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The static screened Coulomb interaction in metals is investigated in connection with the problem of high 
temperature superconductivity. The density functional method is used to show that this interaction is 
weakly attractive in strongly paramagnetic metals. Analysis of the conditions for the stability of a solid 
against electron- and spindensity fluctuations and for the stability of the crystal lattice shows that none 
of the instabilities rules out the existence of materials in which the static electrondectron force is 
attractive. 

PACS numbers: 74.20. - z, 75.20.En 

INTRODUCTION vector. We assume for simplicity that the ions from a 
regular  crystal  lattice, but this  limitation has no funda- 

A nonphonon mechanism for superconductivity was 
mental significance. T o  simplify Eq. (1) one usually 

proposed in 1964 by Little1 and Ginzburg2 as a means 
for  radically raising the critical temperature (T,).') averages its kernel  over the equal-energy surfaces. 

The  solution to the averaged equation is known5: 
During the subsequent years  serious attempts were made 
to  realize such a mechanism in specific form, but no 
reliable practical results  have yet been achieved. This  
i s  largely due to the difficulty of producing the required 
materials, such a s  systems of ultrathin films o r  easily 
polarizable quasi-one-dimensional substances. Theo- 
retical studies, too, a r e  made difficult by the complex- 
ity of the objects, and their  resu l t s  depend to a great  ex- 
tent on the physical model chosen to  represent  the sel- 
ected material and sometimes turn out to be contradic- 
tory (see, e.g., Refs. 6-91. Moreover, there is no 
clarity even in the fundamental questions of the problem: 
a) whether attraction between the electrons can be as-  
sured by a nonphonon mechanism alone, and b) whether 
a system with such an interaction would be stable. The  
present work was undertaken in an attempt to analyze 
these questions in the weak coupling approximation with- 
out resorting to  specific models but taking the spatial 
nonuniformity of the systems into account. 

1. CONDITIONS FOR THE EXISTENCE OF A 
NONPHONON SUPERCONDUCTIVITY MECHANISM 

In analyzing the possibility of an exciton superconduc- 
tivity mechanism i t  i s  useful to disregard the effect of 
the electron-phonon interaction on T,, taking the polar- 
ization of the electron subsystem alone into account in 
the electron-electron interaction. Then in the weak cou- 
pling approximation, o r  more accurately, to the lowest 
order  in the screened Coulomb interaction V,, , the 
equation for T, will have the form5 

where (, i s  the energy of the one-electron state In) 
reckoned from the Fe rmi  level, k is the wave vector in 
the f irst  Brillouin zone, and G is a reciprocal lattice 

T,=i.i400 exp ( 1 / ~ ( 0 ) } 0 ( - ~ ( O ) ) ,  (2 

F o r  the systems under consideration, in which the 
electron-phonon interaction is turned off, i t  is natural 
t o  assume that the kernel  u([, 5') will vary appreciably 
from (,[' -Ti-1 eV. Other energy sca les  differing sub- 
stantially from S c a n  manifest themselves only in the 
case  of a material  having a very specific band s t ruc ture  
(see, e.g., Ref. 5). Setting o,=E and solving Eq. (2a) 
by successive approximations, we easily find the solu- 
tion to the lowest o rde r  in u: 

In obtaining the last  equation we used the spectral  repre-  
sentation of the screened Coulomb interaction: 

