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To develop a noncontradictory relativistic theory of the motion of celestial bodies, the dynamic effects 
must be determined (from the equations of motion of the bodies) and the measured quantities calculated 
(using the light-propagation equations) in a single coordinate frame. The choice of the frame itself is 
arbitrary. By way of illustration we consider wmplanar circular motions of the earth and of an inner 
planet in the sun's graviational field; this motion is described by an arbitrary parametrized metric in 
arbitrary quasi-Galilean coordinates. In radar observations, the measured quantitites are the signal- 
propagation time intervals, and in angle measurements these are the angles between the directions to the 
planet and to a remote immobile source (quasar) or between the directions to the planet and to the sun. 
These quantities can be calculated as functions of only the measured initial values of any form, 
irrespective of the employed coordiiate frame. However, the relativistic corrections to the values of the 
physically measured quantities depend on the makeup of the initial measurements. Direct measurements 
of the angles uncover new possib'ities of checking relativistic theories of gravitation. 

PACS numbers: 95.10.Ce 

1. INTRODUCTION 

The analysis of relativistic effects in the motion of 
celestial bodies, of light rays, and of radio waves in the 
solar system calls for the use of the metric of the gra- 
vitational field in the post-Newtonian approximation. 
Small perturbations of the metric a re  solutions of the 
field equation of a concrete gravitational theory and can 
be obtained by successive approximations accurate to 
four arbitrary functions, which determine the choice of 
some coordinate frame (coordinate conditions). It is ob- 
vious that this choice is quite arbitrary and in problems 
of relativistic celestial mechanics it can be restricted 

only by the requirement that the coordinate system be 
quasi-Galilean. The relativistic equations of the motion 
of celestial bodies, a r e  expressed in the form of the 
equations of ordinary dynamics and their solutions 
therefore take different forms in different coordinate 
frames. As a result, in the generalcase the relativistic 
corrections to the Newtonian motion of celestial bodies 
(such as ,  e.g., the corrections to rectangular coordi- 
nates, semi-axes, etc.) likewise become coordinate-de- 
pendent and can therefore not be directly compared with 
the observation results. A qualitative way out of this 
situation becomes clear if one recalls that the dynamic 
theory is compared with the observations with the aid 
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of light rays o r  radio waves, whose equations of mo- 
tions a re  also coordinate-dependent. To construct a 
noncontradictory relativistic theory of motion of cele- 
stial bodies i t  is therefore necessary to  calculate the 
measured quantities (with the aid of the equations of 
motion of light) in the coordinate frame that was used 
to  derive the dynamic effects on the basis of the equa- 
tions of motion of the bodies. In the course of this pro- 
cedure, the coordinate-dependent terms should be elim- 
inated from the physically measured effects. 

This paper, which is an extension of Ref. 1 and of a 
paper delivered by us at the Interdepartmental Seminar 
on Gravitational Effects in General Relativity Theory 
(Minsk, September 1978), we examine the realization of 
such a procedure using a s  examples the two observation 
methods most widely used in astronomy, viz., radar 
(Sec. 3) and differential angle measurements e.g., with 
a radio-interferometer of ultralong base (Sec. 4). The 
high potential accuracy of these methods (of the order 
of 5 XlO-'  or 0.001") makes the task of developing an in- 
variant procedure for comparing calculated and mea- 
surement quantities important not only theoretically 
but also from the pure observational viewpoint, since 
the coordinate-dependent terms a re  of the same order 
a s  the dynamic effects. It must be noted that the pub- 
lished opinions on this subject a re  quite contradictory, 
including even naive attempts to  separate a privileged 
coordinate system that "corresponds" to the astronom- 
ical  observation (see, e.g., Ref. 2). 

