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Measurements of the frequmcies of the de Haas-van Alphen effect under pressure show, for iron and 
nickel, an anomalously large difference between the baric coefficients of the extremal Fermi-surface 
sections. To explain this effect, the band structure and the Fermi surfaces are calculated by using the 
model-Hamiltonian method (approximate method of solving the secular equation of the 
Korringa-Kohn-Rostoker theory). It is shown that different contributions, such as the spillover of 
electrons from one spin subsystem to the other and the change of the crystal potential under pressure, 
have different pressure dependences and determine the diierence between the bark coefficients. 

PACS numbers: 71.25.Hc, 71.25.R 

1. INTRODUCTION 

It i s  now more or  less  universally accepted that fer- 
romagnetism and antiferrornagnetism of transition met- 
als can be explained within the framework of the band 
model, i.e., of the single-electron approximation, in 
which exchange-correlation effects a r e  taken into ac- 
count with the aid of the statistical X ,  method developed 
by Slater.' In the band theory of ferromagnetism (the 
Stoner theory) it is assumed that the energy bands a r e  
split by the exchange interaction into two subbands, one 
containing spin-up electrons, which is the band with 
large number of electrons o r  the spin subband of the 
majority electrons, and the other (spin-down) i s  the 
spin subband of the minority electrons. Thus, the spon- 
taneous magnetic moment is due t o  unequal numbers of 
electrons that fill the spin-polarized energy subband. 

In the rigid band model, these subbands a r e  assumed 
shifted by an amount equal to  the exchange splitting en- 
ergy A, but having the same geometry. In a more real- 
istic model the energy splitting depends on the wave 
vectors, and correspondingly the subbands with spin up 
(4) and with spin down (t) have somewhat different dis- 
persion laws (see Fig. 2 below). However, even in the 
rigid band approximation, owing to  the change in the 
position of the Fermi level &, relative to the bottom of 
the band, the spin-up and spin-down electrons will have 
different Fermi-surface topologies. Thus, in nickel the 
Fermi surface of the band with the larger number of 
electrons is similar with respect to some essential 
singularities to the Fermi surface of copper, while the 
Fermi surface of the band with the smaller number of 
electrons i s  similar to the Fermi surface of iridium or  
palladium (see Fig. 1). 

Through measurements of the de Haas -van Alphen 
(dHvA) effect and through theoretical calculations of the 
band structure, the shapes of the Fermi surfaces of 
ferromagnetic metals, particularly iron and nickel, 
have been sufficiently well investigated, and on the 
whole the experiment confirms Stoner's theory. A sur- 
vey of the experimental research on the Fermi surfaces 
of these metals a t  normal pressure can be found in Ref. 
2. The present paper is devoted to  a theoretical and ex- 

perimental investigation of the change of the Fermi sur- 
face with changing volume for one atom, i.e., under the 
influence of pressure. An earlier review of the results 
of similar experiments3 is a good introduction to this 
problem. 

Some preliminary results of the investigation of the 
Fermi surface under pressure for iron and nickel were 
published in Refs. 4 and 5. The experimental methods 
a r e  briefly described in these papers and we shall not 
dwell on them here. It is of interest to  note that where- 
a s  both the baric coefficients (BC) of the magnetizations 
of iron and nickel (-3.1 x and -2.9 x lom4 kbar-' re- 
~ p e c t i v e l y ) ~  and the compressibilities (-5.2x and 
-5.5x kbar-') a r e  close, the BC for the measured 
sections of the Fermi surfaces differ by more than one 
order of magnitude (see Table I). It i s  natural to as- 
sume that this difference is due to specific features of 
the band structures of these metals and to the character 
of their changes under pressure. Principal attention 
will therefore be paid to a comparison of the experimen- 
tally observable quantities and the results of calcula- 
tions performed "from f i rs t  principles." We chose for 
this calculation the method of solving the secular equa- 
tion of the theory of Korringa, Kohn, and Rostoker 
(KCR) for a transition metal (model Hamiltonian), pro- 
posed by Heines and developed by HubbardQ and one of 
us.'' Some results of a calculation of the pressure-in- 
duced change of the Fermi surface of chromium by this 
method were published in Ref. 11. 