v,. ( a  = 01 = v, + 2 jaw# Imcv.. cu.)ia1,. 
0 

It follows from Eq. (3) that if the stat ic  screened inter- 
action V,, (k +G,k +GI) s Vsc, (k +G, k +G ', 0 =0)  is a posi- 
tive definite matrix in G and G' for  al l  k,  then the cou- 
pling constant u(0,O) will be positive for  a rb i t ra ry  p,,. 
Thus, for the exciton superconductivity mechanism to 
work the matrix must have negative eigenvalues. Th i s  
condition is somewhat approximate. The  exact condition 
for  exciton superconductivity is that the kernel  of Eq. 
(I), o r  if we go beyond the weak coupling approximation, 
the kernel of the analogous equation for  T,, have a t  leas t  
one negative eigenvalue. In most ca ses  the two condi- 
tions a r e  virtually equivalent. However, in the ca se  of 
strong anisotropy o r  if severa l  energy sca les  a r e  signif- 
icant in u([, n, when the approximate condition is inap- 
plicable, exciton superconductivity may ar i se ,  in prin- 
ciple, even if the matrix V is positive definite (a de- 
tailed discussion of this question will be found in Refs. 
5 and 10). These  factors alone, however, a r e  hardly 
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sufficient for  the achievment of high cr i t ica l  tempera- 
tures,  and i t  is desirable to have a static electron-elec- 
t ron attraction. 

2. IS A STATIC SCREENED ELECTRON-ELECTRON 
INTERACTION ALWAYS REPULSIVE? 

I t  is convenient t o  use the density functional method in 
investigating static screening in metals. Since the tem- 
perature dependence of the electron-electron interaction 
is very weak we need consider only the case  T = 0 "K. It 
has been that the energy of an  electron gas in 
a fixed external field (in our ca se  this is the field of the 
nuclei) is uniquely determined by the electron- and spin- 
density distributions n(r)  and r2(r), respectively. F o r  a 
nonmagnetic material  the energy is minimum for  the 
equilibrium values n = n, and E = 0 of the densities, and 
for  small  deviations from equilibrium we have1'-l3 

Here  6n=n-n ,  and E = n +  - n + ,  while =6n/6Uext and X, 
a r e  the electron and spin susceptibilities, respectively, 
calculated a t  n = n ,  and E=O (U,,, is the external field). 
T o  simplify the calculations we assume that the system 
has cubic symmetry and neglect the spin-orbit interac- 
tion. 

It is usual to separate the total electron energy into 
the energy E, of the noninteracting electrons, the Har-  
t r ee  energy 

and the exchange-correlation energy Ex,. It follows i 
mediately from (4) that 

where we have introduced the polarization operator  

and the exchange-correlation interactions 

Using (5), we can express  the static screened Coulomb 
interaction directly in t e r m s  of rr,, V,, and I,: 

If we neglect exchange and correlation effects in (6), 
putting I, = 0, we obtain the well known equation for  V,,, 
in the random phase approximation (RPA): 

VK* = (vo-' + no) -I. 
It  is not difficult t o  s ee  that VFZA is a positive definite 

matrix. In fact, the polarization operator ?r, is a non- 
negative definite matrix, s ince for  an arb i t ra ry  function 

we have 

The  unscreened Coulomb interaction 

is a lso  a nonnegative definite matrix (v, - 0 a s  /GI -00). 

F o r  exciton superconductivity, however, the region (GI  
-.o is of no interest, i t  being quite sufficient t o  consider 
only a region IG ( <Go, where Go is an arbitrari ly la rge  
but finite positive number. With this  limitation the ma- 
t r ix  V, will be positive definite. Of course  the sum of a 
positive definite mat r ix  (v;') and a nonnegative definite 
matrix (rr,) is a positive definite matrix, and the recip- 
roca l  of a positive definite matrix is a lso  positive defin- 
ite. Hence V:zA is a positive definite matrix, and within 
the limitations of the RPA, exciton superconductivity is 
impossible o r  very  weak (the RPA is exact for  a high- 
density electron gas). 

Taking account of the exchange and correlat ion effects, 
which a r e  not present  in the RPA, complicates the situ- 
ation. From the condition that the electron energy be 
minimum a t  n =m, and 3 = 0 i t  follows that the matrices 

6%/6n6n=-~-'-n,-'+V&. and 8gE/6ii6fi=X,-L=no-L-I, 

must be positive definite. Hence, a s  is evident from (6), 
V,,, can have negative eigenvalues only if the matrix n," 
- I e  has them. T o  clarify the sign of this matrix we ex- 
p re s s  the matrix in t e r m s  of x,'. 

