 
for the explanation of strong magnetism phenomena. 
Interband effects in orbital magnetism of electrons of a 
crystal can be divided into two types. Fi rs t ,  i f  the band 
is degenerate, a s ,  for example, in the case of a p band 
or  d band, the interband effects lead to orbital paramag- 
netism, which is analogous to the Van Vleck paramag- 
netism. Second, interband effects lead to changes of the 
Landau diamagnetism. The first  type of these interband 
effects is investigated in Ref. 1. The influence of inter- 
band effects on the Landau diamagnetism was investi- 
gated by Fukuyama and ~ u b o , '  where the static magnetic 
susceptibility was calculated for an ideal crystal  in 
which the periodic potential is assumed to be one-dimen- 

In Ref. 4 ,  in the language of Green's functions, a the- 
ory was developed of the orbital magnetism of Bloch 
electrons, with account taken not only of the interband 
effects but also of the interelectron interactions. The 
onset of varied singularities of different characteristics 
of the orbital magnetism attests to the important role of 
collective and interband effects in the investigation of 
this problem. 

It i s  well known that the dielectric gap in the state of 
an excitonic insulator has a collective character. In ad- 
dition, since the electron and hole states in an excitonic 
dielectric a r e  intermixed, the influence of both the low- 
e r  (filled) and upper (free) band of the initial model on 
the different properties of the excitonic dielectric i s  
automatically taken into account. When the system goes 
over into the state of an excitonic insulator, new mag- 
netic properties also appear, based on collective and 
interband effects. In particular, the dependence of the 
magnetic susceptibility on the temperature in the exci- 
tonic-dielectric state was obtained in Ref. 5. Below the 
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transition temperature T, but not far from it, the para- ed interband transitions with respect to the orbital an- 
magnetic character of the susceptibility of a semimetal gular momentum. 
assumes the diamagnetic character of a dielectric. 

We note that usually in the band-ferromagnetism model 
It was shown in Ref. 6 that in systems that a r e  unstable the ferromagnetic ordering is due to the electron spin. 

to electron-hole pairing, ferromagnetic ordering of the In our model, ordering takes place of the orbital mag- 
band electrons sets in a t  arbitrarily small coupling con- netic moment of the electrons of a fully filled valence, 
stants, provided an excess electron or  hole density is band, for which the total spin is equal to zero. 
present. In contrast to other models, this model leads 
to ferromagnetism at  arbitrarily small electron-elec- 
tron interactions, provided only that the interelectron 
spectrum meets certain requirements. Namely, the 
substance in the initial phase should be a semimetal 
whose electron and hole Fermi surfaces a r e  almost the 
same, apart from translation by a certain vector p, or  
a metal with narrow allowed bands and for certain values 
of the vector p the condition ~ ( k )  = -c(k + p) is satisfied, 
or a metal with flat Fermi sections, or a semiconductor 

We note here an important property of the orbital an- 
gular momentum, namely its quenching ability.'' Ac- 
cording to this property, i f  the crystal-field symmetry 
is low enough to lift al l  the orbital degeneracy, then in 
first-order approximation the orbital angular momentum 
is equal to zero and i t  is said that the crystal field 
quenches the orbital momentum. Nevertheless, in our 
model a ferromagnetic state is produced because the or- 
der parameter is imaginary. 

whose exciton binding energy is larger than the band 1. FORMULATION OF PROBLEM AND HAMlLTONlAN 
gap - OF THE SYSTEM 

The variety of magnetic properties of systems in the 
state of an excitonic insulator is not limited to the fore- 
going examples. All these systems, which a r e  unstable 
to electron-hole pairing, a r e  characterized by the fact 
that all the phenomena they exhibit a r e  connected with 
the onset of an ordering that i s  determined by a real  or- 
der parameter. However, in addition to states with real  
order parameters, which lead to charge-density waves 
(ChDW), i.e., to structural transitions, or  to spin-den- 
sity waves (SDW), that lead to antiferromagnetism of the 
system, there exist also states with imaginary order pa- 
rameters, which lead to current density waves (CuDW) 
and to spin-current density waves (SCDW).' These may 
turn out to be the ground states if the spin-orbit interac- 
tion in such systems is strong enough (as indicated in 
Ref. 8), or when scattering by charged impurities takes 
place. An idea was advanced earlier that an equilibrium 
system with direct bands acquires an interesting proper- 
ty in the case of dielectric pairing with imaginary order 
parameter A. Namely, i f  only transitions with change 
of total angular momentum j a r e  allowed in the system 
(as in HgTe), then the ordering in this case is accom- 
panied by the appearance of ferromagnetic properties. 