Coordinate-independent expressions pertaining to the 
considered types of measurements and expressed in 
terms of observable quantities make i t  possible to cal- 
culate on the basis of some assembly of initial mea- 
surements, for any instant of time t ,  the relativistic 
corrections to  the time T(t) of propagation of the radar 
signal for sounding an inner planet, and the corrections 
to the relative angle distances cp(t) and ~ ( t )  between the 
planet and the quasar respectively and between the pla- 
net and the sun. It is important to note that the magni- 
tude of these relativistic effects depends substantially 
on the makeup of the initial measurements, in other 
words, on the concrete observation procedure. 

2. GENERALIZED SCHWARZSCHILD METRIC 

To investigate the problem of the coordinate condi- 
tions in the general case, we consider the generalized 
metric of a static spherically symmetrical field 

m z' + 2 - - b' ( r )  dzO dz' 
C r (1) 

z'x' 
- {15,~ +: [ct(r)8,,  - - ( a ( r ) - ~ - r a ' ( r ) )  ]} dz' dx'. 

r= 

The constants A and B a re  determined here by gravita- 
tion theory [A = 0 and B =  1 for general relativity theory 
(GRT) I, and the arbitrary functions p(r) and a! ( r )  specify 
the coordinate frame. In GRT, in particular, the values 
p=  0 and a, = O  correspond to  the standard Schwarzschild 
coordinates, p= 0 and a = + 1 correspond to the harmon- 
i c  (or isotropic) coordinates, and p=  0 and a! = - 1 corre- 
spondto the Painleve coordinates. The known Eddington- 

Robertson two-parameter (p,  y )  metric follows from (1) at  
B(r) = 0, a! (T) = y, A = B - y, B = y. It is readily seen that 
the metric (1) is connected with the metric expressed 
in the standard coordinates ? and k i  by the transforma- 
tion 

m 2' 
ct=ct - - p ( ~ ) ,  z' -5'-m-;-a(~) ,  (2) 

r 

which preserves the quasi-Galilean character of the 
metric under the conditions 

In (1) and (2), m=fM./c2 and the sun's gravitational pa- 
rameter @. and the speed of light c a r e  assumed known. 

For the metric (I), the Lagrangian of a nonrelativistic 
particle does not depend on p(r) and takes the form 

Using (4), we can easily find that a planet in the field (1) 
moves in a circular orbit of radius r = a with an angular 
velocity 

and the sidereal period of the motion is 2r/n.  

The Lagrangian for the light in the field (1) is like- 
wise independent of p(r) and takes the form 

If at the instant t = t o  the optical particle has coordi- 
nates r(to) =ro and if the direction of the light ray at t 
= m and infinitely fa r  from the sun is determined by a 
single vector v, such that E(m) = cv, and v2=1,  then the 
solution of the equations corresponding to the Lagran- 
gian (6) is 

In the relativistic terms we must use here, naturally, 
the Newtonian value of r obtained from (7) a t  m = 0. 

3. RADAR MEASUREMENTS 

We consider a model problem of complanar circular 
motion of the earth and of an inner planet (Mercury or  
Venus) and suggest a procedure of radar measurements 
in the framework of this problem. It suffices for this 
purpose to duplicate the procedure developed by Sha- 
piro3 for the Eddington-Robertson metric. 

An observer on earth E sends at the instant t a radio 
signal to the planet P and measures, a t  the instant when 
the signal returns to the earth, the time of signal prop- 
agation T ( t )  at the two ends. This interval is minimal 
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at each conjunction. Therefore the instants of the suc- 
eeding inferior conjunction can always be recorded, and 
i t  is possible to  measure the synoidic period T, of the 
planet P and the earth. By the same token this yields 
the difference between the mean motions of the planet 
and the earth: 

1. Initial measurements: T,, To, T ,  

Assume that the time intervals To = T(0) and T, 
= T(i T,) have been measured, with the initial instant t 
= 0 taken to  be the instant of the inferior conjunction. 
The three quantities To, TI, and T, make i t  possible to 
determine completely the motion in the model problem 
and calculate the interval T(t) for any instant of time t .  

