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A kinetic theory of thermomagnetic phenomena occurring in polyatomic gases (the effect of fields on 
transport phenomena) in the pressure range where the mean free path, i, of the molecules is comparable 
to the geometric dimension, L ,  is proposed. An integral kinetic equation for a gas with rotational degrees 
of freedom in a magnetic field is derived which takes into account both intermolecular collisions and 
nonspherical collisions of the molecules with the walls. The distribution function for such a gas confined 
between two surfaces in a magnetic field is found for pressures at which i 5 0.1L. The contribution of 
the various collision processes to the observable changes that occur in the macrofluxes in the field is 
investigated. The effect involving the appearance in a magnetic field of a pressure difference in a closed 
plane channel whose walls have different temperatures is considered in detail. 

PACS numbers: 51.10. + y, 51.30. + i, 51.60. + a  

1. INTRODUCTION 

A wide class of phenomena connected with the effect 
of external fields on transport processes a re  known at  
present to occur in rarefied gases.' They a re  due to 
the precession of the molecules in the field and the non- 
spherical nature of the collisions between the gas mol- 
ecules and between the molecules and the walls. These 
effects are  as yet clearly understood only in the limit- 
ing cases I<< L and i>> L(l is the mean free path of the 
molecules, L is the characteristic dimension). The 
first  limiting regime is characterized by the Senftleben- 
Beenakker effect,lv2 which is connected with a change 
in the thermal conductivity and the viscosity of the gas 
in the field. A thermomagnetic effect whereby a mag- 
netic field affects the heat flux between two surfaces i s  
known to occur in a Knudsen gas (I>> L).  3 p 4  In the lim- 
iting cases of high and low gas pressures the kinetic 
phenomena are  wholly determined respectively by the 
nature of the collisions between the molecules and the 
walls . 

In the intermediate-pressure regime, when i- L, the 
transport phenomena a re  determined by both the inter- 
molecular collisions in the gas and the interaction of 
the molecules with the surface of the solid. As a re- 
sult, there are  observed more complex dependences of 
the macroscopic fluxes in the gas (e. g., the heat flux) 
on the field. Furthermore, there occur in the inter- 
mediate-pressure range specific effects that disappear 
a t  high pressures ( l / L  -0). To such phenomena pertain 
the recently discovered effect involving the appearance 
in a field of a thermomagnetic pressure difference in 
a closed plane channel whose walls have different tem- 

peratures,5 the effect of the thermomagnetic force act- 
ing in the field on a body in an inhomogeneously heated 
gas,6 and the Scott effect,'' ' which consists in the rota- 
tion in a field of a heated cylinder located in a poly- 
atomic gas. 

There virtually does not exist at present a kinetic 
theory that describes the thermomagnetic phenomena 
occurring in the intermediate pressure region. 
Attempts made earlier to describe the thermomagnetic- 
pressure-difference,8 the thermomagnetic-force,9 and 
the scottlo effects only allowed a qualitative explanation 
of these phenomena. In essence, only Vestner's ap- 
proach,8 which is based on the solution of the equations 
for  the moments of the distribution function with phen- 
omenological boundary conditions (at the walls) intro- 
duced by the method of nonequilibrium thermodynamics, 
constitutes an attempt a t  the construction of a consis- 
tent theory for the intermediate-pressure region. How- 
ever, in such an approach the choice of the moments 
connected with the rotational degrees of freedom i s  not 
validated. Furthermore, such a theory, which is more 
of a hydrodynamic theory than a kinetic one, does not 
allow us to determine the contribution to the effects 
of the various collision processes (the intermolecular 
collisions o r  the collisions of the molecules with the 
surface). 

In the present paper we construct for the thermo- 
magnetic effects occurring in the intermediate-pressure 
range a consistent theory based on the use of the integral 
kinetic equation. The constructed theory can be ex- 
tended to the case of the effect of an electric field on 
transport phenomena in rarefied gases of polar mol- 
ecules, since effects of this type a re  due to a single 
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precession mechanism. As an application of the theory 
developed, we consider the thermomagnetic-pressure- 
difference effect. 

Below, in Sec. 2 we formulate the integral kinetic 
equation for a polyatomic gas in a magnetic field. In 
Sec. 3 we find the distribution function for a gas con- 
fined between two surfaces for the pressure range where 
is 9.1L (virtually all the available experimental 
data5-7*11-14 pertain to this regime). The solution con- 
structed in the limit i / ~ - 0  reduces to well-known ex- 
pressions for the thermal conductivity of a gas in a 
field (the Senftleben-Beenakker effect). Further (Sec. 
4) we investigate the thermomagnetic-pressure-differ- 
ence effect. The obtained expressions a re  compared 
with the experimental data. 

2. THE INTEGRAL KINETIC EQUATION FOR A 
POLYATOMIC GAS IN  A MAGNETIC FIELD 

If the mean temperature is sufficiently high, so  that 
the rotational degrees of freedom can be treated clas- 
sically, the steady-state Boltzmann equation for a gas 
in a magnetic field, H, can be written in the form2 

Here v and M are  the velocity and the angular momen- 
tum of the molecule, d r  = dvdM is the phase volume, 
and y is the gyromagnetic ratio of the molecule. The 
functions W and W' in (2.1) describe respectively the 
probabilities for the direct and inverse intermolecular 
(binary) collisions. 

The interaction of the gas molecules with a wall is 
described by a boundary condition connecting the dis- 
tribution functions of the molecules incident of (f,), and 
reflected from V,), the surface15: 

where r = (v, M ) ,  k is the normal vector to the surface, 
and V is the probability density of the scattering on the 
wall. 