In the two-band model, in contrast to the single-band 
model with flat Fermi surface sections, owing to the 
additional degree of freedom connected with the pre- 
sence of two bands with different symmetries, the choice 
of the phase of the order parameter leads to new physi- 
cal effects (current in the gound state or ferromagnet- 
ism). 

It should be noted that for systems with current in the 
ground state, a t  a temperature above the transition 
point, an interesting temperature dependence of the dia- 
magnetic susceptibility is obtained, namely in accor- 
dance with the Curie law.$ 

We consider a semiconductor o r  semimetal with con- 
duction-band and valence-band extrema that coincide in 
momentum space. The dispersion is isotropic and para- 
bolic, and the corresponding energy branches a r e  non- 
degenerate. Such a picture can ar ise  in a system whose 
crystal-field symmetry is low enough to lift all or part 
of the orbital degeneracy. We note that in the case of in- 
complete lifting of the degeneracy, the subsequent split- 
ting is realized by other distortions. For  example, the 
field of a cubic crystal does not lift fully the orbital de- 
generacy of the branches of the 3d electrons, and further 
splitting takes place as a result of additional tetragonal 
distortions. Such a picture can result from a rather 
strong crystal  field, and therefore this field turns out to 
be one of the largest terms in the Hamiltonian. One can 
expect the contributions to the Hamiltonian to decrease 
in the following sequencet0 

where &4, is the contribution of intra-atomic Coulomb 
interaction, &PCf is the contribution of the crystal field, 
xz is the contribution of the Zeeman energy, and zo is  
the contribution of the spin-orbit interaction. 

Thus, &9, +&qf provide the corresponding band picture 
of the semiconductor o r  semimetal considered by us. 

We note also that the symmetry and parity of the cor- 
responding nondegenerate modes a r e  such that interband 
transitions in the angular orbital momenta a re  allowed 
but dipole transitions a r e  forbidden. For example, for 
systems having the symmetry Oh, with conduction- and 
valence-band extrema located a t  the X points of the 
Brillouin zone with point group Ddh, and with an elec- 
tronic-state symmetry described by the spinor repre- 
sentations and Xi or  Xi and 3, or  else and Xi or  
X; and Xi of the Dh group, the foregoing conditions a r e  - - 

satisfied. Interband orbital-angular-momentum transi- 
The present paper is devoted to an investigation of this tions a re  due to the Zeeman term in the Hamiltonian. 

new model of ferromagnetism, which is produced in sys- 
tems with a single-electron spectrum unstable to elec- We break up the Hamiltonian %of the investigated sys- 
tron-hole pairing. The ferromagnetic ordering of the tem into three parts: Zo, zz, a n d x h , ,  representing 
band electrons is due to the fact that the order parame- respectively the Hamiltonians of the system of the elec- 

ter is imaginary and is governed by the number of allow- trons that do not interact with one another and are-in 
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the periodic field of the lattice, the Zeeman Hamilton- 
ian, and the Hamiltonian describing the electron-elec- 
tron interaction, in which we retain only the terms re- 
sponsible for the excitonic instability of the density- 
density type from the different bands. To simplify the 
calculations we shall not write out terms of the type 
a;a;a2a2, s o  that the phase of the order parameter is fix- 
ed. 

The interband electron-phonon interaction i s  disre- 
garded, since i t  does not affect qualitatively the results 
that follow. We s tar t  out with one more simplifying as- 
sumption, namely we neglect the spin-orbit interaction, 
and thus separate completely the spin contribution to the 
magnetism from the orbital contribution. We note that 
later on the calculation will be carried out with this in- 
teraction taken into account. 

The sum of the single-particle Hamiltonian and of the 
Zeeman term i s  

and i f  the magnetic field H is parallel to the z axis, 
which is itself directed along the axis of higher sym- 
metry of the crystal, then 

where pg i s  the Bohr magneton, L, is the orbital angu- 
lar momentum, and 0, is a Pauli matrix. 

We obtain the form of the Hamiltonian % + &PZ in the 
representation of Luttinger and Kohn. In this represen- 
tation, the term of the interband transitions, which is 
linear in the electron creation and annihilation operators 
is explicitly separated and the interaction Hamiltonian is 
written in the simplest form. The total and orthonormal 
system of the basis functions of this representation is 

where 

$.t,=u,,t,(r) esp (ikor) (3) 

is the exact solution of the SchrBdinger equation in the 
given periodic potential of the lattice, and is known for a 
fixed value of the wave vector ko in all the bands. Here 
n is the number of the band, k is an arbitrary vector of 
the Brillouin zone reckoned from the end of the vector 
k, .  The wave functions of type (2) correspond to the 
electron creation and annihilation operators a',,, and a,,. 