Le t  us  introduce the matrix A: 

which depends only on the correlation energy E,, since 
for  the exchange energy, which i s  due to  the interaction 
of electrons with paral lel  spins, we have 6'E,/6n 6n =O. 
Then 

Let  us  consider a paramagnetic material that is close 
to the transition to the magnetic state, i.e., which is 
nearly unstable against spin density fluctuations. In  this 
ca se  a t  leas t  one eigenvalue of xi1, say  the s-th one, 
must be  close t o  zero. Choosing a bas is  in which the 
matrices and A a r e  both diagonal:' we find 

I t  is evident from (8) that the matrix 6' - I, for  an  al- 
most magnetic material  that has  a positive definite ma- 
tr ix A must have a t  leas t  one negative eigenvalue. Now 
by diagonalizing IG' - I, and x simultaneously, we easily 
s ee  that the matrix V,,, must have the s ame  number of 
negative eigenvalues a s  6' - I e .  T h e  fact  that Vscr can 
have negative eigenvalues in the paramagnetic phase 
even when A is positive definite is very important for 
nonphonon superconductivity, since, a s  a rule, super- 
conductivity and magnetism exclude each other. 

It is evident from definition (7) that in the Hartree- 
Fock approximation, in which E,  = 0, the matrix A is al- 
s o  identically zero;  within the limitations of this  approx- 
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imation, therefore, V,, can have negative eigenvalues cidental. The matrix ti2E,/6n +(r)6n , ( r t )  = - ~ ( r ,  r ' )  repre-  
only in the magnetic state. Th i s  fact has been discussed sents  the interaction of a spin-up electron a t  r with the 
in Refs. 15 and 16. spin-down correlation hole (electron deficiency) pro- 

F o r  a more detailed study of A with the effect of anti- duced by it a t  rt. By i t s  physical nature, the interaction 

parallel correlations taken into account i t  is expedient of an  electron with a hole is attractive, i.e., A should be 

t o  begin with the case  of a uniform electron gas, since positive definite. In view of the lack of more  complete 

that is the model that has now been most thoroughly in- information on the exchange-correlation effects, we 

vestigated. In this case  all the matrices a r e  diagonal in shall assume in what follows that A is always positive 

the momentum representation. because of the spatial definite. 

uniformity. F o r  example, ~ ( k  +G, k +Gt) = A ( Q ) G ~ , ~ , ,  
where Q= lk +GI. In the long-wavelength l imit  Q-0  in 
the region r, a 9.0 of metallic densities we havex7 

where n = (4nr$/3)-' i s  the density of the electron gas. 
Similar expressions have been obtained in Refs. 12 and 
18.9) Using the method of Ref. 20 for  the short-wave- 
length limit Q - m, we obtain 

Here  g,, (0) is the pa i r  distribution function fo r  electrons 
with antiparallel spins located a t  one point in coordinate 
space. As  a distribution function, gt, (0) is l e s s  thanun- 
ity, s o  we have h(Q) >O in the limit of large wave vec- 
tors. The  Geldart-Taylor interpolation formula21 can be 
used to find A in the intermediate region, and i t  turns 
out to be greater  than ze ro  for  all Q (Fig. 1). The  same  
result  was obtained in  Ref. 22 by the density functional 
method. Thus, for  a uniform electron gas, A is a posi- 
tive definite matrix. 

The  exchange-correlation interactions for  a nonuni- 
form electron gas unfortunately still remain poorly in- 
vestigated. In the simplest local-density approxima- 
tion,"*17 I,, I,, and A represent  point interactions. F o r  
example: 

where ~ [ r , ( r ) ]  is given by Eq. (9) with r,(r) = [4nn(r)/ 
3]'1/3. This approximation is exact for  a nonuniform 
electron gas in the long-wavelength limit, and it may be 
expected to  give I,, I,, and A correct ly for Q 2 k,. De- 
spite i t s  simplicity, the local-denstiy approximation can 
be used for  fairly accurate calculations of many elastic 
and magnetic properties of m e t a l ~ , 2 ~ * ~ ~  a s  well a s  of the 
spectra of isolated atoms?7 I t  is easy to s ee  that in this 
approximation A is diagonal in the coordinate represent- 
ation and has only positive eigenvalues. 

