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A theory is developed to describe the diipation of the energy of a nonlinear magnetization wave in a 
ferromagnet through interaction with thermal magnons. The case of a moving domain wall is treated in 
detail. Dynamic damping of a moving domain wall is investigated. The dependence of the damping force 
on wall velocity and temperature is calculated. For a wall under the influace of an external magnetic 
field, the dependence of the velocity of viscous motion on the value of the field is found. It is shown that 
the damping of a domain wall cannot be described by phenomenological allowance for relaxation in the 
equations of magnetization dynamics. In particular, at high wall velocities the dependence of the damping 
force on the velocity becomes nonlinear. At low velocities, the relaxation constant that describes viscous 
motion of the wall may differ greatly from the relaxation constant that describes, for example, the width 
of the ferromagnetic resonance line. 

PACS numbers: 75.60.Ch, 75.30.D~ 

INTRODUCTION the variation of the velocity of DW motion with the value 
of the field and with the temperature of the magnet. 

In investigation of dynamic processes in magnetic 
materials, there is great interest in the problem of the 1. THE HAMILTONIAN OF SPIN WAVES IN A 

motion of domain walls (DW) and of isolated magnetic FERROMAGNET WITH A NONLINEAR 

domains. Motion of a DW is limited by two qualitatively MAGNETIZATION WAVE 

different phenomena: first, the presence of various 
crystal defects, whose effect can be described by intro- 
duction of a coercive force (a force of static f r i c t i~n)"~ ;  
second, the presence of dynamic damping (viscous fric- 
tion), caused by transfer of the energy of the moving 
DW to thermal magnons and phonons.' With increase 
of the velocity of the DW, the dynamic damping becomes 
dominant. 

In investigation of dynamic magnon damping of a DW, 
there ar ises  the problem of describing the interaction 
of a nonlinear wave of a classical magnetization field 
with thermal spin waves. A peculiarity of this prob- 
lem" is that both the nonlinear wave and the magnons 
a re  manifestations of the same, essentially nonlinear 
quantum system, namely the spin system of the ferro- 
magnet (FM). Here the problem ar ises  of choosing the 

We consider a uniaxial ferromagnet. The simplest 
expression for i t s  energy can be written in the form 

Here M is the magnetization, ff the exchange constant, 
P the anisotropy constant, n the unit vector along the 
anisotropy axis (the z axis), and H, the magnetic dipole 
interaction field. 

We shall consider small oscillations of the magneti- 
zation against the background of a classical nonlinear 
wave. For  this purpose we represent M in the form 
Mo(r, t) + m(r, t), where Mo(r, t) is the magnetization 
distribution in the nonlinear wave, and m corresponds 
to the small oscillations of the magnetization against 
the background of the nonlinear wave. 

zeroth approximation; that is, of the most natural sep- It is convenient to  introduce a new coordinate system 
aration of these subsystems: and also of allowing for in which the axis of quantization e3 for m coincides with 
their interaction, which leads in particular to  dissipa- the equilibrium direction Mo(r, t) in the nonlinear wave: 
tion of the energy of the nonlinear wave (in particular 

This paper investigates the interaction of a nonlinear 
magnetization wave with magnons. Detailed considera- 
tion is given to the case of a moving DW, and a theory 
is constructed t o  describe damping of a DW a s  a result 
of interaction with thermal magnons. The contribution 
of various processes to the damping force i s  analyzed, 
and the general nature of the variation of the damping 
force with DW velocity and with temperature is des- 
cribed. On the assumption that the energy of the de- 
magnetizing fields is much smaller than the anisotropy 
energy (this condition is satisfied, for example, for 
iron garnet films2), an expression is obtained for the 
damping force over a wide range of values of the DW 
velocity (up to the limiting value) and of the tempera- 
ture. For a DW under the action of an external mag- 
netic field, a discussion is given of the effect of inter- 
action of the DW with thermal magnons on the nature of 

e, =e. cos rpi-e, sin rp, 

er=Cos 8(-& sin rpf e, cos c p )  -e, sin 0, 

&=sin O(-e, sin rp+e,,cos rp) f e z  cos 0. 