In the basis (2) the Schrijdinger equation in a specified 
periodic potential corresponds to the Hamiltonian (we 
leave out here the spin indices) 

where mo is the mass of the free electron, & f O '  is the 
energy of the state with wave function (3), and the vec- 
tor P,, is defined a s  

Bearing in mind the indicated symmetry, we obtain P,2  
=0, and as the vector k, we choose the vector corre- 

sponding to the band extremum. 

In the Zeeman Hamiltonian we have for L, in this ba- 
sis the two matrix elements 

A dq; . ( r )  [r x kl .$.,t.(r), (5) 

It should be noted here that i t  i s  most convenient to 
direct the z axis, and consequently also the magnetic 
field H, along the direction of the highest symmetry of 
the crystal. In this case for a crystal  with forbidden di- 
pole transitions the first  matrix element drops out (n 
= I ,  n' =2). We confine ourselves to a two-band model, 
assuming that the influence of the remaining bands on 
the spectrum near the given point X reduces only to a 
renormalization of the effective masses of the electrons. 
The renormalized mass m for both bands will be as- 
sumed to be the same in absolute value and isotropic. 
The Zeeman Hamiltonian i s  only slightly modified by 0,. 

Thus 

where ~ ( k )  =A2k2/2m - E F ;  L =Lfz and L i s  an imaginary 
quantity; by J we have designated the g factor. The en- 
ergy i s  reckoned from a point halfway between the band 
extrema, while the subscrips 1 and 2 pertain respective- 
ly to the conduction and valence bands. 

In the basis (2), the interaction Hamiltonian takes the 
form 

where V ( Q )  is  the Fourier transform of the Coulomb in- 
teraction of the electrons. We note that in &",, we have 
retained only the interaction of the density-density type, 
and neglected all others as  being inessential for the cal- 
culation of this effect, but in the final expression for A 
we shall include them in the effective coupling constant 
g, since they fix the phase of the order parameter. 

The total Hamiltonian of the system takes the form 

2. SYSTEM OF BASIC EQUATIONS. EQUATION FOR 
THE GAP 

We consider the situation that arises in the case when 
the system described by the Hamiltonian (9) is unstable 
with respect to electron pairing. We shall also assume 
that the indicated instability i s  connected only with one 
of the rays of the vector k,, i.e., we shall not take into 
account the interaction of the electrons located a t  differ- 
ent points X of the Brillouin zone. 

Using the standard technique for the time-dependent 
Green's functions," we can obtain in the momentum r e p  
resentation a sys tem of equations for the electron 
 ree en's functions: 
[a- (e (k)+alpnH) ]GI1""(o, k) -[psL'H+Zaa(k) lGssa' (~ ,  k)=& 

[ o + e  ( k )  +alpnH]Gz,""(o, k) - [ p ~ L H + z ~ " ' ( k )  lGsiaa ( o ,  k )  =O 
(10) 
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with the self-consistency condition 

b" ( k )  = -----; dodq V (k-q)  Gsi"" (w, q ) ,  l (2n)  (11) 

where a! = 1  or  CY =-I,  depending on the spin direction. 
Solving the system (101, we determine the function Gyy, 
which must be substituted in (11) in order to obtain the 
self-consis tency equation for the gap 

i 
Y"(k)=7 pBL'H+Pu ( q )  

2 (2n)  j4 V ( k - q )  ( [ ~ ( q )  +dpBH]'+lrBL'H+2aa(q) 1')' 

(12) 
The integral equation (12) cannot be solved in general 

form. We therefore confine ourselves to the limiting 
case of a short-range potential. We a r e  interested in 
states with imaginary order parameter, and therefore 
assume henceforth that CKK i s  imaginary, i.e., it takes 
the form iCKa, and we shall work with the modulus of 
this parameter, which we shall also designate by .ZKK. 
Subject to these stipulations, Eq. (12) becomes 

1 zaa ( k )  = ----;- j dq V (q-k)  
2 (2n)  

