
mine the parameters of the motion by comparison with 
the observations, and then a s s e s s  the reliability of the 
employed gravitation theory from the degree of agree- 
ment with subsequent observation. 

The relativistic expressions obtained here  fo r  the 
measured angle distances rp and J, add t o  the possibility 
of new t e s t s  of relativistic effects. These effects a r e  of 
particular interest  because the relativistic corrections 
to rp and JI a r e  necessitated by three  factors: the dyna- 
mic theory of the motion of the bodies, the laws of light 
propagation, and the bending of space in  the vicinity of 
the sun. 

FIG. 5. Relativistic effect in the angle distance i) of inner 
planet from the sun. Initial measurements: radar data at the 
instants t =  0 (inferior conjunction! and t = Td4 (T, is the synod- 
ic period). 'v. A. Brumberg, Proc. 81 Symp. IAU, Tokyo, 1978. 

'L. M. Chechin, Tr. Astrofis. in-ta AN KAZSSR 32, 67 (1978). 
3 ~ .  I. Shapiro, Phys. Rev. 145, 1005 (1966). of the motion of the celestial bodies, calculate the ob- 
4 ~ .  J. Tausner, Lincoln Lab. Techn. Rept. No. 425, MIT, 

servational characteristics of the motion using formu- 1966. 
las such a s  ( l l ) ,  (42), and (47) (with the same value of 
the function a(?-) a s  used in  the dynamic theory), deter- Translated by J. G. Adashko 
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The quantum mechanical problem of the optimal estimate of the amplitude of an external force acting on 
a gravitational antenna of a given structure is solved. The optimal spectral operation for processing the 
output signal of the antenna which fonns the 0bSe~ed variable is found. It is shown that there is no 
quantum sensitivity limit when the optimal procedures are followed. A practical possibility of attaining 
the resolution needed for second-generation antennas is illustrated. 
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The realistic estimate for the intensity of bursts  of 
gravitational radiation arriving a t  the Earth from outer- 
space covers the range W-lo4 - 1 erg/cm2 with a dur- 
ation *7 - - sec  (see, fo r  example, the reviews 
Ref. 1) .  For  a gravitational detector of Weber type 
(measuring 1 =lo2 cm), such a pulse i s  equivalent to 
the action of an acceleration field F/m -lo-' - lo-" 
cm/sec2. I s  it possible to detect such a weak distur- 
bance? The answer to this question is crucial for 
modern gravitational-wave experiments. 

Taking a quantum oscillator as a model of a gravita- 
tional detector in the limiting case of zero  tempera- 
ture,  and assuming that it i s  in a coherent state (as the 
state nearest to a classical state), we can formulate a 
rule for  detecting a force acting on the oscillator. It 

is natural to regard the force a s  detectable if it  shifts 
the wave packet (or rather,  i ts  center) by an amount 
of the order  of i ts  width. In the coordinate represen- 
tation, this shift i s  Akq, ( f i / 2 m ~ ) ' ~ ~ .  Hence, fo r  the 
quantum sensitivity limit we have 

which for the typical parameters m = lo4 ,  w -lo4, and 
i - 2  x of a gravitational detector' gives (F/m),, 
-10-lo cm/sec2, which is in the middle of the range in 
which we a r e  interested. 

This and s imi lar  considerations2 forces us to approach 
the problem of detecting gravitational bursts  with more 
care.  In reality, the temperature of an antenna is not 
zero  but, in fact ,  corresponds to a high excitation level 
and, it would seem,  there is no need to invoke quantum 
arguments. A classical analysis of the sensitivity of a 
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gravitational antenna based on the theory of optimal 
filtration of the signal from the noise is given in Ref. 3. 
However, it has been emphasized by ~ r a g i n s k i r q ~  
more than once that a vibrational system of frequency 
w, having a high quality factor Q, (as i s  the case for 
a gravitational detector) can exhibit quantum properties 
a t  high temperatures KT >> tiw, if the observation time 
is significantly shorter than the relaxation time of the 
system: ?<< 7,. It is  therefore of interest to consider 
the quantum detection problem, following the theore- 
tical ideas of Refs. 5-7 as applied to a gravitational- 
wave experiment. 