In this system MO3 =MO, MO1 = MO2 = 0; the nonuniform 
magnetization distribution corresponding to the moving 
DW is  described by the angles B(r, t) and q(r,  t). We 
shall express the components of m(r, t) in this system 
in terms of the Holstein-Primakoff operators6 a(r) and 
a+(r): 

where N o  is the Bohr magneton. The operators a(r) and 
d ( r )  satisfy the Bose commutation relations 

[a(r),  a+(rf) I =6(r-r') (4)  
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and a r e  the creation and annihilation operators of spin 
waves. We note that the operation of transformation 
from magnetization operators in the laboratory coordi- 
nate system to operators M i  in the coordinate system 
(21, and a s  a result to the operators a+ and a,  contains 
an explicit dependence on time because of the motion 
of the DW. Because of this fact, when dynamic equa- 
tions a re  written for the operators M i  or  a, for exam- 
ple in the Hamiltonian form 

the Hamiltonian operator does not coincide with (1) but 
must be written in the following form: 

where w{M,) is the energy (1) of the magnet expressed 
in terms of M , .  By use of the relations (2) we get 

The Hamiltonian (6), (71, written in terms of spin- 
wave operators, takes the form of a power series in a 
and a': 

where go does not contain the operators a and a+ and 
describes the dynamics of the classical nonlinear mag- 
netization wave; % is linear in a and a'; % is quad- 
ratic in a and a'; and so  on. In order to write (8) ex- 
plicitly, i t  is necessary to express the demagnetizing 
field H, in terms of the components of magnetization 
by means of the equations of magnetostatics; here the 
expression for H, can also be written in the form of a 
power series in a and a', i. e., 

But by use of the relations 

j H,6M dr- J M ~ H ,  dr, 

which relates a small change bM of the magnetization 
to a small change bH, of the demagnetizing field, one 
can express % in terms of H:' alone, namely: 

where 

W,=Wo{O(r, 1 ) .  q ( r ,  t ) )  

is the energy (1) of the ferromagnet expressed a s  a 
functional of the angles 0 and cp. In our case 

To this point we have not specified the form of the func- 
tions dr, t) and cp(r, t ) .  It is obvious that with a cor- 
rect choice of the nonlinear wave, i. e., of the ground 
state for the small oscillations described by a and a', 
the condition = 0 must be satisfied; that is, both of 
the expressions in square brackets in (9) must vanish. 
This condition determines the well-known dynamic 
Landau-Lifshitz equations, without damping, for a 
classical magnetization field, in the angular variables 
0 and cp. 1 

Thus the natural requirement that terms linear in a 
and a' be absent from the Hamiltonian determines the 
nonlinear wave of the classical magnetization field (in 
particular, a moving DW), whereas g, &P3, etc. de- 
scribe quantum and thermal corrections to this state 
that result from interaction of the nonlinear wave with 
spin waves. For an arbitrary nonlinear wave, &P2 can 
be written in the following form: 

a a 
+i-(aa-a+a+) ( V B V q )  + i- V q c o s  O(aVaC-a+Va) 

2 2 

where $? is due to dipole-dipole interaction and is ex- 
pressed in terms of a and a' by a complicated integral 
relation (see Ref. 7). We shall give expressions for 
&O, and%, for a specific case of a nonlinear wave, a 
moving DW, in the following section. 

In order to describe the spin system of a FM on the 
basis of our Hamiltonian, it is of course necessary to 
separate the two sub-systems, the nonlinear wave and 
the thermal reservoir of magnons, and to describe 
their interaction. Since the spin-wave Hamiltonian de- 
pends explicitly on time, the interaction of the system 
leads to transfer of energy of the nonlinear wave to the 
thermal reservoir of magnons, i. e., to dissipation of 
the energy of the nonlinear wave. 

