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In nonspherical nuclei at J = J, + 0 the relationship between the angular momentum and angular velocity 
immediately after backbending is the same as in the limiting case J - J,-+m. This indicates that there is a 
unique type of cancellation of the deviations from a rigid-body moment of inertia in the upper phase 
J > J,. An integral relationship is found which expresses this cancellation quantitatively. This formula 
permits J, to be calculated for the rotational bands of the even-even nuclei studied and the results are in 
agreement with those obtained by other methods of locating the Curie point. For the ground state band 
of W1" the cancellation of the reciprocals of the true and rigid-body moments of inertia can be verified 
directly. The condition for the stability of the rotation of a nonspherical nucleus is analyzed in the 
Appendix in close connection with the problem of a reasonable definition of the concept of a variable 
moment of inertia. 

PACS numbers: 21.10.H~ 

1. INTRODUCTION 

Even before the discovery in 1971 of the singularity 
exhibited by the rotational band a t  a certain critical 
value of the nuclear spin J = J,, it  was gradually becoming 
clear that we a r e  actually dealing with a situation where 
the moment of inertia I of a nonspherical nucleus varies 
most significantly. In choosing a reasonable definition of 
this concept it is desirable to keep in mind the follow- 
ing considerations, in addition to purely aesthetic ones. 
First  of all, for  completeness and internal consistency 
of the theory it is important that both definitions of the 
moment of inertia, that via the Lagrangian and that via 
the Hamiltonian, be equivalent. In addition, in accor- 
dance with general physical considerations it is natural 
to expect that precisely at negative values of the cor- 
rectly defined moment of inertia the rotation becomes 
unstable; this is discussed in more detail in the Appen- 
dix. 

The following definition meets a l l  these requirements: 

dE ti' d(tii-2) dZE 
h Q = - ,  -=-=- 

dl Z dl dP 

(the notation is the same a s  in Ref. 1). We emphasize 
that these prerequisites do not create any practical 
difficulties in a concrete comparison with experiment 
since in formulas like (1) it is possible to replace the 
derivatives with respect to J by the corresponding di- 
rectly observable finite differences. In fact, the widely 
known Bohr-Mottelson formula 

has the property that the finite differences calculated 
with it agree with the result of the formal differentiation 
according to (1). On the other hand, for J>>1 the re-  
placement of the derivatives by finite differences sug- 
gests itself automatically and no special problems ap- 
pear. 

In our earl ier  study1 this phenomenon was viewed a s  
a smooth, continuous rearrangement of the angular mo- 
mentum coupling scheme in the nucleus. For adiabatical- 
ly slow rotation, J<<J,, the internal state of the system 
is formed mainly by a "nucleon-nuclear symmetry axis" 
type of interaction, which is due to the axially symmet- 
r i c  deformation of a nucleus "at rest.'' However, in 
reality the nucleus is rotating, s o  that the nucleon-ro- 
tation axis interaction (which here emerges a s  a certain 
nonadiabatic correction) is always effective to some de- 
gree. In the entire region J< J, there is a complicated 
"nucleon-nuclear symmetry axis" plus "nucleon-rota- 
tion axis" coupling scheme of relatively low symmetry 
and the two interactions, generally speaking, a r e  com- 
parable. However, in a sufficiently strong rotation 
"field" the mechanical angular momenta of the individu- 
a l  quasiparticles a r e  aligned parallel to  the SZ(I J direc- 
tion and cease to be oriented along the vector n. It can 
be said that this corresponds to the simplest, most 
symmetric nucleon-rotation axis coupling scheme, not 
directly affecting the direction n of the nuclear axis. 
Then the vector n remains "free," that is, it is actually 
distributed isotropically for J >, Jc. As a consequence of 
the increased symmetry of the rotational state a t  the 
point J =Jc the angular velocity of the rotation falls ab- 
ruptly by some amount A(EC2) and in the isotropic upper 
phase the moment of inertia displays the seemingly 
paradoxical limiting behavior 

Z ~ j / ( 1 - J c ) ,  l - J c ~ j / I o  (3) 

(j  is some coefficient depending on the particular nu- 
cleus and I ,  is the rigid body moment of inertia). 