The quantum generalization of problems of optimal 
filtration is constructed by replacing the numerical 
variables by operators with definite commutation rela- 
tions. The sequence of operators 

to be observed (the quantum analog of the classical 
process y (t)) is the point of departure for the obtaining 
of an estimate iiT=D(Y) of the required vector XT 
= (x,, . . . ,x,); D i s  the decision function, o r  the filtra- 
tion algorithm, determined with allowance for the se-  
quence of action of the operators from the condition of 
a minimum of the mean penalties. The form of the al- 
gorithm was found by Grishanin and Stratonovich6 for 
the case of filtration with minimization of the rms 
e r ro r .  Below, we shall not attempt to solve the com- 
plete problem of synthesis of an optimal detector for 
a gravitational signal. As in Ref. 3, we shall assume 
that the structure of the gravitational antenna, which 
consists of the gravitational detector and the detecting 
device, is  given o r  almost given. The aim of the pres- 
ent paper is  to find, in the framework of the quantum 
mechanical description, an operation for optimal pro- 
cessing of the output signal of the antenna (2) that rea- 
lizes maximal sensitivity to the detection of an external 
force acting on the gravitational detector. 

The formalism of the quantum theory of optimal fil- 
tration"' also makes it possible to answer a number 
of experimentally important questions that ar ise  in 
connection with Refs. 8-10. For example, does there 
exist a fundamental quantum limit to the accuracy of 
detection of a classical force (of the type (1)) acting on 
a quantum oscillator? When do the classical estimates 
for the sensitivity of a gravitational antenna break down? 
Is the Callen-Welton fluctuation-dissipation theorem 
sufficient for the determination of the fluctuation lim- 
itations on the sensitivity o r  is it necessary to make 
a further special analysis of the measuring instrument 
(as in Refs. 8-10) and so forth? 

These questions a re  of interest for the general class 
of high-precision experiments with macroscopic test 
bodies a s  a field of application for the conclusions of 
the modern quantum theory of measurements. " For 
the gravitational-wave experiments, the answers to 
these questions a r e  of practical importance, since 
they determine the basic possibility of constructing 
second-generation gravitational antennas for receiving 
gravitational radiation from cosmic objects. 

52. QUANTUM OSCILLATOR AND FILTRATION 
ALGORITHM FOR QUANTUM GAUSSIAN SYSTEMS 

The main reason why a high-Q oscillator, even in a 
highly excited state with xT, -nJzw,, no >> 1, can mani- 
fest quantum properties is as follows. Firs t ,  the in- 
herent Brownian motion (due to interaction with the 
thermal bath) must have quantum features; for example, 
the energy-time diagram must approximately have the 
form of steps with length ? s nz27,, (Refs. 2 and 4). 
Second, quantum features ar ise  when a force is detec- 
ted by means of the response of the oscillator. For 
a short disturbance, ?<< T,,  the response does not de- 
pend on Q, and the thermodynamic spreading of the 
wave packet of the initial state i s  small, and therefore 
the results obtained for an ideal without damping hold. 
As we noted above, for a weak force F the change in 
the expectation value of the canonical variable (coor- 
dinate or  momentum) may be less than the charac- 
teristic width of the coherent state: F?/WL w,, < (E/m w,,)"~. 
The corresponding change in the mean energy of the 
oscillator is less than the Poisson standard deviation 
-t~;/~fiw,. As a result, the limit (1) ar ises .  

The analysis of Refs. 8 and 9 shows that the limita- 
tion (1) is not fundamental. It can be avoided by, for 
example, using the so-called nondisturbative method 
of measuring the which permits a resolu- 
tion F,,, 2 F,,/dn,. It follows that with increasing no 
an arbitrarily weak force can be detected. (For what 
follows, it i s  important to note that the dependence of 
the increment of the oscillator energy on no makes it 
possible to regard the "signal" contained in the response 
of the oscillator to an external force as classical (i. e . , 
many-quantum) for an arbitrary weak force F if no is 
sufficiently large. ) 

Another way to circumvent the limitation (1) is  asso- 
ciated with the stroboscopic method of measurement 
of the oscillator coordinate a t  intervals - w d .  In this 
case, the limiting resolution i s  of order F,,,z F 
and improves without limit if the stroboscopic interval 
at i s  ~hortened. '~  

Taken together, Refs. 8-10 emphasize that the result 
of detection of an external force (classical) on a quantum 
oscillator depends strongly on the measurement pro- 
cedure that i s  adopted. 

We consider the problem of detecting a classical force 
acting on a complex quantum system consisting of a 
quantum oscillator and a sensor from the traditional 
points of view of optimal processing of the signal of a 
system with given properties. The aim of the proces- 
sing is to achieve the best signal-to-noise ratio. The 
concept of "noise" must here also include quantum 
limitations such a s  the noncommutativity of observables 
and the reduction of the density matrix as a result of 
measurement. 