The model, Hamiltonian of a transition metal has the 
following structure: 

FIG. 1. Section of the 
Fermi surface of fcc ferro- 
magnetic nickel by the (110) 
plane. Solid lines-Fermi- 
surface sections for the 
more filled band; dashed- 
for the l e s s  filled bands. 
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TABLE I. Experimental values of baric coef- 
ficients of some parts of the Fermi surfaces of 
nickel and iron 

d In Bld In V 
Orientation 

Resent n ~ t h o z ' ~ 1  - ~ n d e r s o n ~  

Nickel 
Neck t (L?') [1111 -1.5*0.2 -1.1*0.2 

11121 -1.2r0.4 
PocJce{+Wd 1 1 -1:2*0.4 1 

-0.3*0.15 
$ [iW] +0.15*0.15 -0.2a0.05 

Iron 

where 

The upper diagonal block of the matrix H 

describes the potential scattering, the lower diagonal 
block 

describes the resonant scattering, and the off-diagonal 
blocks 

correspond to hybridization. 

Here E, =Ik+g12; 

is the matrix element of the potential-scattering block 
of the KCR method, where y; i s  the potential-scattering 
amplitude factor approximated by a function of the en- 
ergy, i.e., Vggt = C,t +ES,t; the quantity 

h,m=4nQ-"'jl ( I k+g I r.) Y,-2, ,(k+g) 

is the hybridization matrix element, Y,,(x) is a cubic 
harmonic that depends only on the direction of the vec- 
tor x, i.e., on x/lxl; jl(x) is a spherical Bessel func- 
tion, P,(x) is a Legendre polynomial, I and m a r e  the 
orbital and magnetic quantum numbers, &2 is the volume 
of the unit cell, and g is the reciprocal-lattice vector 
included in the basis of the model Hamiltonian (usually 
the vectors from the first coordination sphere and some 
vectors from the second), and G a re  the reciprocal- 
lattice vectors, scattering from which i s  taken into ac- 
count in second-order perturbation. A more detailed 
description of the method of the model Hamiltonian of 
the KCR method can be found in Refs. 10 and 12. 

Thus, the crystal muffin-tin (MT) potential i s  char- 
acterized by only eight parameters, namely, the pa- 
rameters of the expansion of the function y;@, r,) =a, 
+bl  E for 2 =0,1,2 (r, is the radius of the sphere of the 
MT potential) and the resonant-scattering parameters 

E and y. Only these eight numbers a r e  needed to de- 
scribe the band structure of any particular transition 
metal. 

2. FERMl SURFACE AND BAND STRUCTURE OF 
NICKEL AND ITS CHANGE UNDER PRESSURE 

The Fermi surface of fcc nickel obtained in a number 
of experimentals (e.g., Ref. 13) and t heo re t i~a l ' ~* '~  
studies a s  cut by the (110) plane is shown in Fig. 1. 
Using the dHvA procedure in a chamber with fixed 
pressure, we measured the section of the neck near 
the L point of the majority spin subband and of the pock- 
et near the X point for the minority spin ~ubband.~  The 
pressure dependences of these sections obtained in our 
measurements4 and by Anderson7 a r e  shown in Table I. 
It i s  seen that for the neck L', the results of both ex- 
periments agree within the limits of error,  but even 
very small baric coefficients (BC) for the X5 pocket in 
the (100) plane have opposite signs. 