For  a short-range potential we obtain after integration 
and linearization with respect to JL:, and also taking into 
account the conditions CKK <<EF and F ~ H < < C ~ ~ ,  

where g is the effective but momentum-dependent coupl- 
ing constant that replaced V(k- q) and the remaining in- 
teraction is not included in %$, , and is equal to zero a t  
momentum transfers Elql >b; CKK is likewise independ- 
ent of the wave vector; N(O) = 2 r n 1 ~ ~ / ( 2 n ) ~ ~ ~ .  Next, de- 
fining the order parameter C in the form 

we obtain an expression for the modulus of the gap 

or,  recognizing that this is  a pure imaginary quantity, 
we can write 

Pr.=i(zo+u,l Lie). (14a) 

where 

Taking into account the expression for the gap we can 
write down also the anomalous Green's function 

3. EXPRESSION FOR THE SUSCEPTIBILITY 
T=O 

The orbital-momentum operator is of the form 

and consequently its matrix elements in the basis chosen 
by us a r e  imaginary. Since the order parameter is im- 
aginary, the orbital magnetic moment acquires a non- 
zero mean value 

where L is given by (6) and if j ,  since the intraband 
matrix elements a r e  equal to zero. Changing over in 
(18) to summation over k to integration, and also sub- 
stituting the expressions for the Green's functions and 
summing over i, we get 

Integrating with respect to q in the same approxima- 
tion as for the gap, i.e., accurate to terms linear in H, 
we obtain the expression for the moment 

or,  taking into account the expression for C, 

Having now an expression for the magnetic moment, 
we obtain the following expression for the magnetic 
susceptibility, using the connection between the magnet- 
ic moment and the susceptibility xL = a ~ ~ / a ~  and neg- 
lecting the small terms c:/$: 

X L = ~ V B '  1 L I2N(O) [I11 (2e*'/zoa) -21. (20) 

We note that xL in our approximation cF/Co >> 1 is al- 
ways larger than zero, since 

In (2epz/Zo) >2. 

It is of interest to compare X, with the Landau dimag- 
netic susceptibility 

Q =-mkaps'13n2. 
- 

Since IL l 2  =E21 L 12, i t  follows that 

From this we s e e  that XL > I XL I , if 
ILl~{6[ln(2ed/20z)-2])-'. (22) 

4. ALLOWANCE FOR THE SPIN-ORBIT 
INTERACTION 

We analyze this problem with account taken of the 
spin-orbit interaction within the framework of the meth- 
od used in Ref. 8, but instead of the generalized Bloch 
functions we use the generalized basis of Luttinger and 
Kohn. The wave eigenfunctions of the zeroth Hamilton- 
ian, which includes the spin-orbit interaction, which 
does not giving the splitting, have a Kohn form and spin- 
ors,  i.e., 

Using the invariance of the Hamiltonian to space inver- 
sion I and to time reversal, we have 

$,r+=KI$,r+, (24) 

where K =  -iu,K, i s  the time reversal  operator after 
Kramers, KO is the complex-conjugation operator, -and 
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0, is a Pauli matrix. Regarding from the very outset 
u,,,(r) and v,,(r) a s  real  functions, something that can al- 
ways be done for band extrema, we obtain also an ex- 
pression for $.,+ in terms of these functions: 

-Un4(r) exp{i (k-h) r). 
= ( unb(r) ) 

The matrix elements of the type (6) take the form 

Recognizing that a s  a rule the extremal points a r e  sym- 
metrically arranged in Wigner-Seitz cells, we obtain 

~ ( - k , )  =E (ko) . (27) 

In the spinor basis (23), (24) the changes of reduce 
only to renormalizations of the constants. The Zeeman 
Hamiltonian connected with the orbital angular momen- 
tum takes the form 

The interaction Hamiltonian in the basis (23) and (24) 
takes the form indicated in Ref. 8. 

Using the technique of time-dependent Green's func- 
tions, we can write down in matrix form a system of 
equations for the matrices ~ y f ( k ,  w) and ~;:(k, w): 

where 

I is a unit two-dimensional matrix and a is the order- 
parameter matrix. 

We a re  interested in states with imaginary order-pa- 
rameter order-parameter matrix. For the moduli of the 
components of the order-parameter matrix we have 
the following self- consistency conditions: 

21. -1+Z-1, 1=(g1-gz-gz') (21. -,+Z-I, ,)M, 
21,  - , - X i .  ,+2p~lElH=(g1-gz-3gZ') (Z,, -,-Z-,. 1+2pnlLJH)K 

-2gz"(Zit-tX-,, -,+2ps I LIH) K, (31) 
where 

a'-eyk) i K=-i --- [(Z,,+psHILI) (2-,.-,+pn~ILI) 
k.. 