We use the results of Grishanin and Stratonovich,%' 
who found a procedure for optimal filtration of a clas- 
sical signal S(t, 8) on the background of quantum noise 
t( t) .  Namely, we consider the mixture 

B ( t )  =S( t ,  0) +I ( t ) .  . (3) 
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The quantum operator variable Y(t) i s  assumed capable 
of observation (measurement, processing), and we 
assume that the signal profile is known. We aim a t  
an optimal estimation of the parameter 8. In the sim- 
plest case, 8 i s  the signal amplitude, i .  e . S(t, 8) = BS(t) .  
In accordance with Refs. 6 and 7, the quantum genera- 
lization of the algorithm for optimal filtration leads to 
the following unbiased and locally effective estimate of 
the parameter 8: 

which minimizes the residual mean penalties (for all g) 

R (u)  =Tr [ ( k - 0 ) ~ ~  ( j -0 ) ;  ( 6 )  1. (5) 

Here, b(8) is the density matrix describing the statis- 
tical properties of the quantum variables $, =;(ti), t, 
€[O, T]. (We shall use a replacement of the continuous 
variable j(t) by the vector row y=  &,;,, . . . ,;,,,A then 
the transposed vector column will be denoted by p.1 

In Eqs. (4) and (5), i ( 8 )  is the symmetrized logari- 
thmic derivative with respect to BT of fi(8),5 and I is the 
information matrix; these a re  given by the expressions 

The operator (4) is the quantum analog of the classical 
estimate of maximal likelihood, and the condition of a 
minimum of (5) is a generalization of the requirement 
of minimization of the mean square erro: of the esti- 
mate (4). For  Gaussian quantum noise f(t)  (we shall, 
a s  usual, assume in what follows that the Gaussian 
approximation reflects the physical conditions with a 
sufficient accuracy), Eqs. (4)-(7) can be particularized. 
The density matrix of the variables y, has the form 

Given quantities a r e  the n_um_erical_matrix Q = IlQ(t, t')l( 
and the commutator C = [Y, YT] = [ f ,  IT], which is as-  
sumed to be a nonoperator quantity (also a c-number 
matrix). Calculation of the operator i and the matrix 
I in accordance with (6) and (7) leads to the expressions 

e= a s O K - ~ [ p - s ( e )  ], aeT 
K='IrC cth QC, 

Taking S(t, 8) = 8S(t), we find in accordance with (4) the 
optimal estimate of the amplitude 8 in the matrix form 

It is  easy to show that the matrix K in Eqs. (9)-(12) 
coincides wit! the correlation matrix of the quantum 
fluctuations f (t) , i . e . 

We recall that the correlation matrix of a quantum sys- 
tem can be found by means of the Callen-Welton fluc- 
tuation-dissipation theorem. l 2 9 l S  Thus, this theorem 
takes into account fully the noncommutativity of the o!- 
servables y, . (In the language of Ref. 8 of Braginskii 
e t  al . ,  one should say that allowance is made f o r  the 

perturbation of the quantities y, a t  times t, subsequent 
to the time ti of measurement of y,. ) In accordance 
with the postulates of quantum mechanics, there a r e  
no fundamental restrictions on exact measurement of 
a single Hermitian observable. l1 This is  accompanied 
by a distrubance of the canonically conjugate observable, 
which can be constructed from (12) from, for example, 
the given commutator [G,  $1 =If. In principle, to mea- 
sure  (estimate) the amplitude of a signal of known pro- 
file it is  sufficient to make a single observation of the 
variable ; after its synthesis over the interval of action 
of the signal. From this point of view, it is not im- 
portant what happens to the canonical pair (2, $) after 
the estimate has been obtained. As in the classical 
case, the estimate is  obtained by comparison with the 
threshold, which depends on the a priori mean charac- 
teristics of G. Going over to a continuous represen- 
tation of the vector 7 a s  a function of the time, we can 
readily show that the algorithm (12) i s  analogous to a 
classical matched linear filter, so  that the variable 2 
i s  the result of the integral operation 

in which B(t )  is the solution of the integral equation 

where K(t,, t,) = l/2(i(tl)i(t2) + i(t2)i(tl)) is the correla- 
tion function of the fluctuations i ( t ) .  

In spectral language, introducing the quantum energy 
spectrum 

we can represent the signal-to-noise ratio a t  the filter 
output (14) a s  

Thus, the quantum results of the filtration problem dif- 
fer from the classical results only in the quantum gen- 
eralization of the correlation matrix K and the energy 
spectrum N t ( w ) ,  a s  was noted in Refs. 6 and 7. 