The rate of dissipation of energy, and also the ther- 
mal corrections to the values of various physical char- 
acteristics of the wave (energy, magnetization, etc. ), 
can be calculated on the basis of the spin-wave Hamil- 
tonian by use of standard methods of many-body 
theory. "' 
2. INTERACTION OF SPIN WAVES WITH A MOVING 
DOMAIN WALL 

We turn to a detailed investigation of the example that 
is most important in practical respects and simplest in 
theoretical: motion of a DW. For  the case of a plane 
DW moving along the x axis, we have Mo = Mo(x - Vt), 
and the magnetostatic equations for H: can be solved in 
elementary fashion: 

H?' =-4nM&=4nM0 sin 0 sin cpe,. (12) 

From the condition = 0, with use of (121, follow the 
well-known equations that describe the magnetization 
distribution in a plane nonlinear wave (see, for exam- 
ple, Ref. 1): 
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a (cp' sin' 8)'+4rr sin' 8 sin q! cos cp- (fi!2pJfo) 8 sin 8=0, 

a0"-[p+4n sin' cp+a(cp')zlsin 8 cos 8 + ( f i / 2 p o ~ o ) i  sin 8-0, 
(13) 

where O r  =aO/ax, 6 = aO/at. The solution of these equa- 
tions, which describes a DW moving with velocity V, is 
well known. 10'11 It gives 

cp=cpoiV) =const, sin 2qo=(V/VtV), 
cos @=th[ (z-Vt)/zol for p 4 n .  

Here xo = (a/8)1'2 is the thickness of the DW, and Vw is 
the well-known Walker limiting value of the DW velo- 
cityi0 

But ~ : ' ( i >  2) a re  expressed in terms of a and a' by 
complicated integral relations (see, for example, Ref. 
7). We shall restrict  ourselves, for H,, to the ex- 
pression (12). As has already been mentioned above, 
this approximation corresponds to exact allowance for 
dipole interaction in % and and to  neglect of the 
magnetic-dipole terms in s2 and &PS in the description of 
the DW dynamics. 2 '  When P >> 4n, this approximation 
may be expected to be reasonable. Below (see Sec. 4), 
we shall return to discussion of the contribution of 
magnetic-dipole interaction to  DW damping. By using 
this simplification, we can write the spin-wave Hamil- 
tonian in explicit form. Using (11) and (141, we get 
for Y'= 

Here EO = ltWO = 2p&M0 is the activation energy of spin 
waves, 5 = (x - Vt)/xo, and xo = ( a / ~ ) " ~  is the DW thick- 
ness. Thus a DW constitutes an effective attractive 
potential U( 5) =-2/ cosh2 5 for spin waves, one that 
moves with velocity V. The values of %e3 and % a r e  
determined by the relations 

e 0 2 %  
%, = - j dr a+a{zOz(va+) (Va) +(I-2/chz p)a+a}, 

2s (18) 

where ii is the interatomic distance and s is the spin of 
an atom; 2s/# = M0/po. 

The Hamiltonian &P=&P2 +% +g4 + . . . describes the 
effect of thermal spin waves on the DW motion. Since 
for V+ 0 the Hamiltonian %contains terms explicitly 
dependent on time (U = U(x - Vt)), the DW motion leads 
to the occurrence of inelastic transitions in the spin- 
wave system. The energy of the magnon system then 
increases; that is, damping of the domain wall occurs. 
We note that the time-dependent terms in %are  not 
small; that is, they cannot be taken into account by 
perturbation theory. 

But a t  small velocities, we may have a situation in 
which the potential U(x - Vt) itself is not small, but it 
varies slowly over characteristic times of the problem. 
As we shall show below, this condition corresponds to 
the inequality 

where 2 0 0 % ~  is the minimum phase velocity of spin 
waves. Since V < Vw and since Vw =(2n/P)wfio [see 
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(15)], for  P >> 4n the condition (19) is always satisfied. 

Thus, the perturbation that produces the inelastic 
transitions of interest to  u s  in the magnon system is 
not small but is adiabatic. Consequently, adiabatic 
perturbation theory1' can be applied to our problem. In 
this approach, a state vector of the system is sought 
'in the form of an expansion in eigenstates of a Hamil- 
tonian in which the value of the slowly varying param- 
eter is fixed. In our problem, this corresponds to ex- 
pansion in eigenstates of a Hamiltonian with the DW at  
res t  a t  the point xDW, where Vt 'xDw. An expansion in 
these states has the form 

where is the volume of the ferromagnetic material. 
and where *&(r, xDW) is the solution of Schrodinger's 
equation with potential energy U = U(x - xDW): 