If the decrease of the magnetization of the ferromag- 
net with increasing pressure is treated within the 
framework of the Stoner theory, this means that the ex- 
change splitting A decreases, the subbands with differ- 
ent spins come closer together, a redistribution of the 
electrons in the spin bands takes place, and the volumes 
of the parts of the Fermi surface change. If it is as- 
sumed that this is not accompanied by a change in the 
effective mass, (d lnm*/dp =0),  then we can obtain a 
formula for the BC of the section within the framework 
of the Fermi surface of the hard band5 and express the 
change of the section in terms of the change of the mag- 
netization: 

dlnS m'A N. d lnM -=BY=*- - C- 

din V &a ( N + + N L  1 d l n v  (1) 
(the plus and minus signs a r e  for u =4 and u =t). Here 
d lnM/d lnV= d lnA/d lnV = +0.53 for nickel according to 
the data of ~ondorsk i i  and Sedov,' A is the exchange 
splitting, F i s  the frequency of the oscillations of this 
section, N is the state density, and M is the magneti- 
zation. For the neck L', we obtain from (1) B,=+1.3, 
which disagrees with the results of both direct experi- 
ments (see Table I). This qualitative difference between 
the experimental data and the results of a calculation by 
a simple model can be due to the presence of other con- 
tributions to the change of the cross section. 

To separate contributions of different character to the 
change of the Fermi surface under pressure, we com- 
pare the properties of the spectrum of a ferromagnetic 
metal with a nonferromagnetic one (which we shall call 
a model one), having the same crystal structure having 
near E, an electron spectrum similar to one of the spin 
subbands, and having a compressibility d lnV/dp, as  
close a s  possible to the compressibility of our ferro- 
magnet. It follows from the experimental data that for 
nonferromagnetic metals possessing this similarity, the 
BC of the corresponding sections have the same sign 
and a r e  close in value. For the model metal, the change 
of the Fermi surface i s  due only to the change of the po- 
tential due to the change of the interatomic distance, 
and by the scale effect due to the change in the dimen- 
sions of the Brillouin zone (potential contribution to BC). 
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For a ferromagnet there is added to the fundamentally 
important effect of the change of the Fermi surface be- 
cause of the redistribution of the electrons among the 
spin subbands under pressure (the magnetic contribution 
to the BC). Using the proximity of the values of the BC 
for metals that enter in similar groups, we can assume, 
for qualitative estimates, that the potential component 
of the BC of a ferromagnetic metal is equal to the BC 
of the model metal. For the majority spin subband in 
nickel this model metal is copper. To take into account 
the difference between the compressibilities of the met- 
als, it is necessary to add to the magnetic contribution 
to the BC not the values of d lnS/dp, which a r e  usually 
cited a s  the result of the experiments, but 

d l n S  d l n S  
d l n V  dp 

The assumption that the resultant BC of the ferromag- 
net is a sum of a potential and a magnetic contribution 
provides a good estimate for the BC of the section of 
the neck Lt in nickel at HI([111]: 

d l n S  
= i -  ( )  ~i.3-2.5--1.2, 
d l n V  d l n V  =. 

which i s  in satisfactory agreement with the results pre- 
sented in Table I. Getting ahead of ourselves, we indi- 
cate that this model gives good agreement with our mea- 
surements of the BC of the sections of the lens of the 
Fermi surface of iron if the model metal i s  taken to be 
molybdenum. 

It is necessary, however, to compare these results 
with the data obtained without using empirical consider- 
ations. To this end we have calculated the band struc- 
ture of ferromagnetic nickel, using a spin-dependent 
potential to determine the parameters of the model 
Hamiltonian. 

We calculated first the paramagnetic potential of nick- 
el  by superimposing the self -consistent atomic poten- 
tials of Herman and Skillman16 by the method proposed 
by Mattheiss.17 The exchange interaction was introduced 
via the Slater statistical exchange potential 

V..=-6[3p ( r )  /8n]"=, 

[p(r) is the electron density in the crystal]. Assuming 
that the polarization is produced only by d electrons, we 
can obtain for an electron density with different spins 

where no is the number of electrons per atom in the 
spin subbands, n, i s  the total number of the d electrons, 
and p, is the density of the d electrons in the crystal. 
The spin-dependent potential is then obtained by sub- 
stituting (3) in V,, . 