At present the solution of the Boltzmann integro- 
differential equation with integral boundary conditions 
is an extremely complex problem even for the case of 
monatomic gases. Let us go over from the system of 
equations (2 -1)- (2.2) to an integral kinetic equation that 
takes into account simultaneously the intermolecular 
collisions and the collisions with the walls. An integral 
kinetic equation has been proposed for monatomic gases 
by Vallander. l 6  Let us consider the derivation of such 
an equation for a polyatomic gas confined between 
two infinite surfaces located in a magnetic field a t  a 
distance L from each other and having different temp- 
eratures (To and T,). Let us orient the coordinate 
system in such a way that the x-y plane coincides with 
one surface, while the second surface i s  described by 
the equation z = L, 

The Boltzmann equation (2.1) can be rewritten in the 
form 

where w = yH is the frequency of precession of the mol- 
ecules in the field, q, is the polar angle of orientation 
of M relative to the direction of the field, and I, is the 
collision integral. 

Let us integrate Eq. (2.3) along the characteristic 
curves within the limits 0 r 2 8 L. The system of char- 
acteristic curves can be written in the form 

From the first  equality we obtain the relation 

which gives the change in the orientation of the vector 
M when the molecule moves along the trajectory from 
the point z, to z. Let us split the collision integral into 
two parts: 

P-fjJ fIW dr t l  d r t d r r ,  I = J ~ J  f1'ftW' d r ;  d r ,  a'. (2.6) 

Assuming formally that the functionals 51 and I  are  
known quantities, let  us integrate the equation arising 
from (2.4) and (2.6) : 

A.s a result, using the relations (2.2) and (2.5), we 
obtain the following integral equation: 

where O(x) = 1 ,  x>O and O(x) =0,  x s O ;  v"' and v '~ '  
a re  the probabilities of scattering on the lower (z = 0) 
and upper (z= L) walls; and the functionals 51 = 51[f, r, z ]  
and I=Z[ f ,  r , z ]  are  defined in (2.6). The operator @ in 
(2.8) describes the periodic variation of the orientation 
of the angular momentum vector of the molecule a s  the 
molecule precesses in the magnetic field, and is de- 
termined by the relation (A i s  an arbitrary function of 
r and 2,) 

M 
B ( z - z o ) ~ ( r ,  z.1- C C (e.)d:? (0.1 Y,.  (%) 

Imks (2.9) 

{ a(z-zo) 1 j YL (E) A (L r )  da, x exp i(o-k)cp~+im- 
U. 

where OH, pH are  the spherical angles of the field or- 
ientation and the functions d:,! (the rotational transfor- 
mation coefficients) a re  determined in Ref. 17. The 
integral kinetic equation (2.8) is closed with respect to 
f and correct for the entire interval 0 <I/L <.a. 

In spite of i t s  outward unwieldiness, the obtained 
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equation has a clear physical meaning. Since w L ~ ,  z ]  
is the nonequilibrium frequency of collision of the mol- 
ecules in the state r, the exponential factors in all the 
three terms of Eq. (2.8) give the probabilities for a 
collisionless flight of the molecules to the point z from 
the point of the last  collision (with a molecule o r  with 
a wall). The f i rs t  term in (2.8) describes the distribu- 
tion of the molecules that reach the point z after a col- 
lision (with a molecule) at any point in the space layer, 
0 <z,  < L, occupied by the gas. The second and third 
terms in (2.8) give the distributions of the molecules 
that arrive respectively from the lower (z = 0) and upper 
(z= L) surfaces. These terms a r e  appreciably differ- 
ent from zero only at distances of the order of i from 
the respective walls. 

3. THE DISTRIBUTION FUNCTION OF A 
POLYATOMIC GAS IN A MAGNETIC FIELD I N  
THE REGIME~SO.IL 

Below we shall be interested in the effects in a poly- 
atomic gas at pressures when s O.lL. In this case 
we can go over to the consideration of a system in which 
the gas occupies an infinite half-space (z >O) bounded 
by the plane surface (z = 0) and the temperature of the 
gas at large distances from the wall is maintained a t  
a value different from the wall temperature. The in- 
tegral kinetic equation for this case can be obtained by 
dropping the third term in (2.8). 

Let us f irst  find the distribution function of the mol- 
ecules under the assumption that there is maintained 
in the gas a temperature gradient having a constant 
value, (AT),, a t  distances from the wall z >> i. We shall 
assume that I To -T, I << To and, consequently, that the 
state of the system differs little from the equilibrium 
state. Assuming in this case that 

where f, is the Maxwellian distribution with the wall 
temperature To, we can go over to a linearized kinetic 
equation for the function X. The latter can be written 
in the form 

Here 

Notice that, in contrast to Eq. (2.8), only the z-indepen- 
dent equilibrium collision frequency (3.3) figures in the 
linearized equation (3.2). It must be emphasized that 
the integral kinetic equation (3.2) is, in contrast to 
(2.8), not closed with respect to f, and requires an addi- 
tional boundary condition for z --. As the latter, we 
shall give the temperature gradient in the gas a t  z 

>> 2, regarding i t  temporarily as known. 

We shall solve Eq. (3.2) by the method of iterations. 
As shown below, i t  is then possible to ascertain the 
extent to which the various collision processes con- 
tribute to make the distribution function and the macro- 
scopic fluxes field dependent. In principle, the con- 
vergence of the iterative procedure for integral kinetic 
equations has been proved for any value of i / ~ .  lB How- 
ever,  for small  l / ~  the iterative method is not used in 
practice because of the necessity to carry  out a large 
number of iterations (when a trivial initial function is 
used). At the same time the opinion is expressed in the 
literature that i t  is possible to obtain a rapid conver- 
gence even in the case of small  T / L  values if a s  the in- 
itial function we use a sufficiently correct  solution. 