83. QUANTUM CALCULATION OF THE 
FLUCTUATIONS OF A GRAVITATIONAL ANTENNA 

To apply the recommendations of the preceding sec- 
tion to an estimation of the sensitivity of a gravita- 
tional antenna, we must, on the basis of its given struc- 
ture,  calculate the correlation function o r  the energy 
spectrum of the output noise. The dynamical equations 
of antennas a re  given, for  example, in Ref. 3; a s  
there, we consider successively the case of a detector 
with passive transducer and then with a transducer of 
parametric type. 

a )  A gravitational detector with passive transducer 
(without external energy source) i s  described by a 
system of linear equations with constant coefficients 
that relate the coordinate of the detector f and the 
sensor TJ to the external force f, acting on the detector: 

757 SOV. Phys. JETP 49(5), May 1979 A. V. Gusev and V. N. Rudenko 757 



(the normalization is the s ame  a s  in Ref. 3: t = x / l ,  
7 = v/Vo, f, = F/mw;l). Here, the macroscopic coor- 
dina$s are quantum-mechanical expectation values: 
E = ( 0 ,  q = 6). For  virtually al l  known antennas of this 
type, the partial frequencies of both degrees of freedom 
a r e  approximately equal to the resonance frequency of 
the detector, 52 =we= w, , and therefore we shall  ignore 
their  difference below. 

To calculate the spectral  density of the quantum vari-  
able 6, we use the fluctuation-dissipation theorem, 
assuming an equilibrium state of the system (18) for  
fc = O .  In accordance with this theorem, the spectral  
density of the fluctuations of 6 can be expressed in t e r m s  
of the anti-Hermitian part  of the generalized suscep- 
tibility a (jw) of the dynamical system (18): 

N(jw) =$(a, T) w-'[a(jw)-a'(jw) 1. (19) 
8(10, T) =E (w, T)IE,, E (w,  T) ='/,fiw cth (AwISxT), 

Here,  we have introduced the transformation coef- 
ficient h2 =rlr2, which i s  equal to the rat io of the elec- 
t r ical  energy of the sensor  to the mechanical energy of 
the antenna, and E is a normalization coefficient (E,  
= CV;, in which c is  the capacitance of the sensor3). 
From Eqs. (191, we find 

N(w)=4w,ZIDet(iw) I -'{I (~,l-o')~+46,~~~]6,+h~opl6~}8(~, T). (20) 

In the limit xT>>Ew, Eq. (20) coincides with the result  
of the calculation in accordance with the classical cor-  
relation theory.' In what follows, we shall use (20), 
taking 6, =0 ,  which corresponds to a high-Q detector. 
In the absence of coupling to the thermal bath also 
through the electrical degree of freedom, in the limit 
6,- 0,  the spectrum (20) goes over into 

where W: = W; (1 * A) a r e  the eigenfrequencies of the 
system (18), i .  e .  , the energy spectrum of the fluctua- 
tions takes the form of 6-function spikes a t  the eigen- 
frequencies of the antenna. 

b) Fo r  a gravitational detector with a parametric 
transducer, it is convenient to use the Langevin method 
of calculation associated with the introduction of locally 
uncorrelated quantum sources of fluctuations fo r  each 
of the degrees of freedom of the antenna ( j , ( t ) ,  d(t)). 
(In the absence of fluctuations "at the input" of the 
dynamical. system, the operators in the limit t- will 
converge to zero ,  which entails vanishing of the com- 
mutators over a long time, in contradiction with one 
of the fundamental principles of quantum mechanics. ) 
Then the dynamical equations of the antenna under the 
condition of sufficiently strong pumping, 

tlp=Cpeos(opt+cpp), I qpl)('l) 9 

can be  written in the form 

(the normalization i s  as follows: i = ; / d ,  ?=-G/V,, 
fc=FC/mwid,  A =  c~;/m(w,d)~,  c = ~ / l n d ,  C,=V,/V, 
(Ref. 3)). As above, we assume that the inherent fluc- 
t ua t io?~  of the detector a r e  smal l ,  6, =0 ,  and accord- 
ingly f, = 0 . The consistent quantum calculationd the 
source spectral  density ;(t) gives N, = $6, T) 46,~;'. 