We obtained the band structures of nickel for the nor- 
mal lattice constant a = 6.65 a.u. and for the constant de- 
creased 3%, corresponding to a pressure of 164 kbar. 
This relatively high pressure was necessitated by the 
calculation accuracy, which was not sufficient at pres- 
sures -10 kbar. At normal pressure, the Fermi sur- 
face of nickel agrees with calculation by others and 
coincides with Fig. 1. 

From the calculation of the state density we deter- 
mined the Fermi energy at normal and high pressure. 
The value of &, at normal pressure, 0.66 Ry, was cor- 
rected by +0.004 Ry, after which we obtained the di- 
mentions of the principal semiaxes of the ellipsoidal 
pocket X ,  (in units of 2r/a): X W  = 0.1(0.098), XU 
=0.112(0.112), r X  =0.208(0.196), and the neck radius: 
LW =0.051(0.048). In the parentheses a r e  given the ex- 
perimental values. No fundamental changes occur under 
pressure. For the BC of the change of the intersection 
of the pocket with the (100) plane and the intersection of 
the neck with the (111) plane our calculation yields re-  
spectively 

The result for the section L: agrees qualitatively with 
the estimate obtained with the aid of the model metal 
[see(2)] and is close to the experiment. 

The substantial quantitative difference in the case of 
the BC of the X ,  pocket may be due to two causes: First, 
to the non-self-consistency of the potential constructed 
by the Mattheiss method, and second, to the complexity 
of localization of the position of the Fermi energy in 
calculations made from first principles, whose accuracy 
does not exceed 0.005 Ry. A fit of the position of the 
Fermi level within the limits of this error  yields the 
experimentally measured values of the BC, but this 
procedure, which i s  sometimes used, does not add in 
our opinion to the reliability of the results. We have 
therefore carried out an additional calculation of the 
band structure of the ferromagnetic nickel, using self- 
consistent potentials obtained for the spin subbands by 
Wakoh,14 who used the KCR method. The exchange in- 
teraction was introduced for these potential by a method 
in fact analogous to that described above. The model- 
Hamiltonian parameters for the non-self-consistent 
potential a t  normal pressure and at 164 kbar, and also 
the parameters that approximate the Wakoh potential, 
a r e  given in Table II. 

The band structure in the principal high-symmetry 
directions for both spin subbands, obtained by the model 
Hamiltonian with a Wakoh potential, is shown in Fig. 2 
and agrees well with Wakoh's calculations." Thus, the 
gaps a re  X l  -x! =0.073 (0.074), X: - X I  =0.072 (0.073), 
La - L!) = 0.015 (0.016), and r', -I", = 0.017 (0.018). The 
values of the gaps a r e  in Rydbergs, and the quantities 
in the parentheses a re  those calculated by Wakoh.14 We 
note that if we accept Krinchik's interpretation1' and 
change the sequence of the levels at the point L for the 
majority spin subband, then the gap i s  Li - Lk =0.056 
RY. 

The energies in 91 points of 1/48 of the irreducible 
part of the Brillouin zone of an fcc lattice were used to 
calculate the state density and to determine the position 
of the Fermi energy. The value of &, obtained by us at 
nt = 5.33 agrees with that given by Wakoh14: E$ = 0.742 
Ry. The state densities at p = 0 a r e  N+(&,) = 22.3 Ry-' 
xatom-l, N+(&,) = 2.8 Ry-'xatom-l. Hence Nt /(N, +N+ ) 
=0.11 and N+/(Nt +N+) =0.89, which a r e  close to the val- 
ues 0.1 and 0.9 obtained in Ref. 15. The exchange split- 
ting A between the subbands, on the basis of a calcula- 
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TABLE 11. Model-Hamiltonian parameters that characterize the potential 
Nickel Iron 