Introducing the vector 

R=r-r,, 

we get 

aE+a,+R(t) 
aE+ap-R ( t )  

with 

R ( t )  = (ax2+a:-2aEap cos 

In the derivation of (11) we have neglected the motions 
of the earth and of the planet P during the radar sound- 
ing time. It was also assumed that the times of light 
propagation from E to P and from P to E a re  equal. 
These simplifications suffice for our purposes. A rig- 
orous iteration solution for the GRT harmonic coordi- 
nates, which can be readily extended to  the general 
case, is given in Tausner's paper.4 

By assumption, the measured quantities a re  To= T(0) 
and T, = T(iT,), from which we can determine the radii 
a, and a, of the earth's and planet's circular orbits in 
the form 

aE=aEN+AnE, np=apN+3np, (1 3) 

where 
a/=' / ,c[  (2Tt2-To')"-To], aEN='l,c[ (2T,'-T,Z)".+T,,]. 

(a.'+aPa)'" a + +(aE2+aPa)" (I4) ln 
ax+ap ax+a,- (aEa+ap') '" 

The quantities a, and a, in the right-hand sides of (15) 
and (16) should be taken to mean their Newtonian values 
(14). 

We now express the interval T(t) at arbitrary t only 
in terms of measurable quantities, i.e., in terms of To, 
Tl, and T,. We transform expression (12) for the rela- 
tive distance between the  planets in the form 

R ( t )  = R N ( t )  +AR, 

where 

rn 2nt 
AR= - {( cos - - I )  [ (,+I) (a:+ap2)1h 

R T, 

aE 2nt + ( B + i )  (ap-ax) ln - cos - + [apa(aE)  
ap  T .  

Substituting this expression in (11) we easily verify that 
the coordinate-dependent expressions cancel each other 
and we get 

T ( t )  =TN(t)+AT, (20) 

2m a +a +R 2nt a,-aE as 
A T = _  ( B + I )  [I~N-+cos--1n- aE+ap-R 

T. R ap 
(21) 

( a , ~ a p 2 ) " =  a + + (aEzf  ad)'" 
R 

ln 
aE+ap- (aE2+ap') '$ 1 ' (22) 

Thus, the signal propagation time T(t) is expressed, 
independently of the employed coordinate frame, in 
t e rms  of the measurable synodic period T, and the val- 
ues T(t) for  two initial instants of time (the choice of 
t = 0 and t = Ts/4 is of no fundamental significance and 
does not alter the final result). The values of T(t) a r e  
the ephemeridal data for the radar measurements. 

The measured quantities To and T, enable us  to deter- 
mine the average motions n, and n,, and by the same 
token also the sidereal periods of the planets. In accord 
with (5) we have 

Using (15) and (16), we get 

An, 3 rn -=-- { ( , + I )  (aEz+ap') 'h aE+ap+ (aE'+apz) '" 
n, 2 ap a,+ap ax+ap- (a.'+aPa)" 

- (+A+, )  - ( B + I )  (26) 

-- (an'+apa) " aE+ap+ (aE2+apz) " 
In 

n~ 2 ar (,+I) aE+ap a,+a,- (aEz+ap2)'/* 

We recall  once more that a, and a, should be taken to 
be those given in (14). Thus, regardless of the employed 
coordinate system, the sidereal periods a re  expressed 
a s  functions of only the measured quantities. 

2. Initial measurements: Ts, T, 
Assume now that in place of the initial measurements 

of To and Tl we know from optical measurements, be- 
sides the synodic period T,, also the earth's sidereal 
period T,. By the same token we know also the sidereal 
period T, of the planet. The major semi-axes a r e  then 
determined from (13), but with the values 
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FIG. 1. The Shapiro effect for inner planets. Initial measure- 
ments: synodic period Ts and earth's sidereal period TE-solid 
lines: Ts and radar data at the instants t = O  (inferior conjunc- 
tion) and t = TJ4-dashed curves. 