The theory that we developed earlier' does not claim 
to be able to  calculate the specific values of such pa- 
rameters  as J,, the discontinuity A (&a), o r  the coef- 
ficient j for individual nuclei. In relation to this it 
should also be noted that the less  symmetric lower 
phase is considerably more difficult to study theoretical- 
ly. The main result here is the square-root law , 
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according to which the static quadruple  moment van- 
ishes near the Curie point. It seems almost certain that 
it is not possible to quantitatively determine the value 
af the critical angular velocity a,, for example, from 
only deductive considerations. However, it is remark- 
able that for a given Jc the value of a, to which the ro- 
tational velocity falls after i ts  discontinuous decrease, 
can be calculated in a closed form. 

2. THE ANGULAR MOMENTUM AND ANGULAR 
VELOCITY IN THE UPPER PHASE J > Jc 

After reaching the rigid body value of the moment of 
inertia 

I=Io,  I -JcBj / Io  (5) 

the rotational motion of the two components of nuclear 
matter can be assumed to be fully concurrent. Let us 
analyze this rotation in detail, appealing to  a physical 
manifestation of the proton component like the magnetic 
moment. It is obvious that here 

g=g,=ZIA (6) 

is valid for the gyromagnetic factor.') 

However, the nuclear magnetic moment can be cal- 
culated in a somewhat different way, using the Larmour 
theorem (see Ref. 3, for example) and, s o  to speak, i ts  
differential form. If it is favorable for a spherical nu- 
cleus to rotate in the above manner, then in an applied 
magnetic field H it can be viewed as rotating, but with 
an angular velocity decreased by the Larmour value 

~ ~ = g , e ~ / 2 r n , c  (7) 

(m, is the proton mass). Therefore, the rotational 
properties of the system that we a r e  interested in here 
a r e  described by the function ~ ( a ) ,  while the change of 
energy is -Sl,dE/dQ. According to  the usual point of 
view, the nucleus a t  a level J  is a particle having mag- 
netic moment @ and additional energy -@ in the field 
(both the angular momentum vector and the magnetic 
field vector a r e  assumed to be directed along the z 
axis). 

Let us equate the two expressions for the additional 
energy of the system in the magnetic field: 

tion of a rigid body. However, if we move down the band 
in the negative direction of the J  axis the stability of this 
regime deteriorates. In close relation to  this the mo- 
ment of inertia undergoes an  odd, nonmonotonic change. 
Fi rs t  it falls off, then passes through a minimum, and 
then approaches the pole according to (3). In the region 
near the transition point J - J c s  j/l, of the variable mo- 
ment of inertia the rotation, of course, can no longer 
be viewed a s  simply rigid body rotation. 

Let us return for a while to the region where the mo- 
ment of inertia is constant I=I,. In our ear l ier  study,' 
in a somewhat formal manner we found 

tr8=fiP,,+ftZ ( I - I , )  / I ,  (11) 
for the rotational velocity. Now, comparing this to  for- 
mula (lo), we have 

~J,=I ,Q. , .  (12) 
Therefore, in reaching the pole J = Jc + 0 the effect of 

the above-ment ioned nonmonotonic change of the mo- 
ment of inertia on the rotational velocity is a s  though 
cancelled. It is easy to find an integral relation expres- 
sing this cancellation in a quantitative form. For  this 
according to  the second formula in (1) we integrate the 
inverse value of the moment of inertia over J, up to  
some large J ;  then, performing an even more trivial 
integration of the analogous expression with the rigid 
body moment of inertia I,, we take into account rela- 
tion (12) and the fact that for  J- a (10) is valid. As a 
result we easily find 

For practical purposes it is convenient to  write this r e -  
lation in a dimensionless form: - 

In addition to the existing means of determining the 
location of the phase transition point, formula (12) per- 
mits Jc to be calculated according to the observed vel- 
ocities a,. In Table I we compare the results  of pro- 
cessing the experimental data by different methods for 
the twenty-eight rotational bands of nonspherical even- 

TABLE I. 