The solution of (22) i s  analogous to the calculation in  
the classical  case. '  The smallness of the deformation 
of the detector ,  (0 << 1, and the strong difference bet- 
ween the part ial  frequencies , w, << we - w, , make i t  
possible to go over to truncated equations; the solution 
of (22) is sought in the form 

where 2 and a r e  slow functions. It i s  they that c a r r y  
the information about the external force,  and therefore 
in what follows demodulation of the variable .fi is neces- 
sary .  As i s  shown in Ref. 3 ,  the demodulation can be  
performed quasioptimally by means of synchronous de- 
tection with reference signal proportional to the pumping 
77,)). Constructing the quantum analog of such pro- 
cessing, we go over in (22) to new operator  variables: 

? -  " A  - 
g,q-tgrilsd=a cos rpp+b sin (yp, 

which satisfy the equations 

Here, A = (w, - we) -6,; the spectral  density of the fluc- 
tuations $(t) i s  given by 

Nf(w) = (w2+6.'+A2) W.-~N,(W). (24) 

The solution (23) gives the desired fluctuation spectrum 
of the variable G,,: 

Like (211, N(w) in (25) has 6-function spikes a t  the eigen- 
frequencies of the system (23) in ttie l imit  6,- 0; a t  
the same t ime,  (25) coincides with the classical result3 
a t  high temperatures.  The expressions (20) and (25) 
will be used below to estimate the antenna sensitivity. 

54. ANALYSIS OF THE SENSITIVITY AND 
QUANTUM LIMITATIONS 

In accordance with the prescription (17), the minimal 
detectable force acting on the gravitational detector can 
be found from the condition 

where qc(w) i s  the spectral  intensity of the signal r e s -  
ponse, which is  determined by the solution of the clas-  
s ica l  equations (18) and (23). We shall assume that the 
spectrum qc(w) (like the spectrum fc(w)) is in a certain 
neighborhood of o, around the central frequency of the 
detector; the widths of the spectrum sat isf ies the con- 
dition A W ; ~  1 (this description corresponds to as t ro-  
physical models of a gravitational burst ;  s e e  the bib- 
liography in Ref. 1) .  

a )  Gravitational detector with passive sensor .  Using 
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(20), we estimate the integral (26). In dimensional 
form, the antenna resolution is 

F,,,=&-'[ 2mE (o,, T )  ]"'(&/A) (A&) '". (27) 

In (27), we have introduced the coupling coefficient in 
the matched regime: A,,= (Q,w,?)-'~~ (Ref. 3); the 
classical and quantum limits  correspond to  replacement 
of E(w,, T) by xT o r  h , / 2 ;  by the temperature T-we 
understand the temperature Te of the sensor ,  though 
fo r  an antenna with passive transducer i t  is natural to 
take T,=T,=T. 

b )  Gravitational detector with parametr ic  sensor. 
The analogous procedure using (25) and (26) leads to the 
expression- 

~ , ~ , = 2 ; - ~ [ 2 m ~ ( o . ,  T.) ( a d o . )  ]"(C,ICp) (Am;)", (28) 

where C, is the pumping amplitude in the matched 
regime, which depends on the actual parameters  of the 
antenna ((VoCo)2 5 21fimw,d2. (cQ,r)- ';  for  6, = 0 ,  Q, 
i s  replaced by w,?/2; for  detai ls  s e e  Ref. 3) .  

Equations (28) and (27) a r e  valid when Cp a C, and 
X z= &; if the opposite inequalities hold, the correspond- 
ing coupling ratio must also be  inverted (i. e .  , Xo/X 
and C,/C, replaced by A/& and C,/Co). The factor  
w,/w, in (28) characterizes the increase in the resolu- 
tion due to the "parametric cooling", w, << we. With in- 
creasing pumping frequency and the passage through the 
boundary xTe =he, the combination E(w,, T,)(w,/w,) is 
transformed into h, and the effect of parametric cool- 
ing ceases to be  important (the quantum fluctuations in- 
c rease  a t  the s ame  rate a s  the signal). 

The main result  contained in Eqs. (28) and (27) i s  that 
they predict an increase in the sensitivity (F,,,- 0) with 
increasing coupling between the detector  and the sensor.  
In the passive variant of the antenna, the possibilities 
for  increasing A a r e  few: theoretically X s 0.5,  while 
in practice X = 0.1 has been achieved. l4 In the case  of 
a parametric antenna, the coupling increases with the 
pumping. The maximal admissible Cp i s  limited by 
the requirement of dynamical stability of the system 
(22). In the working regime,  when 6, - A  >> w, , the 
stability condition i s  C: c C: w,?. Thus,  increasing 
the resolution by increasing the pumping (coupling) is 
possible (without additional stabilization) only fo r  long 
trains: up?>> 1. F o r  shor t  burs ts ,  mu?-1, it is ex- 
pedient to make the filtration band Aw narrower relative 
to the width of the signal spectrum, which i s  -i1; For  
~ o ? < < l ,  one can in prinicple achieve high resolution, 
though i s  is paid f o r  by a reduction in the signal. 