As follows from the precession mechanism through 
which the field influences the kinetic phenomena in a 
gas (see below for details), to explain the dependence of 
the macrofluxes on H it  is sufficient to consider the 
two nonspherical collisions (of a molecule with a mol- 
ecule o r  with the wall). The integral operators 6 and 
,? in (3.2) a r e  nonlinear in the nonsphericity parameter 
of the intermolecular interaction, since the exponent of 
the exponential function contains the total scattering 
probability W. Therefore, when such a distribution 
function, which describes the macroscopic fluxes in the 
system in the absence of a field, is used a s  the initial 
function, the fluxes begin to depend on the field already 
after the f i rs t  iteration (in the second-order approx- 
imation in the small  nonsphericity parameters of the 
molecule-molecule and molecule-wall interactions). 

Let us  construct the solution in Eq. (3.2) in the fol- 
lowing manner. Choosing some initial function x 'O), 
we seek the more accurate solutions x "), x ('). . . ac- 
cording to the scheme 

(n is the iteration number). As n - -, the expression 
(3.4) goes over into an equation equivalent to Eq. (3.2). 
This is not difficult to show i f  we take into account the 
discontinuity of the distribution function in velocity 
space. The solution scheme (3.4) ensures the ful- 
filment of the requirement that there should be no gas 
pileup a t  the wall a t  any iteration step. 

As the initial function x 'O', i t  i s  advisable to choose 
a distribution function that correctly describes the 
heat flux in the gas in the absence of a field. Let us, 
allowing for the jump, 6T, in temperature a t  the sur- 
face,19 write the expression for X(o' in the form 

where 

E is the energy of the molecule, c, and c p  a r e  the heat 
capacities of the gas, and W; is the M-independent part  
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of collision probability. In the case when 52, = const, 
the expression (3.5) coincides with the solution obtain- 
able for the problem of thermal conductivity by the 
Chapman-Enskog method (in the first approximation) for 
pseudo-Maxwellian molecules. 

The function x'"', in accordance with the relations 
(3.4)-(3.6), contains the temperature jump a s  an un- 
known parameter. Since in the steady-state regime the 
heat flux Q, in the system under consideration does not 
depend on the coordinates, the parameter 6T can be 
determined in any n-th approximation by computing 
with the aid of the function x("' the flux, QJ"), corres- 
ponding to i t  and setting 

Let us consider the expression that is obtained in ac- 
cordance with (3.4) and (3.5) for the function X'l) after 
the first  iteration. To simplify it, let us use the small- 
ness of the non-spherical parts of the probabilities of 
scattering on a molecule and on the surface. As is well 
known,214 the probabilities W and V can be represented 
in the form 

where Wo and Vo do not depend on the orientation of the 
angular momentum of the molecules; v and t a r e  small 
nonsphericity parameter (v2, c 2  - - 

With allowance for (3.7), the expression for the func- 
tion x"' can be represented in the form of an expansion 
in powers of the nonsphericity parameters: 

X'l'=X:')+X:"+X;) + ... ( (3.8) 
where the subscripts O,1,2, . . . correspond to the terms of 
zeroth first (-v o r  E ) ,  second (-v2 o r  VE), etc., order in the 
first  (-v o r  t ) ,  second (-v2 o r  VC), etc. ,  order in the 
non-sphericity of the interaction. The dependence of 
the macroscopic fluxes in the gas on the magnetic field 
is determined by the part of the function xi1) that i s  
isotropic in M. The expression for Xi1) is unwieldy 
and is given in the Appendix. 

Computing with the aid of the found function X ( l )  the 
heat flux between the plates 

Q!') = J VZ~fdbX(l)dr 
and setting QS1) I s.o = Q:') I m ,  we can find the expression 
determining the parameter 6T: 

where B is a quantity of the order of f and depending 
on W, V, and the magnetic field H (the expression for 
B is unwieldy, and is not given here). The expression 
thus found for the temperature jump can be represented 
in the form 

6T-(8T)o+(6T)l+,(6T)2+. . . , (3.10) 

where (6T)o is determined by the functions Wo and Vo; 
(6T)i contains terms of f irst  order in the nonsphericity 
(-V, E) ;  and (bT)2 contains terms -v2 and VE. The quan- 
tity (6T)2 and the terms of the next order in smallness 
in (3.10) depend on H. Let us note that in the case of 
specular-diffuse reflection of the molecules from the 
surface and for 52, = const (the case of pseudo-Maxwell- 

ian molecules) the expression found for (bT), coincides 
with the result obtained by the method of n ~ o n ~ e n t s  in 
the Navier-Stokes approxin~ation.'~ This indicates that 
the temperature jump is taken account of sufficiently 
correctly in the constructed iterational solution. 

Above we assumed that the temperature gradient in 
the gas far from a wall, (VT),, is known. The ultimate 
aim of the computations is to determine the macro- 
scopic fluxes for a given temperature difference, AT 
= To - T,, between the walls. Thus, i t  is now neces- 
sary  to relate (VT), with AT. Let us assume for sim- 
plicity that the two surfaces z = 0 and z = L a r e  identical. 
Since I AT ( << To, i t  is natural to assume then that the 
temperature jumps a t  the two surfaces a r e  equal. In 
that case 

Eliminating 6T from the expressions (3.9), (3.11), we 
obtain 

Let us consider the physical meaning of the solution. 
The iterational solution to Eq. (3.2) allows us to eluci- 
date the physical nature of the effect of a field on trans- 
port phenomena in a gas. As can be verified, the terms 
A~("""' (i= 1, . . . , 9 )  in the expression for that part of 
the distribution function Xi'), (A. 7), which i s  isotropic 
in M, and which determines the dependence of the fluxes 
in the gas on the field, correspond to the contributions 
of the various processes. For convenience of exposi- 
tion, let us use diagrams in which we shall represent: 
by a straight line the molecule distribution function that 
does not depend on H and is isotropic in M, by a wavy 
line the distribution function that is anisotropic in M, 
and describes the polarization of the molecules, and by 
a double line the distribution function that is isotropic 
in M, but dependent on H. 