The solutions of this equation, i. e., the energy and the 
form of the wave functions of magnons in a ferromagnet 
witha stationary DW, a r e  well known": 

U ' ~ = ( P ~ ( Z - Z ~ ~ )  eikr, ek=e.(I+x,2kZ), 

cp,(x) = [th(+lro) -Lak.] ( I  +zozk.') -I1= . 
(22) 

Equation (2 1) has still another solution 4,0, (r, x,,), 
which corresponds to a spin wave localized near the 
DW; but this state makes no contribution to  the damping 
of the DW. 

It is obvious that the set  of functions qk(r,  xDW) is a 
complete orthonormal set; that is, 

j drYk,'(r, zDw) Yk(r, zDW)=QA(k-k'). 

Hence i t  is easily found that 

a - -9-v2 j a ( 4  YI. (r,  ow) dr. (23) 

In the case of a moving DW, we shall seek a'(r) and 
a(r) in the form of an expansion in eigenfunctions of the 
Hamiltonian for x,, - Vt: 

Since the transformation from a(r)  to a, depends expli- 
citly on time, the equation of motion for the operators 
a, will have the form 

where $is the Hamiltonian that describes the evolution 
in time of the operators a,. The value of $is found 
directly from the equation of motion (5) for the opera- 
tors  a(r )  and from the relation (23): 

As before, $can be represented in the form& + g 3  
+ . . . . For  $2 i t  i s  easy to obtain 

%,=%02+~, ( t )  - (r eg,+a,+ 0 (1.2) e-'Qvtal+a2, + 1.' 

where 
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Here response approximation 

In our representation (241, the Hamiltonian go de- 
scribes a magnon gas whose state at each instant of 
time is "tuned" to the prescribed position of the DW; 
U,(t) describes inelastic transitions between these 
states. Use of the representation (24) simplifies the 
problem because the amplitude of the inelastic proces- 
s e s  is small (U, - E,v/w&, << E,), and the inelastic pro- 
cesses excited in the magnon system by U(t) can be 
treated by standard thermodynamic perturbation theo- 
ry.'" The contribution of and is also small, 
since these operators contain the small parameter 
(1/2s) and the operators a' and o to higher powers. We 
give the form of gy73: 

a,-- {Q, (1,2; 3)exp(-iq(')Vt)a,+a,+a,SH.c.), (29) 
I,*,= 

where 
q'l'=k,.+k,-k,,, (30) 

Q, (1.2; 3 )  = ( E ~ Z ~ Z ' ~ )  ( ~ S Q ) - " ' Q ~ - ~ A  (kl l+k21-kl l )~(1.2;  3 ) ;  (31) 
~ ( 1 . 2 ;  3 ) -1  if qo'<11zo.(p(1.2; 3 ) - e ~ p ( - q ( ~ ' x ~ )  if q ( s ) w l / z o .  

The Hamiltonian $of the magnons can be represented 
in the form go + +(to, where is the Hamiltonian in the 
absence of the DW, and where U(t) is time-dependent 
and is due to the presence of the moving DW. The part 
of $o that is quadratic in a' and a is determined by (27); 
xo3 and gM a r e  the same a s  in a uniformly magnetized 
ferromagnet and a re  given, for example, in Ref. 6. 

3. DISSIPATION OF ENERGY OF A NONLINEAR 
WAVE IN A FERROMAGNET (WITH A DW AS AN 
EXAMPLE) 

All the physical characteristics of the spin system of 
a FM with a DW, i. e. ,  of a nonlinear wave plus mag- 
nons system, a re  determined by the density matrix p, 
which satisfies Liouville's equation 

If there is no interaction of the magnons with the DW, 
that i s  if $=%, the magnon system is in equilibrium, 
and i ts  density matrix has the usual Gibbsian form po. 
Supposing, a s  usual, that the operator U(t) is "turned 
on" adiabatically, one can write (32) in the form of an 
integral equation and solve it by perturbation theory a s  
regards U(t). ' Then 

where pl corresponds to the approximation of a linear 
response to  U(t), and where the pn a r e  determined by 
formula (4.1.5) of Ref. 9. By use of (331, one can ex- 
press the mean value of any physical quantity describ- 
ing the motion of a DW in a FM in the form 

where An = Sp(Ap,). It is easy to show that the calcula- 
tion of An reduces to calculation of many-time Green's 
functions of the magnons. In particular, in the linear- 