Furthermore, transforming the derivatives according to 
(1) and substituting formula (7), we also take into ac- 
count the fact that according to  the conventional definition 
of the nuclear g factor, the nuclear magneton eE/2mPc 
must serve a s  the unit of measurement of the magnetic 
moment: 

g=golQlfi J .  
(9) 

Finally, substituting here the values (5) and (6), we find 
hJ=r0n, J - I ~ ~ ~ I I ~ .  (10) 

This seemingly natural recovery of the simple propor- 
tionality between the angular momentum and the angular 
velocity sheds additional light on the physical nature of 
the upper phase. For J  -4 >> j/I, i ts  characteristics 
cannot depend on such nonuniversal parameters a s  the 
coefficient j, for example. Roughly speaking, here we 
have a fairly clear interpretation of the ordinary rota- 
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even nuclei that we studied. The @-vibrational bands of 
gadolinium and dysprosium a r e  starred. In column 2 we 
indicate, of neccessity tentatively, the location of the 
discontinuous decrease of the angular velocity of rota- 
tion. The value JFtl is the result of extrapolation ac- 
cording t o  formula (3) (see Ref. 1 for  more details). 
The last column gives the value of the critical spin cal- 
culated according to (12). In calculating the rigid body 
moment of inertia I, we used the value of the nuclear r a -  
dius obtained in Ref. 1 ro= 1.1x 10-" cm, which is also 
in agreement with the data on electron scattering. It 
corresponds to  the working formula 

On the whole the agreement appears to be satisfactory. 
It should, however, be noted that the nearness of the 
magic number N = 82 can sometimes manifest itself in 
very unexpected ways. It can be supposed that the se- 
cond singularity 3" found experimentally in the ground 
state rotational band of Er15' (Ref. 4) is due to  this; see  
also Table L In our opinion the constructionof more de- 
tailed hypotheses on the nature of the "intermediate 
phase" J(:' < J c JLa is still somewhat premature. In- 
tuition suggests that a s  the magic nucleus is approached 
the probability of similar surprises increases. In fact, 
for ErlS6 we already have circumstantial evidence of 
this supposition. According to  the data of Ref. 5, after 
the first  phase transition the moment of inertia, a s  
usual, passes through a minimum, but then r i ses  very 
steeply, reaching I= 1.381, for J = 22. The available in- 
formation indicates that ErlS6 will also have a second 
backbending region. 

However, far  from the magic number N = 82 this type 
of anomalous behavior of the rotational bands is hardly 
possible.2) It is possible, though, that the effect of the 
doubly magic lead (Z = 82) also serves as a source of 
some anomalies. It manifests itself mainly via the num- 
ber of protons in the nucleus and does not extend be- 
yond osmium. Whether or  not there is a second singul- 
arity in the ground state rotational band of 0s'" is not 
yet clear. It was noted earlier' that for  the preceding 
isotope Osla2 the phase transition region is smeared out 
more than usual. 

As an illustration of the agreement between the differ- 
ent methods of finding J ,  it is worth noting that the ro- 
tional velocity 1251, varies within a fairly wide range: 
from 216 keV for  W1'O to 340 keV in the ground state ro- 
tional band of BalZ6. The rigid body moment of inertia 
I, increases by roughly a factor of two throughout the 
entire table. 

For nonspherical nuclei sufficiently far from the pos- 
sible effect of the magic numbers (see above), experi- 
mental data on the upper phase a r e  fa r  from abundant. 
Therefore, the possibilities of directly verifying the in- 
tegral relation (13) or  (14) at the present time a r e  very 
limited. Only for  WL70 does the moment of inertia, after 
passing through the minimum, approach the rigid body 
value with an accuracy of about 4%. In Fig. 1 we give 
the graph of the function 1 -Id1 in this case. The ac- 
curacy with which the integral of this function becomes 
zero can be considered satisfactory. 

FIG. 1. The integral relation (14) for the wiTO nucleus. The 
area under the " anomalous" part of the curve is cancel- 
led with an accuracy of about 10%. 