Matthens potential wakoh potential14 Potential of 
Wakoh and 3amashita18 

/- 

Spint 1 Spin, Spint Spin1 Spint Spin, Spint I Spin, 

r,, a.e. 2.3396 2.3396 2.2255 . 2.2255 2.3511 2.3511 2.3383 2,3= 
Ao 0.01181 0.0123 0,8599 0.1)600 0.0210 O.OG31 0.0500 0.07615 
Bo 0.3434 0.3440 0.3385 0.3385 0.3197 0.3310 0.3379 0.3572 
AI -0.0246 -0.0238 0.0606 0.0607 -0.0031 0.0229 0 1045 0.1653 
BI 0.0373 0 . W  0.0700 0.0701 0.73353 . 0.1043 0.1287 0.1588 
Az 0.1768 0.1778 0.2059 0.2080 0.2107 0.2416 0.1922 0.1519 
BZ 0.6734 0.0740 0.0757 0.0758 0.0889 0.0982 0.0736 0.16'3~ 
e 0.53% 0.7332 0.8636 0.8641 0.7430 0.8173 0.7550 0.8993 
'I 1.6913 1.6950 1.9799 1.9803 1.8353 1.8827 2.3606 2.4562 

*The coefficients here areA,=4* (21+ 1) a l / n  and BI = 4 ~  (21 + 1) b l / n .  

tion of the state density, is 0.07 Ry, which also agrees well a s  the rigid-band approximation for a self-consis- 
with the earl ier  calculations. tent potential, yield for  the X ,  pocket a BC smaller by 

almost one order of magnitude than for the neck, i.e., 
If we use the information on the change of the exchange 

these calculations confirm both our experimental r e -  splitting under pressure from the experimental results 
of ~ o n d o r s k i r  and Sedov6 and our calculated data oh the sults and Anderson's r e s ~ l t s . ~  There exists, however, 

a probability that the self-consistent calculation, under state density, then we can determine from Stoner's the- 
pressure, will yield a more appreciable r i se  of the X ,  ory the change of the Fermi energy: 
level because of the broadening of the band than the in- 

(4) 
crease of the Fermi energy a s  a result of the cross  flow 
of electrons. In this situation the pocket X, can have al- 
so  a negative BC. A final answer to this q;estion can be 

In compressed nickel (164 kbar) we then have 6s: 
obtained only by self-consistency of the crystal potential 

= -0.003 Ry and 6&3 =0.0005 Ry. At normal pressure 
under pressure, but the physical reason for the small- the intersection of the plane (001) and the X, pocket is 
ness of the BC is clear even now: The change of the po- 7.1x ~ O - ~ A - ~ ,  and in the compressed state calculation 
tential under pressure and the change of the exchange 

using the band structure shown in Fig. 2 and of the r e -  
contribution make contributions close in magnitude and 

sults obtained with the aid of formula (5) gives S = 6.8 
X I O - ~ L - ~ .  Thus the BC due only to the decrease of the opposite in sign. 

exchange splitting turns out to be equal to B,(x,) =0.43. 
On the other hand if we use a s  the model metal for the 
minority spin subband palladium, which has a BC equal 
to -0.2 (Ref. 20), then the total BC of such a calculation 
is  =+0.2, which agrees satisfactorily with the experi- 
mental data (Table I). 

Similar calculations for the neck of the Fermi surface 
in the majority spin subband yield a value that agrees 
with the estimate obtained by us previously by using Eq. 
(1). 

Thus, a non-self -consistent but direct calculation, a s  

FIG. 2.  Band structure of 
nickel in high-symmetry di- 
rections at normal pressure. 
Solid lines-spin subband of 
majority electrons, dashed- 
of minority electrons. 