I +- 
A,---i j d t , ( [ A ( t ) , O ( t , )  I),- j dt, G!,:;(t), 

-- -- 
where the symbol ( . . . ) represents averaging with 
weight PO, and where 

G.!.? ( t ,  t , )  =- i9( t - t i )  ( [ A ( t ) ,  U ( t i )  I )O 

is the retarded equal-time Green's function.'*' We note 
note that, strictly speaking, we a r e  concerned with cal- 
culation of the Green's functions of a system of inter- 
acting magnons, since &Po includes the interaction of 
magnons with each other (and in general with phonons, 
etc.) in the absence of the DW. But in each specific 
case, the result, in the zeroth approximation with re- 
spect to  magnon interaction, can be expressed through 
"dressed" single-magnon Green's functions. ' 

We turn t o  investigation of the character of the dissi- 
pation of energy of a nonlinear wave (in particular a 
DW). The dissipation is determined by transfer of the 
energy of the nonlinear wave to  thermal magnons. 

The damping force F that acts on unit area  of the DW 
can be expressed in the form 

where Q is the change of energy of the magnon system 
in unit time, S is the a rea  of the DW, and V is, a s  be- 
fore, the velocity of the DW. 

The operator U(t) has the form Uz(t) + U,(t) + . . . , 
where Un contains n operators 4, a,. Therefore in the 
linear-response approximation, F can be expressed as 
F'2' (3) 

ti, + F li, = . . . , where F;.' is determined solely by U, 
(schematically, (Un U,)). In subsequent approximations 
with respect to  U there appear, for example, terms of 
the type (U2U2U2), (U2U2U4), etc. We shall discuss the 
contributions of Uz to  F .  For  ~ $ 1 1  i t  is easy to derive3' 
[see (28)l 

2n FS --z qIU(k, k+ q )  Ia(nh-nh+q)6(~r+q-eh-qV). (37) 
,.,q>o 

Here % = [ exp(ck/T) - lrl is the Bose equilibrium dis- 
tribution function. 

Since U(1,2) itself is proportional to V, the damping 
force varies nonlinearly with the velocity V, and [F(v)/ 
V] -0  a s  V-0. Turning to  the calculation of F2(V), we 
note that by virtue of (28) 

U ( k ,  k+q) - (2k+q) V .  (38) 

On taking into account the condition [see (3711 

E ( k i q )  -e ( k )  = ~ , z , l q  ( 2 k f q )  =qV, (39) 

we find that F ' ~ ' = c ( T ) ~ .  

Thus the contribution of two-magnon processes to DW 
damping a s  V-0 is negligibly small. At the same 
time, two-particle processes a r e  dominant in all  known 
problems of dynamic damping of moving linear defects 
(see Refs. 4 and 5). This result is due to the special 
form of the potential energy of interaction of spin waves 
with a DW in a uniaxial FM; specifically, to the fact 
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that the potential energy of interaction of a magnon with 
a DW is reflectionless [see (21) and the expression 
(22) for the wave function]; that is, for an arbitrary 
wave vector of the incident wave there is no reflected 
wave. 

For a more general model of a ferrornagnet, in par- 
ticular with allowance for magnetic-dipole interaction, 
the two-magrion terms may lead to a variation of F ' ~ '  
a: V; then F ' ~ '  is expressed by a formula of the type 
(37) in which U(k, k + q) is replaced by the amplitude of 
reflection of a magnon from the DW, i. e., by the scat- 
tering amplitude T(k,, k,; k,, -k,). 

Reflectionless potentials in the problem of dynamic 
damping present a great danger, for when perturbation 
theory is applied to them it  turns out that the contribu- 
tion to the damping force from the f i rs t  order of per- 
turbation theory with respect to the potential will be 
proportional to  the velocity. In order to  obtain the right 
answer (Fa: v'), it is necessary to  sum an infinite per- 
turbation-theory series with respect to the potential. 
We succeeded in obtaining the right result easily by use 
of the representation (20); this is equivalent to use of 
adiabatic perturbation theory. 