From the point of view of the precession mechanism 
the effect of a field on transport phenomena can be ex- 
plained a s  follows. As a result of the nonspherical col- 
lisions (between the molecules and between the molec- 
ules and a wall), the molecules become polarized with 
respect to angular-momentum orientation. Because of 
the precession of the molecules when the field is 
switched on, the distribution of the polarized molecules 
becomes H dependent. After "repeated" nonspherical 
collisions the polarization of some of the molecules 
may disappear. As a result, that part  of the distribu- 
tion function which is isotropic in M and, consequently, 
the macrofluxes in the gas become H dependent. 

Let us f i rs t  consider the appearance of the molecular 
polarization. As canbe  seen from analysis of the 
structure of the operator 6 ,  (3.21, two processes can 
occur a s  a result of the intermolecular collisions. 
First ,  polarized molecules a r e  produced a s  a result of 
nonspherical collisions between the unpolarized mol- 
ecules. This process is described by the factor 

in the integrand for ex''). Let us represent this pro- 
cess by the diagram a) in Fig. 1. Second, since the 
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FIG. 1. 

collision rate n(r)  depends on M, there a re  removed 
from among the unpolarized molecules as a result of 
the collisions molecules largely with a definite orienta- 
tion. Therefore, the remaining molecules will be po- 
larized. This process is described by the linear term 
in the expansion of the probability for a collisionless 
flight (the exponential factors in (3.2) in powers of v. 
Such a process is depicted by the diagram b) in Fig. 1. 
A third process that gives r ise  to polarized molecules 
i s  nonspherical reflection of the molecules from a sur-  
face (see Fig. 1, c)). This process is described by 
the probability E V1 in S, (3.2). 

In analogy with the foregoing, we find that the inverse 
processes, i. e. ,  the production of unpolarized mol- 
ecules in collisions between polarized molecules, a re  
depicted by the diagrams d)-f) in Fig. 1, and a re  also 
described by the corresponding expressions indicated 
above. 

An analysis of the computations that lead to the ex- 
pression for that part of the distribution function Xi1), 
(A.7), which is isotropic in M and dependent on H, shows 
that the terms A~'"'"O' of this expression correspond to 
the processes depicted in Fig. 2. 

The process depicted by the diagram d) in Fig. 1 does 
not figure in the diagrams shown in this figure. As 
follows from an analysis of the adopted solution scheme 
(3.4), such a process can be taken into account only 
after the second iteration. As a result of this, to the 
obtained eight diagrams will be added another group 
of eight (we can easily construct them in much the same 
way as the diagrams shown in Fig. 2, using in addition 
the process d) of Fig. 1). By simply sorting out the 
possible variants, i t  can easily be verified that these 
sixteen diagrams exhaust all the possible cases. In 
this way we convince ourselves that, to take account of 
all the possible causes of the appearance of a dependence 
of the macrofluxes in the gas on the field in the solution 
of Eq. (3.2) by the method of successive approximations, 
i t  is sufficient to carry  out only two iterations. The 

FIG. 2. Processes giving rise to the dependence of the macro- 
fluxes in a gas on H in the solution obtained after the first 
iteration. The diagram a) corresponds to the terms Ai and 
A,; b) A,; c) A,; d) A,; e) A,; f) A,; g) A8; h) As in (A. 7). 

subsequent iterations only lead to further refinement of 
the spherically symmetric part of the diagrams given 
above (the part depicted by a single straight line). This 
corroborates the assumption that the iterational solu- 
tion converges rapidly from the standpoint of the des- 
cription of the field dependences. 

Since the explicit form of the probabilities for non- 
spherical scattering of a molecule on a molecule, W,, 
and on a wall, V,, is not known in the general case, the 
inference of the necessity of allowance for one o r  an- 
other interaction process can be made only on the basis 
of a comparison with experiment. As the above-per- 
formed computations show, the observable character- 
istics of the thermomagnetic-pressure-difference and 
thermomagnetic-force effects can be described within 
the limits of experimental accuracy when the results 
of the f i rs t  iteration a re  used, i .e. ,  when the processes 
depicted in Fig. 2 a re  considered. Thus, we can re- 
strict  ourselves to the solution given above, a more 
accurate determination of the distribution function 
being unnecessary. 

The constructed solution can be verified by using i t  
to describe the effect of a field on the thermal conduc- 
tivity of a gas (the Senftleben-Beenakker effect). Let 
us compute the heat flux, Q, between the surfaces in 
the limit !/L - 0. For this purpose, let us retain in 
the expression obtained above for the nonequilibrium 
distribution function only the terms of first  order 
in I / L ,  and set  z >> i (the solution has been constructed 
in such a way a s  to ensure the equality of the values of 
Q, for z =0 and z >> f i .  As a result, i t  i s  not difficult 
to obtain for the field-dependent part of the heat flux 
the expression 

where (vT),zAT/L. The quantities entering into (3.13) 
a re  determined by the expressions (A.l-6). The terms 
B") and B ' ~ )  in (3.13) a re  connected with the processes 
described respectively by the diagrams b) and a) in 
Fig. 2. 