Det Det 

a'-e2(k) 1 
M = - I ~  -+- [ (Zll+pBILIH) (Z-,,-,+psHILI) 

k.. 
Det Det 

The symbol Det denotes the expression that determines 
the spectrum of the single-particle excitations: 

Det=[02-ez(k)]2-[oz- E (k) 1 [ (Z,,+pBlLIH)'+(Z-i, -,+pnILlH)' 
+ ( Z  - ~ + ~ B I E I H ) ~ + ( Z - ~ .  I-PB~EIH)'I+[(Z~~+~BILIII) (Z-l,-L 

+ P B I L I H ) - ( Z ~ . - , + P ~ ~ L I H )  (Z-i. i-pslLIH)lz. (32) 

We have not written out in the self-consistency equations 
(31) terms of the type J p B H ,  which, as we have seen in 
Sec. 2, do not enter in the expression (14) for the gap. 
We have therefore eliminated them. 

In the system (31), the matrix 5 is connected with the 
matrix of the order parameter in the following manner: 

where 

The system (31) reduces to two equations relative to 
the new unknowns A, and At,  defined by the relations 

under the additional condition 

where g ,  is an interaction constant of the density-den- 
sity type, g2 is the unrenormalized interaction connected 
with the transition of the pair from one band to another, 
and g{ and gi a r e  unrenormalized interactions connected 
also with the transition of electrons from one band toan- 
other, but now the electron reverses spin direction in 
the transition, on account of the spin-orbit interaction 
The singlet and triplet coupling constants take the form 

g.-g1-gz-g2'+2 (gz'2+g,"z) ", gt=g,-g,-gZ'. (35) 

The singlet order parameter is connected with the orbi- 
tal magnetic moment. 

We note that the new system of equations with respect 
to A, and A, coincides with the system obtained in Ref. 
6. In the absence of doping and a t  H = 0, the energy min- 
imum corresponds to the following solutions of the new 
system: 

At-0, A.=AsO=2~r exp[-l/gSN(0) I ,  (36) 

A,-0, Al=Afo=2er exp [-flgtN(0) 1. (3 7) 

The solution (36) is more convenient, as was noted in 
Ref. 8 and a s  is seen from relations (35). Performing 
the same calculations a s  in the preceding section, we 
obtain for the orbital moment the following expression: 

where 

As seen from (38), the influence of the spin-orbit inter- 
action reduces to a renormalization of the order param- 
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eter, and the form remains the same a s  in (19) and 
(19a). In this case, too, ML is determined only by I LI , 
i.e., by the interband matrix element of the orbital mo- 
ment diagonal in the spin. It is known that analytic integration of (45) is impossi- 

ble, all that can be obtained is the behavior of the gap in 
the spectrum at  T<< T, and a t  (T, - T)/T, << 1. In the 
case of low temperatures, T << T,, we can obtain an . 

asymptotic formula for C= Z(T) a t  C >> T, similar to the 
formula for superconductors" : 

We obtain similarly an expression for the susceptibil- 
ity: 

where Lso is determined by (39) and (36). 

5. SUSCEPTIBILITY AT FINITE TEMPERATURES 

In the preceding section we have seen that the spin- 
orbit interaction does not lead to new qualitative changes 
of the orbital ferromagnetism obtained neglecting this 
interaction. Therefore the calculation of the magnetic 
susceptibility a t  finite temperatures will be carried out 
within the framework of a simple interaction Hamilton- 
ian of the density-density type for ca r r i e r s  from differ- 
ent bands, neglecting the spin-orbit interaction, .i.e., 
in analogy with the calculation carried out in Sec. 2, tak- 
ing into account the same remarks made with respect to 
the interaction of the type a;a;aza2. In this case, to de- 
scribe this effect we use the temperature Green's func- 
tions" 

G,,*(t., x') =(T$,=(X)+,,+ (2') ), 

G,,*(x, z') =(T$za(~)Yib+(~') ), 
(41) 

where Co is defined in (15). 

Substituting (47) in (19) and neglecting the temperature 
correction under the logarithm sign a s  inessential, we 
obtain 

From this we get the temperature dependence of the 
susceptibility a t  low temperatures: 

2er2 x([($)"-$($)" -k(E) In- 

+ 2 ( T ) l h (  * +)). (49) 
- - 

where x s  r ,  7. Here $,,(x) and qta(x) a r e  operators ex- 
pressed in the Heisenberg representation 

Since Co >>T, the more important term in (49) for the 
T-dependent part is ( T C ~ / ~ T ) " ~ .  Retaining only this 
term, we get 

XL (TI TL (T--O) +4psZI L I 'N (0) In' (2egS/Zgl) exp (-&IT) (nZo12T)". 