A a  S-- ( ' lJ+a(ap ,  s)) m. (29) 
It is now necessary to use the values (28) in (18), and 

in lieu of (19) we have 

The Newtonian value (21) is now calculated from (18) and 
(28), and the relativistic effect A T  is 

Comparison of (22) and (31) shows that, depending on 
the type of the initial measurements, the relativistic 
effect A T  has a different structure and a different nu- 
merical value. The numerical values of the corrections 
(22) and (31) in GRT (A = 0, B= 1) for Mercury (U) and 
Venus (9) are  shown in Fig. 1. It is interesting that, 
depending on the makeup of the initial measurements, 
radar measurements yield either only the constant B of 
the linear theory, or  additionally the constant A of the 
post-Newtonian approximation of the relativistic theory. 
Thus, the dependence of the relativistic effect on the 
type of the initial measurements is not formal and 
makes i t  possible to plan the measurements in a way 
a s  to make them highly sensitive to different parame- 
t e r s  of gravitation theory. 

4. MEASUREMENT OF THE RELATIVE ANGLE 
DISTANCES 

Within the framework of our problem, we adopt the 
following idealized procedure of measuring the relative 
angle distances between objects. The observer on 
earth fixes the instants of two successive conjunctions 
and determines thus the synodic period T,. He chooses 
next some remote immobile source (quasar), from 
which he determines the sidereal period T, of the earth 
or ,  equivalently, the average motion n,. By virtue of 
(9), the average motion n, can also be assumed known. 
Next, at the initial instant t = 0, which for mathematical 
convenience is best chosen to be the instant of the in- 

ferior conjunction, the observer measures the geocen- 
t r ic  angle q(0) = cp, between the directions to the quasar 
and to  the planet P. From the measured values of n,, 
n,, and q, he must find the angle q =  q( t )  between the 
directions to the quasar and to the planet P at  any in- 
stant of time t .  

Proceeding to realize this procedure, we turn to  for- 
mula (8) for the velocity vector of the optical particle. 
At t = - a, at an infinite distance from the sun, the di- 
rection of the light is characterized by a single vector 
a, so  that ;(-a) = cu, and 02= 1. From (8) we get 

This expression, leads, incidentally, to the classical 
formula for the bending of alight ray in the sun's field. 
It is patently evident that this effect does not depend on 
the coordinate conditions. 

Substituting (32) in  (8), we obtain the velocity a t  the 
point r ( t )  of an optical particle emitted at t = -- in the 
direction of o: 

ra 'a''"') -an(r)  - ( B + I )  ( a t  - 
r-ra f 

We consider now another optical particle that occu- 
pies at the instant t o  the position r, and arr ives  at the 
instant t at the point r ( t ) .  We obtain for the trajectory 
of this particle 

roa ( r )  -ra(re) -B (ro-r) (3 4) 
+. 

Rzrro 
} [ R X ~ ~ X  rl I ,  

and the velocity of this optical particle at the point r ( t )  
is given by 

u ( r )  -/I + --- 
Rr' 

r ) Lr.x.1 

We obtain now the cosine of the angle cp between these 
two light rays a t  the point r(t). The velocity vector of 
the f i rs t  ray, determined from (33), will be designated 
5 ,  and that of the second ray, determined from (35), by 
q .  Then 

(61))~1 
cos q= - 

l ~ l ~ ~ , l l l l R l '  

where the subscript re1 indicates that the scalar pro- 
duct of the vectors ,$ and q and their lengths must be 
calculated with the aid of the three-dimensional chrono- 
metrically invariant tensor of the metric (1): 

As a result we get 
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In the collinear case, when r/r = ro/ro = R/r, we have 

ro m or cos c p -  - - - @+I) (I+ T) 
r r  

(this expression determines the angle distance between 
the quasar and the sun). 

We now apply Eqs. (38) and (39) to our model problem 
(Fig. 2). The x axis is chosen to be the line joining the 
sun, the planet P and the earth at the instant t = 0 of the 
inferior conjunction. We neglect the planetary aberra- 
tion here and below, since i t  is not connected with the 
coordinate-condition problem of interest t o  us. It is 
easy to take the planetary aberration into account by an 
iteration method. 