3. BAND STRUCTURE AND CHANGE OF THE FERMl 
SURFACE O F  IRON UNDER PRESSURE 

We have measured the effect of a pressure up to 11 
kbar on the section of the so-called lens in the minority 
spin subband of ferromagnetic iron. The section of the 
Fermi surface of this subband, analogous to molybdenum 
and paramagnetic chromium, in the Brillouin band of a 
bcc lattice is shown in Fig. 3. According to the data of 
Ref. 21, the lens is almost a sphere separated by the 
spin-orbit interaction from the neck of the jack. Figure 
3 shows a Fermi surface calculated without allowance 
for the spin-orbit interaction. We shall neglect this ef- 
fect in all the calculations of the present paper. 

The measurements in the experiment were made in 
magnetic fields oriented along the crystal axes [loo],  
[110], and [ I l l ] .  The obtained BC a r e  given in the low- 
e r  part of Table I. 

. H  i h  k n f N ,  

t 
FIG. 3. Section of Fermi 
surface of iron. Solid and 

P dashed lines-spin subbands 
of majority and minority 

t electrons. 

r f L Z  N 
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If we use Eq. (I), then from the experimental values 
of the BC of the Fermi-surface sections we can obtain 
the BC of the change of the spontaneous magnetication, 
and vice versa. If we subtract from the experimental 
BC of iron, by way of a correction, the BC of the model 
metal (molybdenum, whose Fermi surface is unusually 
similar to the Fermi surface of iron), which is equal to 
-3.9, then the part of the BC connected with the magnet- 
ic percolation is equal to -12. The resultant value 
d inM/d lnV= +0.61 agrees well with the directly mea- 
sured +0.59.= 

Iron has a bcc crystal structure with a lattice con- 
stant a =5.40 a.u. at helium temperatures. Calculation 
of the band structure of the iron was made in 55 points 
of 1/48 of the irreducible part of the Brillouin zone, 
with the model-Hamiltonian parameters obtained with 
the aid of the self-consistent crystal potential of Wakoh 
and Jamashita.ls The model-Hamiltonian parameters 
approximating this potential a r e  also listed in Table 11. 
Histograms of the state densities were constructed for 
each of the spin subsystems. The calculated band struc- 
ture in the high-symmetry directions is shown in Fig. 4. 
The Fermi energy &, =0.0543 Ry for both subbands was 
determined from the condition that the majority and 
minority subbands contain 5.1 and -2.9 electrons, re- 
spectively. 

In Table III a r e  given some extremal Fermi-surface 
sections obtained in the present calculation (&, = 0.654), 
in comparison with the results of Wakoh and Jamashita18 
(&, = 0.657). We note that our calculation gives a more 
spherical lens than Ref. 18, although the spin-orbit in- 
teraction was neglected in both calculations. This in- 
teraction, without changing the circular section in the 
[100] direction, increases the elliptic section. 

The exchange-splitting values obtained from the band 
calculations agree well with the results of Wakoh and 
Jamashita: 

I', +-r ,+=0 .039  R y  (s-type) 

N,'-hr14=0.033 R y  (p-tvpe) 

r,,t-r,,~=o.iWRy, 
Hz/'-H,1"=0.139 R y  (d-type) 

FIG. 4. Band structure of iron at normal pressure. Solid 
lines-spin subbband of majority electrons, dashed-minority 
electrons. 

TABLE III. Comparison of the re- 
sults of our calculation and that of 
~akoh-~amashita" for individual 
sections of the Fermi surface of 
iron. 

Extremal section 

S, iO-? A-1 

MH KCR 
method* \ method1' 

Minority spin subband 
Lens 

elliptic [I001 
circular 11001 

Sphere 
indirection of r - ff 1 19.3 1 26 7 

Ellipsoid N . 
in direction of 

r H - N 
a r - N 

Octahedron H- 
in direction of [ICO] 

s [ i l f l ]  

Majority spin subband 
s-d electron I 1 

31.G 
4 . 0  
23.8 

llil.2 
l(ji .3 

Maximum section of 
hoie sleeve 1 34.5 1 13.2 

*Model-Hamiltonian method, 

31.3 
47.2 
31.3 

!I.:.> 
1R1.6 

surface 
in direction of [ 1001 

a IT] 
Hole pocket H 

in direction of [ 1001 
[ l lO]  

Hde sleeve in N 

present paper. 