The physical reason f o r  the increase in the sensitivity 
with increasing coupling is to be sought in the effect of 
dynamical damping15 generalized to the quantum case.  
The fluctuation spectrum of the system of coupled 
oscillators (181, (23) fo r  6, = O  has a characterist ic  dip 
a t  the frequency w, of the detector ,  as can be seen 
from Eqs.  (20) and (25). In contrast ,  the signal re-  
sponse a t  this frequency i s  nonzero. A gain in sen- 
sitivity i s  possible only in the case  of measurements 
in a smal l  neighborhood of w,, whose width must  be a t  
least  l e s s  than the interval between the eigenfrequen- 
cies . 

F o r  a r ea l  antenna 6, = # 0 ,  and the damping for -  
mulas (27) and (28) will be valid only until the resolu- 
tion reaches the potential level 

The value of the pumping C,/C, = (?/T,)'/~ needed f o r  
this may be difficult to achieve; i t  is then necessary 
to make the filtration band narrower.  This narrowing 
of the band is accompanied by multiplication of (29) by 
the factor  (AW?)-'/~; making a comparison with (28), 
we readily obtain an  est imate fo r  the optimal reduction. 
Thus, in the quantum case ,  E(w, , T,) = E(we7 T,)w,/w, 
=Ewu, this  band i s  Aw,, = (c,/c,)(?T,)-'/~, and the de- 
tectable force  is 

fo r  
".;-I, C~=C,+F ,~ .=~^~- '  (mfro,,) ''2Q,-"a 

Equation (30) demonstrates an  interesting feature,  
which i s  a consequence of the dynamical damping: even 
fo r  C, =Co, an  increase in the Q of the detector ,  Q, - m, leads in prinicple to unbounded growth of the sen- 
sitivity, i . e. , to the absence of any quantum limit. 

Note specially that in the quantum case ,  i. e . ,  in the 
l imit  T - 0,  an observer who uses  the algorithm (26) 
cannot, any more  than any other observer,  a r r ive  a t  any 
conclusions contradicting the uncertainty principle. 
It i s  easy  to show by d i rec t  calculation that in the al-  
gorithm (26) o r  in i t s  quasioptimal replacement by 
narrow-band filtration with Aw -17' around w, recon- 
struction of the "trajectory" of the detector i s  possible 
only with accuracy 

if one gives up band filtration, which is accompanied 
by a loss  of sensitivity, one achieves a reconstruction 
with AxAp =Ewe/wu. With regard to the coordinate of 
the sensor ,  observation of the complete spectrum of 
the variable Gad ensures  the accuracy 

working in a band Aw -?-I, the observer  always re-  
mains a t  the level of uncertainty of the coherent s tate,  
i . e . ,  LAiAqsA (here,  L is the inductance of the r e -  
sonance circuit of the sensor) .  

We show, finally, that the proposed detection al-  
gorithm (26) belongs to the c lass  of asymptotically 
nondisturbative methods of detection in the sense  of 
Ref. 8a .  F o r  this ,  i t  is sufficient to calculate the com- 
mutator of the variable k and the quantum process G(t) 
o r  Gsd (23). Omitting the details of the calculation, we 
write down the result: 

Thus, an increase in the coupling between the detec- 
t o r  and the s enso r  is accompanied by a decrease in the 
disturbance of the quantum variables and qs, accom- 
panying a measurement of k and an increase in the re- 
solution of the antenna. 
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$5. DISCUSSION OF THE RESULTS 3. Essentially, detection in accordance with the al- 
gorithm (12), (1 7) amounts to separating one statistical 

In our discussion, we shall f i rs t  consider some fun- 
set  (in the given case, the deterministic signal function) 

aspects of the measurements touched on the background of another set (quantum and thermal 
on in the introduction; we shall then analyze the pos- fluctuations). It makes use of subtle distinction cri-  
sibilities for  practical realization of our algorithms, 

teria in the spectral color of the disturbances. These 
and, finally, on this basis estimate the sensitivity of a ideas, which are typical for the classical theory of fil- 
gravitational antenna made possible the tration, remain valid f o r  quantum systems. The analy- 
technology. 