At the instant t = 0 we measure the angle q, between 
the directions t o  the planet P and the quasar. This mea- 
surement determines the vector o. In fact, from (39) we 
have 

At an arbitrary instant t the coordinates of the planets 
a re  

r=h= (a8 cos LE, ap sin hE) ,  h8=nEt, 
(41) 

and the radii of the circular orbits a r e  determined from 
(13), (28), and (39). With the aid of these relations we 
get from (38) 

We now put 

Then 
cos cpN=RNaNIRN, 

FIG. 2. Angle measurements in wmplanar circular motion of 
the earths and an inner planet. 
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where RN is calculated from (10) and (41) with the 
Newtonian values (28), while uN denotes a vector with 
components (coscp, and -sinqo). All the operations in 
(44) a r e  carried out in the Euclidean sense. Next, 

It is easy to  find that 

I 
[RXAR]  [RXo]+-RAo.  

R 

The correction AR is due to the corrections (29) to  Aa, 
and Aa,, therefore 

The correction term Au is a vector whose components 
a r e  equal to the relativistic terms in (40). Direct cal- 
culations yield 

RAa m l+cos 90 --- 
R s i n ~  as 

sincpo. 

We ultimately get 

Thus, from the known n,, n,, and qo we can calculate 
cp independently of the employed coordinate system. 
The values of ~ ( t )  a r e  the ephemeridal data for the dif- 
ferential angle measurements in our model problem. 

We have dealt so  far  with differential measurements 
against the background of infinitely remote immobile 
objects. We consider now the differential angular mea- 
surements of a planet P, connected with i t s  position 
relative to the sun (optical measurements-transit of 
planets across the solar disk, transit of the sun and of 
a planet through the same meridian; radio observation- 
interferometry in the near wave field when "beacons" 
a r e  observed on planets). Ths sun's ray velocity vector 
a t  the point r ( t )  is equal to 

Identifying 5 with this vector, we obtain from (36) the 
cosine of the measured angle $(t) between the directions 
to the sun and t o  the planet P: 

Proceeding as before, we have 
rp-rgN+Arg, 

where the f i rs t  correction term can be represented in 
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the form 

We obtain now an expression for  # ( t )  as a function of 
the measured initial quantities for three types of mea- 
surements : 

Case 1-only relative measurements (relative to  the 
sun). We can regard a s  known T, and the value of 
the angle g ( t )  at some instant, say $, = (a T,). From (47) 
we have 

This expression enables us to find the ratio of the orbit 
radii in the form 

[to find the radii themselves we must use relation (g)]. 
The ref ore 

rn [ hp;AE aE2+ap2 
A$=--(B+1) tg---- 

R' sin ( A ~ - L ) ]  aE 

In the Newtonian term (48) we must use the value (52). 

Case 2-absolute and relative measurements. We as- 
sume here that T, and n, (hence also n,) a r e  known. 
Using (29), we get 

a,a(a,) 
2 

- a a  (a,) + - A  (aE-a,) . 
3 1 

In this case therefore 

Aq-m - tg- - (T A + B )  sin(",-h.,B. (55) 2 "i" 
where we must use the values (28) in the Newtonian 
term (48). 

Case 3-radar measurements. The measured quan- 
tities a re  T,, To, and TI. We carry out the calculations 
with the corrections (15) and (16), so that a s  a result 
we get 

and in the Newtonian term (48) we must use the values 
(14). 

Thus, depending on the type of the measured initial 
quantities, the corrections (54)-(56) for A# have differ- 
ent structures, but neither expression depends on the 
coordinate frame. 

Figures 3-5 show the numerical values of the correc- 
tions (54)-(56) in GRT (A = 0, B =  1) for Mercury and 

*P - 4 
FIG. 3. Relativistic effect in the angule distance $ of an inner 
planet from the sun. Initial measurements T, (synodic period) 
and $ (TJ4). 