We turn to the case of a purely uniaxial ferromagnet 
without allowance for  magnetic dipole interaction. Des- 
pite the fact that [ F ~ ( v ) / v ] - ~  a s  V'O, two-magnon 
processes become dominant a t  a finite velocity (see be- 
low). Therefore we turn to a detailed calculation of 
Fz(V), i. e., of the form of the function C(T). For  this 
purpose, however, linear response theory is inade- 
quate, since a variation Fa v5 results also from con- 
sideration of the subsequent terms in the approxima- 
tions with respect t o  U(1,2); specifically, of terms of 
the type (U2 U2 U2) and (U2 U2 U2 U2) along with (U2 U2). 

It can be shown that inclusion of the subsequent orders 
of perturbation theory with respect to U leads to re- 
placement of the quantity U(k, k + g) in formula (37) by 
T(k, k +q), where the "scattering matrix" T is defined 
by the expression 

It is easily shown that when the condition (39) is taken 
into account, both t e rms  in (40) a r e  of the same order 
in the parameter V/wflo; that is, T a  ( ~ / w f l ~ ) ~  + . . . . 

On calculating F ' ~ ' ( v )  by formula (37) with use of (401, 
we get 

where 17 is a numerical constant: 

We shall discuss the contribution of U3 and U4. Re- 
stricting ourselves to  F'L~;, we easily obtain 

where k3 = kl + kz - g' 'e,. It is easily seen that the 
second term in (42) is nonzero only when c(q) =qV, i. e., 
when V 3 2wflo. Since the DW velocity V < Vw < %wflo 
[see (14) and (15)], the second term is identically zero, 
and the contribution to FS comes from the f i rs t  term 
alone. After cumbersome but uncomplicated calcula- 
tions, we get 

Here s is the spin of an atom, and sJo = [ 2 ~ @ ~ c r / ~ ~ ]  
= &o(xo/a)2 is the value of the exchange integral, of the 
order of the Curie temperature Tc. 

Similar calculations for F4 lead to the conclusion that 
F4 is small in comparison with F3 over the whole range 
of temperatures (T <<T,) and of velocities: F, 
s (T/T,)~/~F,. It can also be shown that the succeeding 
corrections, with respect to U,, to the linear-response 
approximation (42) a re  small according to the parame- 
t e r  1/2s. 

In concluding this section, we note that the eigen- 
states of the nonlinear system of a ferromagnet a r e  not 
exhausted by topological solitons (i. e., DW) and spin 
waves, but include also nontopological solitons, which 
cannot be obtained within the framework of linear theory 
and may be interpreted a s  coupled states of a large 
number of magnons. l5 In principle these solitons may 
make a contribution to DW damping, f i rs t  because of 
interaction of the DW with thermal solitons, and second 
because of Cerenkov radiation of solitons by moving 
DW. 

The contribution of thermal solitons to F is propor- 
tional to  exd-  E(P, N)/T}, where E(P, N) is the energy 
of a soliton with a given number of magnons N and mo- 
mentum P. Since in a three-dimensional ferromagnet 
E(N, P )  2 c$,, N3 - (J/P)'" >> 1, this contribution may 
be neglected when T << T,. 

As regards Cerenkov radiation of a soliton, this is 
not excluded and is even possible a t  T =O if PV>>E(P, 
N); that is, radiation of a soliton with a prescribed N 
is possible i f  the DW velocity is larger than a certain 
critical value vC(N): 