3. CONCLUSIONS 

The reason that for tungsten there a r e  few experimen- 
tal  points on a large part of the moment of inertia curve 
in the upper phase is the following: the ratio j/z0 is not 
large, amounting only to 1.88. However, there a r e  nu- 
clei for which the value of this parameter is much larg- 
e r .  For Dy15', for example, the number of neutrons 
N = 92 is sufficiently fa r  from the magic number and 
j/Zo= 6.76. Here further study of the upper phase makes 
it possible to construct a more accurate moment of in- 
ert ia curve using a considerably larger number of ex- 
perimental points. Beginning, for a rough estimate, 
from the assumption of similarity to the curve in Fig. 
1, we conclude that in the ground state band of Dy15' 
i t  i s  of interest to measure the location of the rotation- 
al levels up to J-40, beyond which the moment of in- 
er t ia  becomes practically the rigid body value. 

In addition to  the data of Ref. 6 cited in Ref. 1 on the 
radiation of ~e"~, ')verification of the "area theorem" 
(13) for  different nuclei, including cases with j/Zo>> 1, 
would give interesting new material for judging the val- 
idity of the theory treating backbending as a macroscop- 
ic quantum phenomenon. 

We a r e  grateful to I. M. Pavlichenkov for discussing 
the results of this study. 

APPENDIX 

THE CONDITION FOR ROTATIONAL STABILITY OF 
A NONSPHERICAL NUCLEUS 

The considerations discussed below apply equally to 
either phase Jz J,. Let us view the level Jo of the ground 
state rotational band as minimizing the total energy of 
the nucleus for a given value of the conserved angular 
momentum of the entire system: 

E=min, I=],. (A.1) 

Using the Lagrangian method, we shall drop the auxil- 
iary condition and unconditionally require that 

E-hJ=min. 

This can be rewritten a s  

6(E-hJ) >O. (A. 3) 
Moving now from the minimum along the actually real- 
ized rotational band E(J), let us calculate the energy 
change 6E with accuracy to second-order terms inclus- 
ive : 

(A. 4) 
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The value 

A= (@Id.') 4-J* 
(A. 5) 

of the Lagrange multiplier ensures the correct location 
of the extremum and is a minimum for 

6EI#>O. (A. 6) 

Here we have taken into account the fact that a t  the be- 
ginning the point J = J ,  was chosen arbitrarily. Com- 
parison with formula (I) gives 

D O .  (A. 7) 

Therefore, the requirement that the moment of inertia 
be positive emerges here as the stability condition. 

The question of the rotational stability of a nonspheri- 
cal  nucleus can also be approached from a somew hat dif - 
ferent viewpoint. Let us as usual denote the spherical 
angles giving the orientation of the vector n (if conven- 
ient it plays the role of the rotational variable, but no 
separate "rotational Hamiltonian" corresponds to it) in 
the stationary space by 9 and cp. The state of motion in 
the angle 0 is, in general, not "pure." The situation 
with the motion in the azimuthal angle cp is different: 
because of the conservation of the z component of the 
total angular momentum it corresponds to the separate 
wave function 

(2n)-"e'r*, M=J.. (A.8) 

For J ,  = J >> 1 the angular momentum is directed along 
the z axis and the situation is semiclassical: the fully 
described state (A.8) of regular precession can in this 
limit be viewed a s  changing into classical motion in a 
cyclic trajectory, corresponding to  the variation of the 
azimuthal angle cp. 

In order to remove possible doubts about the validity 
of using a purely mechanical approach here, we recall 
that the free rotation of a body in thermodynamic equili- 
brium is not accompanied by friction (see Ref. 8, for 
example). We shall proceed directly from the principle 
of least action 

j Ldt = min, t 1  rpU)-h 
1, 

(see Ref. 9, for example). The extreme values of the 
angles cp, and cp, a re  viewed a s  constants which a re  not 
varied : 

6 v ( t , )  =i3q(t2) =O. 

However, let us first  consider how the moment of iner- 
t i a i s  expressed in terms of the Lagrangian L. We have4' 

E=E(M); dEldM=Q, L=L(Q).  