s i s  made in $2 shows that the process of forming the 
1. The algorithm for  constructing the variable & ($2) estimate & contains no operations forbidden by quan- 

reduces the estimate of the antenna sensitivity to an tum theory. 
ordinary procedure of spectral filtration (171, but with 
allowance for vacuum noise; this allowance is made by 
calculating the fluctuations in accordance with the fluc- 
tuation-dissipation theorem. For  comparison with the 
language used in Ref. 8 ,  we emphasize that allowance 
for noncommutativity is allowance for  the quantum dis- 
turbance of one of the observables when the other i s  
measured, i . e . ,  the signal-to-noise ratio calculated in 
accordance with the theorem includes the quantum mech- 
anical uncertainty introduced by the measuring device. 
At the same time, the theorem does not contain a pro- 
cedure for  constructing the estimate. When the scheme 
for choosing the estimate i s  not optimal, a limited sen- 
sitivity i s  predicted. For  example, if one detects the 
force F acting on the detector without band filtration 
around o, and measures the total variance A& (23), 
the fluctuation-dissipation theorem gives a/quantum 
limit for the minimal amplitude of the force (1). In 
the optimal procedure adopted in the text, there is  no 
fundamental quantum limit. 

2. The process of detecting F in our algorithm re- 
duces to a measurement of ;, i .  e .  , to an observation 
after the output of the band filter. A procedure cor- 
responding exactly to the algorithm (12) consists of a 
single measurement of & a t  the time at which the signal 
ends and comparison of this value with the threshold, 
which is established a priori from the known statistics 
of the quantum (and thermal) fluctuations. The com- 
parison yields a judgement on the magnitude of F. The 
threshold can also be found empirically by observing the 
fluctuations a t  the filter output for a sufficient time. 
Such detection in the case of a single measurement of 
& naturally eliminated problems associated with the 
disturbance (or nondisturbance) of the system by the act 
of measurement. However, it is easy to show that 
continuous following of ; also preserves the conclusions 
(27) and (28) about the attainable sensitivity. Indeed, 
calculating the commutator & a t  different times, we find 
(Cp 2 CO, AW =?I) 

It can be seen that the commutator [;,;,I vanishes with 
increasing pumping, making possible an asymptotic 
increase in the accuracy with which the trajectory of 
& can be measured. This demonstrates once more that 
the discussed procedure is an "asymptotically non- 
disturbative method of detection" in accordance with 
Ref. 8 .  Finally, it follows from (32) that at times 
W, 7 - 271k(k = 0,1,2 ,  . . .) the measurement becomes 
"nondisturbative", in accordance with the stroboscopic 
rule.8h 

It is remarkable that this approach does not require 
one to consider practically inconvenient categories and 
operations such as "reduction of the statistical state," 
"preparation of the state,'' "following of the relaxation 
of the state, " and so forth, which i s  characteristic 
of Refs. 2,  8 ,  and 9. The result of filtration in accor- 
dance with the algorithm (12), (17) is  invariant with 
respect to the initial state of the observed system. 
These circumstances obviously free us from the need 
to apply the concept of "quantumness of the system" 
(i. e .  , the obligatory recourse to quantum theory for  
its investigations) to parameters such a s  the relaxation 
time and measurement time. The usual consideration 
remains valid: quantum effects a r e  important only 
under the condition fiw, >KT. 

It is obvious that a gravitational antenna can be des- 
cribed by classical (or quasiclassical) theory even a t  
very low temperatures T -1°K. At frequencies w, - lo4,  
the mean energy (E) =n,fiu,, of the detector corresponds -. - - 
to the level no = lo7; in a stationary state, (AE')"~ 
= nofiw, >> fiw, . The force F changes the energy of the 
detector by AE, = ((E)(~~'i)'/m)'l'; for the amplitude of 
the force a t  the sensitivity threshold (28) AE, - n ~ / ' ~ w ,  c,/c,. Even under the assumption that nois un- 
changed, we have a sufficient reserve of damping 
Cp/Co-lo3 until AE, i s  comparable with the energy of 
a quantum. However, with increasing coupling no in- 
creases a s  -(Cp/C0)' due to the "heating" of the detec- 
tor from the active sensor.'' The upshot i s  that f o r  
Cp > C, we always have ( A ~ , ) , , , - n ~ / ~ f i ~ ,  . The process 
of transforming the signal into electrical form at  least 
preserves the number of quanta, changing only their 
frequency: w, -we; the same is true for  the opposite 
process of detection. For  AW -?-I, the detection e r ro r ,  
which i s  equal to (AE,),,,, appreciably exceeds the 
energy of one quantum. Thus. despite the condition 
Aw > xT,  (which is usually realized in practice), the 

P 
gravitational antenna admits a classical description a s  
long a s  no >> 1, although Planck's constant already occurs 
in the sensitivity estimate (28) (quasiclassical treat- 
ment). 