For  a soliton of small amplitude, Vc(N) is close to the 
minimum phase velocity of spin waves 2wflo, i. e., 
larger than the Walker limiting value Vw of (151, and 
small-amplitude solitons cannot be radiated. With in- 
crease of the soliton amplitude, i. e. ,  with increase of 
N, Vc(N) decreases, but Vc(N) does not vanish for any 
value of N; that is, minV,(N) = Vc * 0. Cerenkov radia- 
tion of solitons is possible only when V > Vc, and a t  
small DW velocities it also may be disregarded. 
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It can be shown that when 4n/P -0, both Vc and Vw 
approach zero. It is not excluded that Vc = V,; in this 
case, the physical meaning of the Walker limit is clar- 
ified a s  a threshold value of the DW velocity, beginning 
with which stationary motion of a DW is impossible be- 
cause of Cerenkov radiation of solitons. This, how- 
ever, is no more than a hypothesis. Investigation of 
this interesting question is hindered by the fact that at  
present we do not know an exact solution describing a 
soliton of arbitrary amplitude with allowance for dipole 
interaction; that is, we do now know the form of the 
function E(N,  PI. 

4. GENERAL PICTURE OF DW DAMPING. 
CONCLUSION 

We have reached the conclusion that the main contri- 
bution to DW damping in a purely uniaxial FM is made 
by F2(V) and FS(V) [formulas (41) and (4311. It is easily 
seen that for V-0, F2<< V3; but with increase of velo- 
city, F2(V) increases faster than Fs(V), and at a certain 
V=V,, FzzFs. For  V>>V,, Fz>>FS and F a V 5  (see 
Fig. 1). For  V, one easily gets 

It is easily seen that a t  sufficiently low temperatures, 
V, << V,. For  some FM or  ferri tes a t  room tempera- 
ture, the condition V, s may not be satisfied. 

Formulas (41) and (43) determine the variation of the 
damping force on a DW with its velocity. But it i s  of 
interest to study the variation of the velocity of viscous 
DW motion with the value of the external force that pro- 
duces this motion (usually a magnetic field HA. This 
variation is determined by the relation 

where Hc is the coercive force. It is evident that when 
V V, (H H,), the function V(H) is very nonlinear 
(see Fig. 2). A nonlinear V(H) relation has been ob- 
served in ferri tes with 8/4n=30.16 At small velocities 
(V<< V,), the V(H) relation is linear, and a DW mobility 
p can be introduced in the usual manner: 

where B(T) = limy , o [ ~ ( ~ ,  T)/V] is determined by form- 
ula (43). 

The following must be mentioned. If one goes outside 
the framework of our model, i. e. ,  takes into account 
any other forms of interaction, i t  may turn out that they 
produce a nonvanishing amplitude T(k,, - k,) of scatter- 
ing of a magnon by a DW (see above). The contribution 
of these processes to the damping force is determined 
in order of magnitude by formula (41) with (V/W#O)~ 

FIG. 1. Variation of 
damping force with wall 
velocity. 

FIG. 2. Variation of the velocity of viscous motion of a wall, 
under the action of a magnetic field, with the value of the field 
(schematic). The dashed lines determine the Walker limiting 
value of the DW velocity, which may be either larger (1) or 
smaller (2) than the valus of V,  . 

replaced by ( ~ / w f l ~ ) [ ~ ( k , ,  - k , ) / ~ ~ ] ~ .  Such discussion 
of the effect of various types of interaction is beyond 
the scope of this paper. We note only that considera- 
tion of rhombic anisotropy does not lead t o  reflection 
of spin waves by a DW and that qhomba v5. Allowance 
for dipole scattering, produced by Zzm, leads to 

T (k., -k,) /eo.n4nli3; 

allowance for cubic anisotropy K or  for later terms in 
the expansion of the uniaxial anisotropy (AW,= K&/ 
M:) leads to  

Thus these processes lead to  Fi = VB', where B'E[T(~,, 
- k,)/coy, and contribute t o  the mobility: p = 2MO/(B 
+ B'). Their relative significance is determined by the 
type of magnetic material. In particular, for fi lms 
with cylindrical magnetic domains the value of P/4n 
varies over a wide range, from several times unity to  
10' or  los. 

In analysis of DW mobility, one usually uses a phen- 
omenological description of dissipation on the basis of 
the equations of motion of the rnagnetizati~n."~ Then 
F= VB,, where Bo is determined by the relaxation con- 
stant ( Y ~ = Y / w ~  and is given by B,  = 2 ( ~ r M , / g ~ ~  [see Ref. 
2, p. 626 (translation, p. 317)]. In analysis of experi- 
mental data on DW mobility, the value is usually taken 
from data on the width of the ferromagnetic resonance 
(FMR) line," since in a phenomenological description 
of the relaxation, y coincides with the width of the lin- 
ea r  F MR line. 