We shall further use the model expression proposed 
by Kagan and ~aksimov"or the probability for non- 
spherical molecule-molecule scattering, when the de- 
pendence of Wl on the orientations of the relative-vel- 
ocity and angular-momentum vectors of the molecules is 
described by the Legendre polynomial P 2 .  In this case, 
a s  the above-performed calculations show, i t  is pos- 
sible to have such types of molecular polarization as 
when the angular dependence of that part of the distrib- 
ution function of the gas which is anisotropic in M(x!') 
in (3.8)) is described by the combinations . . . [ V ] [ M ] ~  

and . . . [ v I 3 [ ~ l 2  ([aim is an irreducible tensor or  rank rn 
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constructed from the components of the vector a). A 
polarization of the f i rs t  type corresponds to the pro- 
cess a) in Fig. 1; of the second type, to the process b). 
A s  is well known, i t  is sufficient for the description of 
the Senftlben-Beenakker effect as applied to thermal 
conductivity for diatomic gases to take only the [v][M]~ 
polarization into account. In the expression (3.13) to 
such a molecular polarization corresponds the term 
B") (see the diagram b) in Fig. 2). Below we show that 
the expression (3.13) for B"' #O, B ' ~ ) = O  allows US to 
account for the experimental data. 

As follows from the relation (3.13), the dependence 
of Q on the field strength is determined by the relation 
o/S2,, - ~ / p  (p i s  the pressure). Since 52, = 52,(v2,M2), the 
H/p dependence of Q is complex. Let us assume for 
simplicity that a, varies slowly a s  v and M vary near 
their thermal values. (Such an assumption i s  reason- 
able, since the model of pseudo-Maxwellian molecules, 
for which no = const by definiton, provides a good qual- 
itative description in the majority of the problems of 
the kinetics of rarefied gases.) Then the integration 
in (3.13) can be carried out approximately by taking out 
the quantity 

from under the integral sign and replacing in the pro- 
cess Q0 by some constant value fi ;O) .  

Computing by the indicated method the thermal flux 
(3.13) for BC2'=0, we can find the expressions for the 
changes in the thermal conductivity of the gas in the 
fields HIIVT(AXi,) and HlVT(AX;), as well as for the 
transverse thermal conductivity (X3  arising in the 
field H = (0, H,, 0) : 

where [= w / ~ , ' ~ ) ;  the constant s1 ( I  sl I - v2) can be com- 
puted i f  the dependence of the probability Wl on the 
quantities v2 and M2 i s  known. The expressions (3.14) 
coincide with the expressions found in Ref. 2, and des- 
cribe the observed dependences for the majority of 
diatomic gases. l1 

It should be noted that the quantity Wo'Q' in (3.14) (in 
contrast to no) is not an equilibrium collision frequency. 
Its value i s  determined by the dependence of the func- 
tions hl,, and Q,,, in (3.13) on v and M2; therefore, the 
parameter [ in (3.14) is, as in the theory proposed 
earlier, connected with i t s  own kind of "transport" 
collision frequency [see the expression (~.3)] .  

4. THE T H E R M O M A G N E T I C - P R E S S U R E N C E  
EFFECT 

As was recently discovered,5112s13 apressure difference 
arises in a polyatomic gas (F/L = l0-~-10-') contained in 
a closed plane channel whose walls have different temp- 
eratures upon the application of a magnetic field. This 
phenomenon is connected with gas-mass transport in a 
direction perpendicular to the magnetic field, H, and to 
VT when the field i s  directed a t  an angle to VT (see 

Fig. 3). The pressure difference, bp, arising between 
the ends of the channel is an odd function of the field, 
i s  described at sufficiently high pressures by a function 
of the form 

(see Fig. 41, and vanishes in the limit of high pressures. 
Therefore we can conclude that the gas-mass transport 
arises only in a Knudsen layer (of thickness -t) near 
the surfaces. 

In order to understand the causes of the appearance 
of the thermomagnetic-pressure difference (TMPD), let 
us first  consider the case of an open channel (it is as- 
sumed that the length and width of the channel a re  sig- 
nificantly greater than i ts  height, L). Let the field 
vector lie in the x-z plane. Neglecting the terms of 
higher order in smallness in the collision nonsphericity, 
we can compute the thermomagnetic gas flux, N,,, near 
the lower wall from the formula 

where X1l) is determined by the relation (A.7) and is the 
part of the nonequilibrium distribution function for the 
gas near the surface z = 0 that is H dependent and iso- 
tropic in M. As is easy to verify, the quantity N,, (4.1), 
is an even function of k (k is the normal vector to the 
surface). Therefore, if we assume that the two walls 
a re  identical and that I AT I <<To, then the gas flux is 
symmetric about the plane z = L/2. The gas flux aver- 
aged over the cross  section can then be represented in 
the form 

In the case of a closed channel the gas flux, my, that 
arises at the moment of application of the field is the 
same as the flux that ar ises  in an infinite channel. How- 
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FIG. 4. Dependence of the pressure difference 6p on IE/p for 
HI VT for the CO gas. The solid line corresponds to the 
expression (4.11) with cI/c4 = 0.32. The experimental points 
were taken from Ref. 12. 
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ever, later, under the action of Ny a pressure difference, ("Knudsen corrections" to the effect12*13). 

'p, is between the ends of the and As follows from (4.5), the TMPD effect is a composite 
a gas counterflow, N,, =A6p, arises.  The coefficient phenomenon, connected with both the nonspherical col- 
A can be found from the Of the Of gas lisions between the molecules and the nonspherical mol- 

in the under the action of 6P, and ecule-surface interaction. Let us emphasize that, al- 
in the general case on the field. In the steady-state though the term U, (the diagram b) in Fig. 2) is not 
regime we evidently have formally connected with the collisons with the walls, i t  

R=-R - u c ~ - - A ~ P ,  (4.3) corresponds to the presence of a gas flux only near the 

and there is no resultant gas flow in the channel. Since, 
as  follows from (4.2), the flux f, is quadratic in the 
nonsphericity, for the pressure difference in the steady 
state we have, neglecting the terms of higher order in 
smallness, the expression 

surface, and ar ises  because of the discontinuity of the 
distribution function of the gas (in velocity space) in the 
Knudsen layer. As shown by an analysis of the z de- 
pendence of the flux N,, the processes d), e) ,  and f) 
depicted in Fig. 2 (to them correspond the terms U2, 
U,,  and U, in (4.5) give r ise  to a gas flux in the channel 

tip=-N,lAo, (4.4) t h a t i s s u c h t h a t N , ~ O a t z = O a n d z = L , i . e . , s u c h  
that thermomagnetic slipping of the gas occurs at the 

where AO is field independent, and is determined by the wall. The processes b) and h) (i= l ,  in (4.5)) lead to 
spherically symmetric molecule-molecule and mole- the appearance of a gas flux only near the walls (at 
cule-surface interactions. Z#0  andz*L) .  