The exchange splitting obtained from the calculation of 
the state densities in the spin subbands is 0.13 Ry, as 
against the 0.15 Ry calculated in Ref. 21. 

372.0 
347.3 

4.8 
4.2 

11.2 

The state densities on the Fermi level a t  normal pres- 
sure  were 

380.0 
329.7 

4.1 
3.6 
8.7 

Thus, 

N + l ( N + +  N + )  ~0.76. N41(N++N+)  ~0.24. 

We note that in the case of iron the ratio of the state 
densities a t  &, in the majority and minority electron 
spin subband is the inverse of the ratio in nickel (see 
Sec. 2). 

The results of the most complete dHvA measurements 
in iron a t  normal pressure were reported in Refs. 21 
and 22. Table IV shows a comparison of the measured 
and calculated dimensions of the sections of the Fermi 
surface of iron. 

We have also attempted to estimate the changes in the 

TABLE IV. Comparison of the experimental and theoret- 
ical results of the dimensions of the Fermi-surface sec- 
tions of iron 

-. - 

Dimension in units 
of 2nk Dimension in units of 2n/a 

Section 
experiment f theory* Experiment I Theory* 

j? , ,  - 
Minority spin subband I/ Majority spin subband 

*Calculation by the model-Hamiltonian method, present 
paper. 
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band structure of iron under pressure, starting from the 
rigid-band approximation. In particular, the influence 
of the scale factor, i.e., the increase of the dimensions 
of the Brillouin zone under pressure, was calculated by 
us by changing the lattice parameter, but without chang- 
ing the model -Hamiltonian parameters that describe the 
potential. We found a s  a result that the d-bands hardly 
shift at all, whereas the width W ,  of the s band follows 
the free-electron law, i.e., d lnW, /d 1nV = -0.6~-2/3. 

If it is assumed that the change of the Fermi surface 
under the influence of the pressure is due only to the 
transfer of the electrons from the majority spin sub- 
band to the minority spin subband then, using relations 
(5), the experimental BC of the change of the atomic 
magnetic moment,16 and the results of our calculation of 
the state density, we can determine the change of &, 

under pressure, in analogy with the procedure used for 
nickel. As a result we get 

for iron with a lattice constant decreased by 3%, cor- 
responding to a pressure of 173 kbar. 

We consider now the section of the lens in the [loo] 
direction, assuming this section to be a circle. At p = 0 
we have S = 3.8 x and at p = 173 kbar the new posi- 
tion of the Fermi energy yields S =7.5x I O - ~ A - ~ .  Thus, 
the BC obtained only as a result of the change of the 
spontaneous magnetication i s  equal to -11. This value 
i s  already close to the experimentally observed one. If 
we add to it the BC of the model metal (molybdenum), 
which i s  equal to -3.9, then we obtain -14.9, in good 
agreement with experiment. 

Thus, if the BC i s  represented a s  a sum of coeffici- 
ents, due to the scale effect, of the deformations of the 
potential under pressure and to the spillover of the elec- 
trons from one spin-polarization subband to the other, 
then in the case of iron the main contribution to the 
summary value, a s  follows from our estimate, i s  made 
precisely by the magnetic spillover. Even this quantity 
itself is larger by almost one order of magnitude in iron 
than in nickel, and in addition this term adds up to the 
BC connected with the deformation potential and with 
other effects, and i s  not subtracted a s  in the case of 

nickel. By itself, the large value of B, is due to the 
faster change of the position of &, of iron under pres- 
sure than that of nickel, although the changes of the 
spontaneous magnetizations a r e  close. The indicated 
faster change is in turn due to the inverse ratio of the 
state densities in the majority and minority electron 
spin subbands. 
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