Let us now express the Hamiltonian E(M) in terms of the 
Lagrangian: 

E=QdL/dQ-L. (A.10) 

Differentiating (A.lO) once with respect to M and can- 
celling W from both sides, after some elementary man- 
ipulations we easily find 

d L  d'E 
- =  
dQr dM2 . 

Comparing this to  formula (I), we finally find 

This is precisely the relation between the moment of 

inertia and the Lagrangian that we would naturally ex- 
pect; see also the preliminary discussion at the be- 
ginning of this article. 

Let us now return t o  the principle (A.9), rewriting 
it in the form 

I, 

6 j ~ ( Q ) d t > o .  
(A. 12) 

I ,  

Free rotation can occur only a s  uniform rotation, that 
is, when the angular velocity is constant: 

Qo=(cp2-cpl)l(t2-t1). (A. 13) 

The deviation 6cp(t) from this simple law of motion gives 
r i se  to a time-dependent variation of the velocity 

6Q(t)  =dScp(t)ldt. 

Let us find the corresponding variation of the action with 
accuracy to  second-order t e rms  inclusive: 

h 

1651 ( t )  12dt>0. 

It is obvious that 
*2 

6Q( t )d t -6v( t z )  - 6 v ( t , )  =O, f [6Q(t)  ]2dt>0. 
rl I ,  

Therefore 

d2LldQ50.  (A.14) 

Comparing this with formula (A.11), we find the stability 
condition (A.7). States with a negative moment of iner- 
tia a s  violating the principle of least action a r e  unstable 
and cannot be realized a s  stationary rotational energy 
levels of a nonspherical nucleus. 

In conclusion let us clarify the nature of the limiting 
behavior of the Lagrangian of the upper phase. It can 
be found explicitly in the region near the transition 
point, where the moment of inertia has a pole behavior 
(3). Substituting this formula into (A.ll), using formula 
(30) from Ref. 1 we can express the angular momentum 
in terms of the angular velocity and then integrate twice 
with respect to 3: 

L. (8) =Vls (2Rj) "(Q-Q,,)*'~sI,Q,.R-E.. (A.15) 

The constants of integration a r e  here chosen such that 
the first  derivative gives the angular momentum M =tiJ 
and the energy (A.lO) coincides for  9 = 9, with the nu- 
clear excitation energy E, at  the Curie point. We see  
that the Lagrangian of the upper phase has a singularity 
(a branch point) at the point of the phase transition 
9 = 9,. 

'V. G .  Nosov and A. M. Kamchatnov, Zh. Eksp. Teor. Fiz. 73, 
785 (1977) [Sov. Phys. JETP46, 411 (1977) l .  

'A. BOhr and B. Mottelson, Nuclear Structure, New York, 
Benjamin, 1969 (Russ. transl., Mir, 1977).  

'L. D. Landau and E. M. Lifshitz, Teoriya polya, Nauka, 
1973 (Eng. transl. Classical Theory of Fields, Oxford, Per- 
gamon, 1971).  

4 ~ .  Y. Lee, M. M. Aleonard, M. A .  Delephanque, Y. El-Masri, 
J.  0 .  Newton, R. S. Simon. R.  M. Diamond, and F. S. Steph- 
ens, Phys. Rev. Lett. 38, 1454 (1977).  

5 ~ .  W. Sunyar, E.  Der Mateosian, 0. C. Kistner, A. Johnson, 
A. H .  Lumpkin, and P. Theiberger, Phys. Lett. 62B, 283 
(1976).  

6 ~ .  HUSB~, S .  J. Mills, H. ~ r a ,  U. Neumann, D. Pelte, and 

768 Sov. Phys. JETP 49(5), May 1979 V. G.  Nosov and A. M.  Kamchatnov 768 



J. C. Merdinger, Phys. Rev. Lett. 36, 1291 (1976). 
ID. Husar, S. J. Mills, H.  Graf, U. Neumam, D. Pelte, and 

G. Seiler-Clark, Nucl. Phys. 292A, 267 (1977).  
'L. D. Landau and E.  M. Lifshitz, Statisticheskaya Fizika, 

Nauka, 1976, part 1 (Eng. transl. Statistical Physics, New 
York, Pergamon, 1969);  Mekhanika sploshnykh sred, 

Goctekhizdat, 1954 (Eng. transl. Fluids Mechanics, New 
York, Pergamon, 1959). 