The  fact that A is a positive definite matrix in the 
electron-gas theories under consideration is hardly ac- 

FIG. 1. A as a function of Q 
for r s = 4  according to the 
Geldart-Thylor interpolation 
formula. 

RZ 

I t  was shown above that if A is positive definite, then 
for  materials  close to the transition to the spin-ordered 
state V,, must have negative eigenvalues. It is easy to 
estimate the influence of this effect on the superconduc- 
tivity, since in the region of interest  t o  u s  near  the mag- 
netic transition we have cc Vo, while A << Vo accord- 
ing to (9). Then 

v., = (xm-'-A) (xrn-'-A+ VO) -'Vo=xrn-'-A. (12) 

T o  obtain a numerical est imate of the coupling con- 
stant, we use  the expressions for  x i1  and A in the long- 
wavelength limit: 

where I, and A a r e  taken in the local-density approxima- 
tion (11) and < is the effective distance between elec- 
trons. Introducing the gain factor a, = [I - I,(K)N(E,)]-' 
i.e., the factor by which exchange and correlation in- 
c rease  the spin susceptibility, and noting that no(O,O) 
=N(E,), we rewrite (13) in the following more conven- 
ient form: 

The results  of calculating D(0, 0) with formula (14) for  
several  strongly paramagnetic transition metals  a r e  
given in Table I where, because of the nonuniform dis- 
tribution of d electrons, we have used r0/2 o r  r,, for 6 
(yo is the average distance between valence electrons in 
the metal). The  greatest possible negative value of the 
coupling constant D(O,O) =-A& which is reached in 
the limit a, - + m, is shown in Fig. 2 a s  a function of 
- 
r,. The data show that appreciable electron-electron at- 
traction is possible only when & 2 1.5 and ( ~ ~ 2  10, the 
attraction certainly being smal l  in other cases.  

I t  is important to emphasize that according to the 
above investigation of the screening process in a nonuni- 
form electron gas, there can be electron-electron at- 
traction in a paramagnetic material  only if the material  
is close to the magnetic transition point. The  above esti- 
mates thus not only demonstrate the possibility of elec- 
tron-electron attraction, but also indicate the existence 
of a definite limit t o  the magnitude of the coupling con- 
stant in the exciton superconductivity mechanism. 

TABLE I. 
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agnet to be minimum with respect  to spin-density fluctu- 
ations a r e  that 6E/677(-,,, vanish and that the matrix 

FIG. 2. A/Im as a function 
of the average distance be- 
tween electrons 7, accord- 
ing to Ref. 17. 

0. Z O.~C:/' o z v F. aB s 

3. THE POSSIBILITY OF  A STATIC ELECTRON- 
ELECTRON ATTRACTION FROM THE POINT OF 
VIEW OF THE STABILITY OF  SOLIDS 

In  the preceding section i t  was shown that for  almost  
magnetic materials  V,,, has negative eigenvalues. F o r  
such a material  actually to exist,  i t  must be stable. 
However, i t  has been stated2' that a solid body must be 
unstable if V ,o,.,,, < 0, and the more  so  if V,, < 0 
(KO,.,, is the total screened Coulomb interaction, 
which includes not only the screening due to polarization 
of the electron subsystem, but a l so  that due to polariza- 
tion of the ion subsystem). This  question generated live- 
ly d i s c u s ~ i o n . ~ ~ - ~ ~  In  part icular ,  i t  was that ex- 
change of t ransverse  phonons leads to negative values of 
V,,,.,,, for  a number of nontransition metals. A consist- 
ent treatment of the stability of uniform sys tems against 
electron-density fluctuationsS0 revealed that this so r t  of 
stability is not determined by the sign of KO,. ,,, o r  Vscr, 
but by the sign of the electron susceptibility. In this 
section we shall generalize the approach of Ref. 30 to 
spatially nonuniform systems,  and shall use this appro- 
ach to show that, while the stability of a solid against 
electron- and spin-density fluctuations and the stability 
of the crystal  lattice do  impose certain limitations on the 
strength of the electron-electron attraction, these sta- 
bilities a r e  by no means determined by the sign of V,,, . 