According to the foregoing, to determine 6p i t  i s  suf- 
ficient to find the mean thermomagnetic gas flux, N,, 
in an open channel. Computing N ,  from the formulas 
(4.2), (A.7), we obtain 

where 
(lrnh0) u u f a 3Qoimo+ im'o' u1 =,,a J + 

Qo $2ha$+m20z)-2 
Q L I $ I I ~  dl', 

%=- 

( ~ n l h ~ )  I u.'l fXraz' imo 
= - v z ~  :arJ 

Qo' 
.v0crr-r)  Qo,, + m,02 nl:h~:l.drf. 

.,'>a q ' c o  

imo 
v ~ h a o ~ r i + r ~ ~ ~ l ~ a r ,  

imo 
Qo"+mzoz 

v l h o a ~ r + r ~ ~ ~ l o ~ r ,  

imo 
X {  d22"1$ - a ; )  R.2+mzuz P I ~ V . ~ , . ( ~ ~ - + ~ )  dP1 

Here, as above, under the quantities with primes (f,', 
no1, etc.) a r e  meant the corresponding functions of S f .  
The terms U,, i= 1 ,  . . . , 5, in (4.5) a r e  c o ~ e c t e d  with 
the collision processes depicted respectively by the 
diagrams b), d), e) ,  f ) ,  and h) in Fig. 2. The pro- 
cesses corresponding to the diagrams a), c), and g) 
cannot, as the calculations show, lead to effects that 
a re  odd in the field. 

In the limit of sufficiently high gas pressures,  we can 
neglect the quantity 2(6T),, in comparison with A T  in 
the expressions for U, (i = 1 ,  . . . ,5) .  In this case all 
the five terms of the expression (4.5) a r e  of the order 
of 

and reduce to the form p-'F(H/P), which agrees with 
experiment. The terms of the next order in smallness 
in T / L  in (4.5) describe the deviation, observed at low 
pressures, of the TMPD from the law p- '~(H/p) 

The thermomagnetic gas flux connected with the spher- 
ically symmetric reflection of molecules from the walls 
(the diagram d) in Fig. 2) can apparently be neglected. 
Indeed, a s  follows from (4.5), the quantity U2 # O  only 
in the case when the probability Vo contains terms pro- 
portional to sin(cp, - cp,,,) o r  cos(cp, - c p ,  ). On account 
of the fact that Vo is positive definite, such terms and, 
consequently, the quantity U2 should be small. We shall 
therefore assume that U2 = 0. 

Let us consider the contributions of U, and U, to (4.5). 
As follows from the analysis of the Senftleben-Beenak- 
ker effect, a molecule-polarization process of the type 
b) in Fig. 1 can be neglected in comparison with the 
process a).  Therefore, as can be seen from an anal- 
ysis of the diagrams e)  and f )  in Fig. 2, the contribu- 
tion of C', to (4.5) can be neglected. We shall, in ac- 
cordance with the foregoing, se t  U, = 0. 

Let us compute the quantity U, in (4.5). We shall 
carry  out the d r  integration approximately, in much the 
same way as was done above in the derivation of the 
expression, (3.14), for the thermal conductivity. The 
mean value, RiN1', of the collision frequency will 
then generally speaking differ from in (3.14). As 
a result, it is not difficult to find (neglecting terms of 
the order of (T/L)~) that 

(no is the equilibrium gas density). The parameters c ,  
and c;( 1 ci I - vZ) can be computed if the dependence of 
the probability W, on v2 and M~ is known. 

To compute the contributions of U4 and U5 to the 
thermomagnetic gas flux, i t  is necessary to choose an 
expression for the nonspherical part  (V1) of the probab- 
ility for  scattering of the molecules on a surface. For 
this purpose let  us consider an expansion of the form4 
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where 
s=={(LrL)ji, (L1L)j2, L}, 
A,=[Y1~' (v') XYL1(v) ]'%[YL:'(M') XYLz(M) ]'~YL~(k). 

We shall construct a model expression for V, by re- 
taining in (4.7) the necessary finite number of terms 
and determining the expansion parameters from a com- 
parison with experiment. Notice that, according to 
(4.5) and (A.4), the thermomagnetic gas flux (as well a s  
the heat flux in a Knudsen gas4) depends only on the 
terms of the expansion (4.7) with l2 = 0 o r  I ; =  0. 

Unfortunately, in the experimental investigations pub- 
lished in Refs. 5, 12, and 13 the material from which 
the walls of the channel were made is not indicated. 
However, a s  investigations of the effect of a field on 
the heat flux in a Knudsen gas have shown,4 the prob- 
ability V, depends to a greater extent on the composition 
of the adsorbed layer on the surface than on the mater- 
ial of the backing. In particular, the probabilities of 
scattering of N ,  molecules on Au and Pt surfaces cov- 
ered by chemisorbed 02 layers have the general dom- 
inant terms {(11)1, (20)2,2) and {(11)1, (02)2,2), and dif - 
fer only in that they have different supplementary terms 
[see the expression (4.7)]. Therefore, i f  we assume that 
in the experiments on T M P D , ~ * ' ~ * ' ~  just as in the in- 
dicated experiments in a Knudsen gas,4 the surfaces 
were covered by chemisorbed oxygen,' then i t  is natural 
to assume that the terms 

{(ii)i,(20)2,2}, {(I!) 1,(02)2,2} (4.8) 
a r e  also the dominant terms in the expansion (4.7) for 
the probability for scattering of the molecules N,, COB, 
and CO on the surfaces in question. The computation 
of the fluxes U4 and U,, (4.5), with the use of the ex- 
pression (4.8) for V, leads (upon the neglect of terms 
-(?/L)~) to the result 

5 i  61 u,-c, "sin e. ms2 +sin2 e n  + 

P I I+:& 1+45, 

where 

the parameters c,, c;, c5, and c;(lc, I, 1c5 I - V E )  can 
be computed if the dependence of W and V, on v2 and 
M~ i s  known. 