We shall discuss the validity of this approach for  a 
description of the relaxation of a nonlinear DW magnet- 
ization wave. For  this purpose, we compare B of (43) 
with Be. By using the theoretical value of the FMR 
linewidth (see Ref. 6, 531, and Ref. la), one easily 
finds that these quantities a r e  different: 

2 = I (M3n2) In2 (TI8 A , T>eo 
(47) *' 

[3n212/64 eh n / 2 ]  (T/e.)'  exp ( - e . /T ) ,  T<e.  . 

The difference is especially large a t  low tempera- 
tures but is significant even a t  room temperature. 
Supposing at T = 300 K and co = 2 p,,HA, and using1' HA 
=2 kOe, i.e., co GO.  3 K, we easily find4' B/Bo = 10. 

The difference between the quantities B and Bo is due 
in principle to  two facts. First ,  a ferromagnet is a 
medium with strong spatial and temporal dispersion, 
and even a t  small perturbations the dissipation, which 

870 Sov. Phys. JETP 49(5), May 1979 A. S. Abyzov and 0. A. lvanov 870 



is determined by the imaginary part of the magnetic 
susceptibility, cannot be described by a single pheno- 
menological constant 0, (see Ref. 6, 5 31, and Ref. 
18). Second, the perturbations of the magnetization 
field that a re  due to  the nonlinear wave a r e  not small 
and a r e  not determined solely by the linear suscepti- 
bility. Our approach, of course, takes account of both 
these facts and may prove useful for analysis of the 
nature of the dissipation of nonlinear waves in any non- 
linear media with dispersion. 

The authors a r e  deeply grateful to V. G. Bar'yakhtar 
and to A. A. Slutskin for a number of valuable sugges- 
tions and discussions. One of the authors (B. I. ) sin- 
cerely thanks I. E. ~ z ~ a l o s h i n s k i i ,  A. M. Kosevich, 
and V. M. Tsukernik for very fruitful discussions. 

')1n contrast, for example, to the problem of the damping of a 
dislocation in a metal4 or  ferromagnet, in which the elastic 
strain field due to the dislocation may be regarded simply a s  
an external force acting on the electron or magnon subsystem. 

2 ' ~ u c h  "minimal" inclusion of dipole energy is necessary, 
since without allowance for magnetic dipole energy a DW in 
a uniaxial FM cannot move at all (see Ref. 12). 

3)This formula takes no account of the attenuation y of spin 
waves. Analysis shows that it  is  important only atvery small 
DW velocities (V< x0ys (1-10) cm/sec). 

4, The value of (in our notation) B/Bo at  room temperature was 
measured in Ref. 16. The value obtained was B/Bo "6 6. Al- 
lowance for dipole scattering increases B/Bo, but this i s  un- 
important for analysis of the results of Ref. 17, since in that 
work ferrite films with p /4ra  30 were used. 
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Nonlinear theory of the electron temperature superlattice in 
semiconductors 
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A nonlinear theory is developed for the electron temperature superlattice (Bhard phenomenon) in 
semiconductors with hot electrons. The stability conditions of the superlattice and the amplitude of the 
spatial oscillations of the electron temperature are determined as functions of the voltage applied to the 
sample. The asymptotic distribution of the electron temperature T, which is establiihed upon 
superheating, (T - T0)Tc1 (To is the lattice temperature), is also obtained when the superheating is 
suffFiciently large but not so great that scattering of the energy by optical phonons is appreciable. The 
interchange of the energy and momentum scattering mechanisms which occurs at a sufficiently high 
electron temperature is also taken into account. The asymptotic distribution is found to be one- 
dimensional and stable, at any rate, on a small scale. 

PACS numbers: 72.20.Ht 

1. INTRODUCTION AND SETUP OF THE PROBLEM Bknard-the appearance of a spatially inhomogeneous 
distribution of the electron temperature in a nonuni- 

The electron analog of the hydrodynamic problem of formly heated electron gas-has been investigated in 
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