4. The operation of filtration of the signal of a gra- 
vitational antenna on the basis of the theory presented 
here is  a s  follows. The high-frequency voltage of the 
sensor is subjected to synchronous detection (or 
heterodyning) with a reference voltage that has the 
phase of the pumping in the resonance circuit of the 
sensor. With increasing pumping Cp > Co, the low- 
frequency component G,) decreases as Co/C,, and to 
preserve it the reference amplitude must be increased 
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at the same rate (or  fas te r ) .  In the case of s imple  
quadrat ice detection, the  low-frequency component is 
proportional to c,(?,,), and a constant level  of the use-  
ful  s ignal  is ensured automatically (as  long as q,,<<C,). 
The s ignal  can  then b e  amplified and subjected to n a r -  
row-band f i l t ra t ion in t h e  neighborhood of the frequency 

wu. 

F r o m  the  point of view of purely quantum l imitat ions,  
these  operat ions cannot give rise to s e r i o u s  difficulties: 
the detection is not accompanied by  quantum noise17 
(here,  the re  are no paradoxes leading to violations of 
the uncertainty pr inicple ,  as i n  Ref. 18); low frequency 
amplification, even in the  f ramework  of Heffner's in- 
t egra l  approach,'' is accompanied b y  fluctuations with 
the "noise temperature" T,,, -tiw,/x, which f o r  f r e -  
quencies w, - lo4 is negiligibly s m a l l ;  T,,, %. It 
is clear that  the actual  sensi t ivi ty  of the  antenna wil l  
b e  limited by the above-quantum noise of the e lements  
of the processing,  the  main  noise being that  of the 
detector  (mixer).  

We estimate the  sensi t ivi ty  of a gravi tat ional  antenna 
on the bas i s  of the experimental  d a t a  known to us  on 
microwave devices.  For example,  Ref. 1 9  d e s c r i b e s  
a n  experimental  model  of a m i x e r  in  the  region of f r e -  
quencies we * 10'' - 10" with noise t empera ture  T, - 1°K . 
With such  a device in  the electronic  c i rcu i t ,  one c a n  
detect  accelerat ion of the de tec tor  at the  level  

(Flm) -;-I (r  T,, o Jmo.) '". 
- - . . 

(33) 

Substitutingthe values i c  3 x sec, w, = lo4 rad /sec ,  m 
= 10' g, and U, = 10lOrad/sec,  we find (F/m)- 3 x lo-" c m /  
sec2, which is around the lower l i m i t  of the astrophysical  
prediction given i n  the Introduction. For sapphire  de- 
t ec tors  with m - lo4 g ,  the es t imate  (33) gives only 
(F/m) - 3 X lo-'' cm/sec2. In th i s  case, technical noise 
can be attacked by ra i s ing  the pumping frequency to 
0, - 1012 (Ref. 20). T h e  value of increasing the f r e -  
quency was noted i n  Ref. 21, i n  which, to achieve 
sensi t ive detection, t ransi t ion to t h e  optical range is 
recommended in conjunction with the  u s e  of degenerate  
p a r a m e t r i c  ampl i f ie r s  and photodetectors. 

5. T h e  main r e s u l t  of th i s  paper  is t h e  proof tha t  
t h e r e  are no quantum l imitat ions on the accuracy  with 
which one can  m e a s u r e  t h e  amplitude of a gravitational 
burs t  f o r  a definite s y s t e m  of operat ions to s e p a r a t e  
the signal.  Note that  we have considered only the ques- 
tion of est imating the amplitude of a n  ex te rna l  f o r c e  
acting on the gravitational de tec tor .  T h e  r e s u l t s  of 
this  analysis  cannot b e  extended to the problem of re- 
constructing the  profi le  of the external  fo rce ,  f o r  which 
quantum limitations may  b e  m o r e  dangerous.  

We should l ike e x p r e s s  o u r  thanks to V.B. ~ r a g i n s k i r  
f o r  stimulating this  work  and especial ly  to B . A .  

Grishanin f o r  explaining the foundations of the quantum 
theory of f i l t ra t ion and numerous patient discussions.  
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