- From the equations of motion for the operators via and 
q2,, we obtain, after taking Fourier transforms with re- 
spect to the coordinates r and the imaginary time 7 ,  the 
following system of equations for the Green's functions: 

[ion-(e(k) W p B )  lGll-(on, k) -[pBL'H+Ca"(k) lGzIu(o., k) =i, 

(494 
From the expression for xL(T) we can s e e  that a t  small  
T the susceptibility increases with increasing tempera- 
ture, since dx, /d~ > 0 at  T << CO. 

Neglecting the influence of the field on the transition 
temperature T,, we can determine T, in standard fashion 
from the equation for the gap (4) with the self-consistency condition 

where on = (2n + 1)rT; n = 0,*1,*2,. . . , and T i s  the 
temperature. 

where y =C =0.577. 

Near T, the gap is small, therefore we can expand in 
(45) in powers of (C +pgl LI H ) ~ / T ~ ;  a s  a result we get 
the following expression for the gap: 

We a r e  interested in states with imaginary order pa- 
rameter, and we therefore obtain for the modulus of this 
parameter from (43) and (44) 

iT xaa (k) = -7 
V(k-q) (p,ILIH+xa"(q)) C J d q a ~ - ( e ( q ) + a l p . ~ ) ~ ( p m ~ ~ ~ ~ + ~ - ( q ~ ) z  . (211) " 

In the short-range-potential approximation and after 
summation over n, we get the following equation for C: 

where 5(3) is the Riemann zeta function. 

We obtain a third-order equation for C. It can be 
solved to yield an exact expression for C, but within the 
framework of our approximations we can confine our- 
selves to substituting in the right-hand side of (51) the 
expression for C at  H = 0 where C was defined earlier in terms of Cua, and 
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Z(T, H=O) =nT.[8/76 (3) 1'" (I-TIT.)"'. (52) 

Using the same expansion in powers of [z(T, H) + I.IB 
I L I H ] ~ / T ~ ,  we easily obtain an expression for the mag- 
netic moment: 

Substituting in (53) C from (51), we see  that with in- 
creasing T the moment decreases. At T >T, we have 

from which we see  that the magnetic moment continues 
to decrease. 

From the expression for the moment we easily obtain 
the susceptibility of the system: 

As expected, a t  the transition point the system s u s c e p  
tibility becomes infinite. The obtained magnetic suscep- 
tibility also satisfied the Curie-Weiss law. 

6. CONCLUSION 

Thus, in a system with direct bands, in which only 
transitions with change of the orbital angular momentum 
L a r e  allowed, dielectric pairing in a state with imagin- 
ary order parameter C results in ferromagnetic order- 
ing of the valence electrons of the completely filled 
bands. It should be recatled that in systems with imag- 
inary parameter, for allowed interband dipole transi- 
tions, states with spontaneous currents a r e  produced.' 

Even though the crystal field quenches the intraband 
orbital angular momentum, an uncompensated magnetic 
moment is produced in a system with imaginary order 
parameters, in proportion to the interband transitions 
with respect to the angular momentum. It must be em- 
phasized that this ferromagnetism arised in systems 
with completely filled bands, i.e., the ferromagnetic or- 
dering arises even in undoped semiconductors (semi- 
metals), in contrast to excitonic ferromagnetism. 

We can compare the obtained magnetic moment with 
the saturation moment Maat - p$V(O)$, where E, is the 

width of the filled band: 

ML 2, ln (2eF2/2?) -- 
Msat EP 

We see  therefore that the ferromagnetism of the elec- 
trons of the filled band can exceed the saturation mag- 
netism in systems with narrow filled bands. I t  must be 
emphasized that we have neglected the spin splitting of 
the bands because of the smallness of this effect com- 
pared with the obtained effect. 

We note in conclusion that suitable materials in which 
ferromagnetic ordering of valence electrons of com- 
pletely filled bands can occur may be  systems with nar- 
row forbidden bands having low symmetry a t  the extern- 
al Brillouin points. I t  appears that they include also 
solid solutions (see Refs. 12 and 13). 

The authors thank V. L. Ginzburg and L. N. ~u laevsk i i  
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