The expressions (4.6), (4.9), and (4.10) have similar 
dependences on H/p. At the same time, U,, U4, and U, 
depend differently on the field orientation. Therefore, 
in order to compute the contribution of the processes 
b), h), and f)  shown in Fig. 2, i t  is necessary to in- 
vestigate the angular dependence~ of 6p on 8,. The 8, 
dependences of (bp),, and (H/p),, obtained by Egger- 
mont et a1. l3  for the gas CO a r e  presented in Fig. 5 
(the experimental points). In the same figure a re  
shown the dependences obtained under the assumption 
that U, =Ao6p for i = l , 4 , 5  (the curves 1, 2, and 3, re- 
spectively). It can be seen from the figure that in the 
case of U5 the quantity (Hip),, does not depend on 8,. 
On the other hand, i t  is clear that the experimental 
data can be accounted for i f  we use in (4.5) only a lin- 

FIG. 5. Dependence of (6p),, and (H/p),,, on the angle of 
orientation of the field for the CO gas. The curves 1, 2, 3 
correspond to the expressions (4.6), (4.9). (4.10). The 
solid line corresponds to the expression (4.11) with ci/q 
= 0.32. The experimental points and the curves 4 (theory 
propounded in Ref. 8) were taken from Ref. 13. 

e a r  combination of the terms U1 and U4 (the curves 1 and 
2 in the figure). It is therefore reasonable to assume 
that U, - 0 for CO. (This result follows from the spec- 
ific dependence of W, and V, on the quantities v2 and 
M ~ . )  

There is another argument that leads to such a result. 
As the pressure i s  lowered, there is observed in all 
the investigated a deviation from the law 60 
=p-'F(H/~), expressed in terms of a decrease in the 
quantity 6p relative to the value predicted by this form- 
ula, a s  well as a shift of the dependence F(H/p) along 
the H/p axis to the right (towards the region of higher H/ 
p values). The decrease in the magnitude of the effect 
can be explained by the presence of the factor AT 
-2(6T)o in each of the terms U,, i = 1, . . . , 5 ,  since the 
temperature jump increases with decreasing pressure. 
The shift along the H/p axis can be connected with only 
the term U5 in (4.5) (its dependence on pressure is dif- 
ferent from that of the other terms; therefore, the total 
function F(H/P) varies as p is varied). Since in CO (in 
contrast to N2, for example) the Knudsen shift is equal 
to zero,12 i t  is natural to assume that U5 = 0 for this gas 
and that the process depicted by the diagram h) in Fig. 2 
does not occur. (Strictly speaking, the assertion is 
sufficient, but not necessary for the absence of the 
Knudsen shift.) 

Thus, the TMFD effect in CO is determined by only 
the two t e rms  U, and U4 of the expression (4.5). We 
shall, for simplicity, assume that Sio'N1' = a 0 'N4' and, 
consequently, that 5, = 5,. In accordance with (4.5), 
(4.6), and (4.9), we finally have 

( 5 ,  = E4 = cifH/p) . The expression (4.11) contains three 
undetermined parameters: c l ,  c,', and c,. Agreement 
of the angular dependences corresponding to (4.11) with 
experiment (the solid lines in Fig. 5) occurs when 
c,/c4- 0.32. The parameters c;, and c,. Agreement 
mined by equating the values of (6p),, and(H/p),, re- 
sulting from (4.11) to the experimental values. The 
H/p dependence of 6p obtained as a result in the case 
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HlVT(8, = n/2) is shown in Fig. 4. 

The agreement with experiment, obtained with a small  
number of terms in the expression for the probability 
V, ,  is not strange. As can easily be verified, further 
allowance for the terms {(11)0, (20), 2,2), 
{(11)0, (02)2,2}, etc., entering into the expression for 
the probability for scattering of CO molecules4 does not 
lead to a change in the expression (4.9) and, conse- 
quently, in (4.11). 

It follows from (4.11) that the relative contribution of 
the terms U, and U4 to the quantity (6p),, is given by 
Ul/U4 w 2.35. This means that 70% of the TMPD in CO 
i s  determined by the nonspherical collisions between the 
gas molecules near the walls (the process b) in Fig. 2) 
and the remaining 30% is connected with nonspherical 
reflection from the surfaces of polarized (as a result 
of collisions in the gas) molecules (the process f )  in 
Fig. 2). 