In analyzing the stability conditions we shall s t a r t  with 
the fact that a system will be stable o r  metastable in a 
given state provided that s ta te  corresponds to an  absol- 
ute o r  relative minimum of the energy. The  energy will 
be minimum with respect  t o  electron-density variations 
provided 6E(n)/6n I n=5 = 0 and matrix 62E (n)/6n6n ( n=5 

=-X- '  is positive definite. The f i r s t  of these relations 
is the condition that the energy have an extremum and 
determines the possible equilibrium density q,; the sec- 
ond is the condition that the energy extremum be a mini- 
mum. I t  is easy to t r ace  the relation between V,, and 
x-' is we rewrite Eq. (6) in the form v, ,=(-~- '  
- Vo)(-X)Vo. Making use of the fact that Vo is positive 
definite, we choose a basis  in which both Vo and x a r e  
diagonal. Then for  the s-th eigenvalue we have 

v,, .=(31.-'-Vo.) ( -x . )  vo.. 

I t  is immediately evident from this relation that VScrs< 0 
when < vO8, and that a t  an instability point V,,, 
--a a s  -xi1 -+O. Thus, instability of the system 
against electron-density fluctuations imposes no limita- 
tions on the strength of the electron-electron attraction. 

The analogous conditions for the energy of a param- 

be positive definite. 

The  relation between spin instability and the sign of 
the eigenvalues of V,,, has  already been thoroughly dis- 
cussed in Sec. 2. Here  there remains only t o  note that 
the sign of the eigenvalues of V,,, changes in the param- 
agnetic phase before the appearance of spin instability 
and that the electron-electron attraction in the param- 
agnetic s ta te  is limited since for  an arb i t ra ry  eigenvalue 
(say the s-th) we have V , , , , ~ - ( A ( V ~ - A ~ ~ ~ V ~ ) , = - A , .  

The  lattice instability i s  the most complicated to treat. 
The energy of the system has  a minimum for given posi- 
tions of the ions provided 6E/6u: ( = 0 and the force 
matrix 

is positive definite (u, is the displacement vec to r  of the 
i-th ion from i t s  equilibrium position). It follows from 
the l a s t  condition that the squares  of the lattice vibra- 
tional frequencies, the wt(k), which a r e  the eigenvalues 
of the dynamical matrix, i.e., of the Four ier  transform 
of the force matrix, must be positive, and the frequen- 
c i e s  themselves must be real. If any of the eigenvalues 
were  negative the corresponding phonon frequencies 
would be imaginary, and the crys ta l  lattice would be 
destroyed by the exponential growth of the amplitude of 
these vibrations. 

T h e r e  i s  a d i rec t  relation31 between the dynamical ma- 
tr ix and the ion-ion interaction v (for simplicity we con- 
s ider  only the ca se  of a Bravais  lattice): 

I 
V a e ( k )  = --z [ (k+G)"(k+G1)@v(k+G, k+G1)-G"G1@v(G, G') 1, 

G,C' 