'L. D. Landau and E. M. Lifshitz, Mekhanika, Nauka, 1973 
(Eng. transl. Mechanics, New York, Pergamon, 1976). 

Translated by P. Millard 
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Light scattering in a cholesteric liquid crystal is investigated. Uniaxial fluctuations of the director are 
considered with a wave vector that has a small component perpendicular to the axis of the cholesteric 
crystal. It is shown that the spectrum of the scattered light should reveal maxima at q = nt,,, n = 0, f 1, 
...., with intensities that decrease with increasing number n .  

PACS numbers: 78 .40 .D~  

We investigate here the scattering of light in choles- = sinq,,n, = 0. 
teric liquid crystals. The optical properties of liquid 

The assumption that the elastic constants a r e  equal 
crystals were dealt with in many papers. Kats' and 

leads to the following expression for the change of the 
Belyakov a n d ~ m i t r i e n k o ~  investigated the propagation of 

thermodynamic potential: light in cholesteric crystals. Kats' solved Maxwell's 
equations for the case of normal incidence of light and A,= - K J  1 h{(vq) '+2t06n,  [cos,($) +sin% (t)] 
for incidence a t  a small angle to the crystal axis. Belya- ,. 
kov and Dmitrienkoz considered the passage and selec- +t,l6nZz+ (V6nZ)' 
tive reflection of light from a cholesteric light crystal 
with the aid of dynamic diffraction theory, and obtained or 

1 
expressions for the amplitudes and polarizations of the AG = -K{C 1 q 2 q Q ~ ~ ' + t o C  iqicpq(l);t0+&-b) 
reflected and transmitted waves a t  an arbitrary angle .4 q 

of incidence of the light on the crystal. 

De GennesS and ~ r a z o v s k i i  and Dmitriev4 found the 
correlation function in the high-temperature phase of a 

where q, = q (q), $, s dn,(q) a r e  the Fourier components cholesteric crystal. The case of the low-temperature 
phase, when spontaneous spiral anisotropy is present, of the spatial quantities ~ ( r )  and 6n,(r). 

was considered in the review of Stephen and S t r a l e ~ , ~  
who investigated the scattering of light by long-wave 
fluctuations. They, however, introduced fluctuating 
rotation angles of the directors and assumed that these 
angles vary slowly compared with the period of the 
spiral. It will be shown, however, that the nonzero 
harmonics of these functions a r e  also not small. 

We consider scattering by fluctuations of arbitrary 
wavelength. In contrast to Stra tonovi~h,~ who investi- 
gated biaxial fluctuations, we obtain results for wave- 
lengths located directly in the vicinities of the maxima 
of q= * nt,,, where the terms of the series (3.3) of the 
Stratonovich paper6 turn out to be large (since the val- 
ues of the corresponding 7 go through zero) and the ex- 
pansion turns out to be incorrect. 

We investigate uniaxial fluctuations of the director 
6n,= -qsinq,, 6n,=qcosqo, On,, where q,=t+, and the 
z axis i s  directed along the spiral axis; n, =cosq,, n, 

To diagonalize this quadratic form we must solve the 
system of equations 

which assumes in the case q, = 0 and q, = 0 the simplest 
form 

qz'pq=hpq, (qz+ t,l) Sq=hlp~. 

Then A, = q:, A, = qj  + ti, 
1 

AG - -KC {(t2+q2) I ~ ~ ~ I ~ + ~ ~ I ~ ~ I ~ I ,  

( q q 2 = K q 2  ( Irpq12)=TIK(q.2+t,Z). 

We shall show that a t  small q,, i.e., q,/t,<< 1, the 
solution can be found in the form of an expansion in this 
small parameter. The zeroth approximation corres- 
ponds to the case q, = 0.  
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