Let us briefly touch upon the distinctive features of 
the TMPD in other gases. In N, there is observed12 at 
low pressures a small  Knudsen shift of the dependence 
6p(H/p) along the H/p axis. Therefore, here we should 
have that U, # O .  This implies that, besides the above- 
indicated two mechanisms by which a gas flux ar ises  
in a magnetic field, a third mechanism, connected 
with the polarization of the molecules reflected from 
a wall (the diagram h) in Fig. 2), also makes a small 
contribution in N2. Since the angular dependence of the 
quantity U5 (the curve 3 in Fig. 5) markedly differs 
from the analogous dependences for Ul and U4, in ni- 
trogen, when the angle 8, is decreased, the quantity 
(tip),, should decrease somewhat more rapidly, while 
(HIP),, should increase more slowly, than in CO. in- 
deed, such a conclusion is corroborated by recent 
experiments. l 4  

A different situation should, in accordance with the 
constructed theory, be observed in 0, and NO (the 
TMPD effect has not been investigated in these gases). 
As shown in Ref. 24, the dominant terms of the expan- 
sion, (4.7), of the probability for scattering of these 
gases on a surface have I ; =  1, l2 = 0 o r  I ;=  0, I ,  = 1. 
In this case, a s  follows from (4.5), U, = U4 = US = 0, and 
the cause of the TMPD can only be the nonspherical col- 
lisions between the molecules (the process b) in Fig. 2). 

The calculations carried out reveal an interesting 
characteristic of the effect under consideration, to wit, 
an oscillating dependence of the gas flux N, in a channel 
on the product Hz. Near a surface, a t  fixed H, the 
quantity Ny depends periodically on the distance from the 
wall, while at a given point z i t  depends periodically on 
H. These oscillations die down a s  we move away from 
the wall and as H increases. The number of peaks that 
the quantity Ny has in a Knudsen layer for a given H is 
approximately equal to (H/p)/(H/p),,. The profile of 
the flux N,(a a t  fixed H in open and closed channels is 
shown (schematically) in Fig. 6 (the cases a) and b)). 

It can be shown that a similar dependence on Hz ob- 
tains for the transverse heat flux (Q,, i = x ,  y) and 
stresses (P,, ,  i, j = x ,  y, z) in a gas near walls, as  well 

FIG. 6. Profiles of the thermomagnetic gas flux in open (a, c) 
and closed (b, d) channels. The profiles a) and b) correspond 
to the expressions (4.1) and (4.3). The profiles c)  and d) were 
taken from Ref. 12. 

as for the profiles T(z) and n(z)  near surfaces. This 
behavior is connected with the presence of the periodic- 
in Hz-factor exd-(51, - imo)z/v,} in the terms At(i 
= 1-3,8,9) of the expression for the nonequilibrium 
distribution function (A.?), and stems from the col- 
lision processes depicted by the diagrams a), b), g), 
and h) in Fig. 2. Physically, the periodic dependence 
of the macrofluxes in a Knudsen layer on Hz is similar 
to the periodic dependence of the macrofluxes in a 
Knudsen gas on H L ~ , ~ .  Thus, for example, for the pro- 
cess  h) we have the following. From a wall we have 
flying away molecules whose v and M vectors have some 
preferred relative orientation (the molecules a r e  po- 
larized). As a result of the precession of the molecules 
in the field and the dependence of the collision f re  
quency, 51, on the orientation of v and M, the collision 
probability for such molecules dpends periodicdly on 
wt - Hz (t is the time of the motion). Then the distribu- 
tion of the unpolarized molecules produced following 
collisions and, consequently, the macrofluxes in the gas 
will depend periodically on Hz. As we move away from 
the wall, o r  a s  H is increased, there occur a s  a result 
of repeated precessions of the molecules and the exist- 
ing velocity distribution an averaging over all the pos- 
sible orientations of M and the damping of the oscilla- 
tions. 

By analogy with the above-constructed theory of the 
thermomagnetic-pressure-difference effect, we can, 
using the found distribution function for a gas a t  inter- 
mediate pressures in a magnetic field, analyze the 
thermomagnetic-force effect and the Knudsen correc- 
tions to the Senftleben-Beenakker effect a s  applied to 
thermal conductivity. A similar approach can also be 
used to construct a theory of the Scott effect. 

In conclusion, let  us note that the above-considered 
gas-pressure region, where T/L 5 0.1, together with the 
previously investigated4 Knudsen regime (T>>L), covers 
all the possible collision processes that lead to the ap- 
pearance of field-dependent macroflwes in a gas. Thus, 
the above-performed investigations allow us to obtain 
a complete physical of thermomagnetic phenomena for 
arbitrary values of T/L. 

The authors a r e  grateful to L. A. Maksimov and V. M. 
Zhdanov for a fruitful discussion of the work and for 
useful advice. 
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APPENDIX 

Let u s  give the expression obtained for  that par t  of 
the function which is isotropic in M after  the f i r s t  
iterative procedure. Let f i r s t  introduce a number of 
notations : 

v )  Q=QrdvMdM, . (A.1) 

With allowance for  (A.l-6) we can write the expression, 
computed in accordance with (3.4) and (3.8), for the par t  
of the function Xi1) that is isotropic in M in the form 

where 
6T 

A:'""" = - v Z e ( u Z ) - ~  exp 
To 

1-Re e x p ( i m z ) ]  P i I k P I ~ ~  

1 

Q0z 1 62, exp (irnozlv,) 
- e (uS)exp  = [ l - ~ e  9 , - imo  .]) 6 2 i f k ~ l l o ,  

A,('m*l)=y~ ZP -- 
To a~ [ Q o ~ n ~ ~ ~ , " t , z )  

8,z 51, pap(-imozlu,) -9,-imw 
+ e ( u a e x ~ ( - ~ )  ~ ~ i r n w  (n.+imu) ] Q ~ ~ ~ ~ ,  

( V T ) ,  l ~ z ' l f n r '  A : ~ ~ ~ ~  =-vZ ---. j ------ v o ( r l + r )  
To ~ z f ~ r  

(VT), 1 - T a l ' )  d ~ . ] ~ ( i - R e  exp [ i m r ] )  Q,~&,I.. 

Here under the quantities with primes are meant the 
corresponding functions of I". 

')such an assumption is  natural since oxygen is  chemisorbed 
on the majority of metals, and special measures were 
apparently not taken to clean the surfaces. 
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