The  ion-ion interaction will be equal t o  z~v,, ,  only if 
we have Vet=-ZVo for  the electron-ion interaction Ve, 
(2 is the valence of the ions and S2 is the atomic vol- 
ume). F o r  ions having filled electron shells, v is more  
repulsive since V,, >-ZVo on account of the orthogonal- 
ization repulsion of the valence electrons from the re- 
gion of the ion core. We note that the lattice stability 
depends not only on the ion-ion interaction, but also on 
the relative positions of the ions. If we expand v in 
eigenfunctions: 

i t  i s  directly evident from the expression 

for  the squared frequency of the A-th vibrational mode 
that the stability of the lat t ice is determined not only by 
the sign of v,, but a l so  by the vectors G [ex k) is the 
polarization vector and M is the ion mass]. It i s  c lear  
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from what has been said that there  can be no direct  rela-  
tion between the sign of the eigenvalues of V,, and the 
stability of the lattice, s ince the ion-ion interaction al- 
most always differs from ZZv,, and the phonon frequen- 
c ies  also depend on the structure of the lattice. To make 
this discussion specific we shall examine two simple 
special cases. 

In the "jellium" model the ions a r e  replaced by a uni- 
form positively charged medium in which only longitud- 
inal vibrations with e(k)(lk a r e  possible. Since in this 
ca se  only the t e rm with G = O  remains  in the sum over G 
and the interaction v is diagonal in the momentum repre-  
sentation, we can easily find the vibrational frequency 
from Eq. (15): 

u=(Q) =Q=V (Q) /OM.  (16) 

If we assume that V,, = -ZVo, we have v =ZzV ,, and 
states with V,, ( Q )  < 0 turn out to be unstable. If V,, 
> -ZVo, however, instability arises when V ,, < (V,XV, 
- Ve,xVe,) < 0, i.e., an  electron-electron attraction not 
exceeding a certain strength turns out t o  be possible. 

Another interesting case  is that of the instability of the 
lattice against spontaneous collapse, which a r i s e s  when 
the bulk modulus B = G 6 2 ~ / @  is negative. In the jellium 
model, in which Vei = -ZVo, the bulk modulus i s  related 
to  V,, by the well known sum rulez7: 

which is a 'special  case  of relation (16) (B, is the bulk 
modulus of a noninteracting electron gas). In this model, 
s tates with Vsc, (0) < 0 a r e  obviously unstable against 
spontaneous collapse. 

On passing to rea l  metals, the situation changes bas- 
ically. The relation between Vx,(0) and B can be most 
easily traced for  the nontransition metals, in which the 
valence electrons a r e  almost uniformly distributed in 
space and the bulk modulus can be calculated by the 
pseudopotential method. The  energy pe r  atom of a non- 
transition metal can be expressed a s  a s e r i e s  in powers 
of the p s e ~ d o p o t e n t i a l ~ ~ :  

Here  EJen is the energy of the system according to the 
jellium model, E,, is the Ewald energy, which i s  due to 
the point character  of the ion, the energy 

is related to the difference between Vet and ZV,,(-I), 
and the te rm Et2)  takes account of the correction to the 
energy due to the weak nonuniformity of the electron gas. 
The  t e rms  E(")- Ti  with n z 3 a r e  smal l  and a r e  usually 
dropped. On differentiating Eq. (18) twice with respect  
to G, we obtain 

I t  i s  quite c lear  that the bulk modulus of a metal differs 
from Bjelr  . T h e  relative importance of the various 
t e rms  in (19) can be judged from Table Il, in which cal- 
ulation results33 and experimental data a r e  listed for  the 
alkali metals. The  te rm B(2) is usually considerably 
smal ler  in magnitude than the other t e rms  in (19), and 

TABLE 11. 

we may neglect i t  in the f i r s t  appro~imat ion .~)  We easily 
find, using Eq. (17), that for  such a "zeroth order  mod- 
e1~3Z spontaneous collapse s e t s  in when 

Depnding on the magnitude of B ,,, and especially on that 
of B(') (BE, = -0.4(41r/3)*~~~e for  close packed 
structures) ,  the right-hand side of (20) may be negative 
o r  positive. As  is evident from Table 11, i t  i s  negative 
for  the alkali metals, i.e., attractive electron-electron 
forces a r e  entirely possible a s  f a r  a s  stability is con- 
cerned. F o r  cesium, for  example, according to (17) we 
have ~ ~ ~ ( 0 )  < 0, although B >O. Thus, the nonCoulomb 
electron-ion interaction (Vei = -ZVo) and the pointlike 

'character  of the ions substantially a l te r  the lattice sta-  
bility conditions from those given by the jellium model. 
A s  a consequence of this, the lattice instability does not 
se t  in precisely when Vsc, changes sign, and an at trac-  
tive electron- electron force not exceeding a certain mag- 
nitude may exist  in rea l  materials. 

B /wEW 1 exp - 

0.51*1 
0.67*3 
0.75*2 
0.80+5 
0.83*3 

Metals I - - 1  B E ~ J ~ B ~ ~  1 Bjell/ lBEwl / B(')I~BE~ l B ( ~ ) / I B ~ ~  l BtheoJ lBEw l I 

CONCLUSION 
Study of stat ic  screening in a nonuniform electron gas  

shows that for  paramagnetic materials  close enough to 
the transition to the spin-ordered state theinteraction 
V,, must have negative eigenvalues. Thiselectron-elec- 
tron attraction does not exceed -A in magnitude, and 
the coupling constant is of the o rde r  of 0.1-0.2. Insta- 
bility of the crys ta l  lattice probably also leads to the 
same limitations, but the necessary numerical calcula- 
tions have not yet been successfully performed. On the 
bas is  of a theoretical treatment in the  lowest order  in  
Vso, therefore, i t  would seem to be entirely possible to 
produce superconductors with comparatively smallcou- 
pling constants on the basis  of the exciton mechanism. 

Serious difficulties a r e  encountered in the theory of 
nonphonon superconductivity on going beyond the limita- 
tions of the weak coupling approximation. The  corres-  
ponding generalization of the equation for  T, is obtained 
by replacing the screened Coulomb interaction in Eq. (1) 
by a quadrupole that cannot be reduced to two electron 
lines. Since the higher o rde r  t e r m s  in Vscr a r e  not par-  
ticularly smal ler  than in the screened Coulomb interac- 
tion, they can not only produce a quantitative change in 
the result  of the calculation, but can a l te r  the charac ter  
of the effective interaction from weakly attractive to re- 
pulsive. An indirect indication of this possibility may be 
found in the strong effective electron-electron repulsion 
obtained for  almost  magnetic materials  on summing 
"paramagnon exchange" diagrams." I t  should be noted 
that the summation car r ied  through in Ref. 34 encompas- 
s e s  only par t  of the divergent diagrams occurring in the 
quadruple .  Two questions that a r e  important'for high- 
temperature superconductivity-'whether the result  of 
Ref. 34 will remain valid in a more  rigorous treatment, 

Li 
Na 
K 
Rb 
Cs 
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and whether it is possible  to obtain an effective electron- 
electron attraction by taking higher  o r d e r  t e r m s  in VSc, 
into account- are still difficut to answer. 

T h e  author  thanks E. G. Maksimov f o r  fruitful discus- 
s ions  of the topic of t h e  paper ,  and I. I. Mazin and G. F. 
Zharkov f o r  a number of valuable r e m a r k s .  

"Detailed discussions of possible ways of realizing the non- 
phonon or, a s  it is frequently called, the exciton mechanism 
of superconductivity will be found in Refs. 3-5. 

2 ) ~ t  is well knowni4 that there always exists a basis in which 
two given matrices, of which one (Xi') is positive definite, 
a re  both diagonal. Thediagonalizing basis need not be orthog- 
onal, so 2 and A will not necessarily commute (a necessary 
and sufficient condition that two matrices commute is that 
there exist an orthogonal basis in which both a r e  diagonal). 

3)The widely cited expression for I ,  obtained by B r u e h e r  
and sawadaig contains a numerical error. 

4)The term Biell is also small in the alkali metals, which have 
a low electron density. 
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