Venus a s  functions of the relative angle between the pla- 
net P and the earth. Near the superior conjunction all  
the curves practically coincide, for in this case the 
main contribution to (54)-(56) is made by one and the 
same f i rs t  term. However, even far  from the superior 
conjunction the relativistic corrections a re  appreciable 
and they must be taken into account in the case of high 
precision measurement of the angle distances (accurate 
to  0.001"). The correction (45) for A q  can be easily 
calculated if i t  is recognized that i t  consists of the cor- 
rection (55) for A$ taken with a negative sign (Fig. 1) 
and of a term that does not depend on the position of the 
planet P. 

Just a s  in  the case of radar measurements, the nu- 
merical values of the relativistic effects A q  and AJ, do 
not depend on the coordinate frame. At the same time, 
the magnitude of a relativistic effect depends substan- 
tially on the composition of the initial measurements. 
In particular, if the initial data include the earth's side- 
real  period, then the considered relativistic effects 
enable us to  determine the constant A of the post-New- 
tonian approximation of the relativistic theory. 

In real  astronomical problems involving the reduction 
of observation data, to verify any particular gravita- 
tional theory we must construct a corresponding theory 

FIG. 4. Relativistic effect in angle distance $ of an inner plan- 
et from the sun. Initial measurements: T ,  (synodic period) 
and TE (sidereal period of the earth). 
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mine the parameters of the motion by comparison with 
the observations, and then a s s e s s  the reliability of the 
employed gravitation theory from the degree of agree- 
ment with subsequent observation. 

The relativistic expressions obtained here  fo r  the 
measured angle distances rp and J, add t o  the possibility 
of new t e s t s  of relativistic effects. These effects a r e  of 
particular interest  because the relativistic corrections 
to rp and JI a r e  necessitated by three  factors: the dyna- 
mic theory of the motion of the bodies, the laws of light 
propagation, and the bending of space in  the vicinity of 
the sun. 

FIG. 5. Relativistic effect in the angle distance i) of inner 
planet from the sun. Initial measurements: radar data at the 
instants t =  0 (inferior conjunction! and t = Td4 (T, is the synod- 
ic period). 'v. A. Brumberg, Proc. 81 Symp. IAU, Tokyo, 1978. 

'L. M. Chechin, Tr. Astrofis. in-ta AN KAZSSR 32, 67 (1978). 
3 ~ .  I. Shapiro, Phys. Rev. 145, 1005 (1966). of the motion of the celestial bodies, calculate the ob- 
4 ~ .  J. Tausner, Lincoln Lab. Techn. Rept. No. 425, MIT, 

servational characteristics of the motion using formu- 1966. 
las such a s  ( l l ) ,  (42), and (47) (with the same value of 
the function a(?-) a s  used in  the dynamic theory), deter- Translated by J. G. Adashko 

Quantum mechanical analysis of the sensitivity of a 
gravitational antenna 

A. V. Gusev and V. N. Rudenko 
L. V. Lomonosou State Uniwrsity. Moscow 
(Submitted 15 b b e r  1978) 
Zh. Eksp. Teor. Fiz. 76, 1488-1499 (May 1979) 

The quantum mechanical problem of the optimal estimate of the amplitude of an external force acting on 
a gravitational antenna of a given structure is solved. The optimal spectral operation for processing the 
output signal of the antenna which fonns the 0bSe~ed variable is found. It is shown that there is no 
quantum sensitivity limit when the optimal procedures are followed. A practical possibility of attaining 
the resolution needed for second-generation antennas is illustrated. 

PACS numbers: 04.80. + z, 04.30. + x, 03.65.B~ 

The realistic estimate for the intensity of bursts  of 
gravitational radiation arriving a t  the Earth from outer- 
space covers the range W-lo4 - 1 erg/cm2 with a dur- 
ation *7 - - sec  (see, fo r  example, the reviews 
Ref. 1) .  For  a gravitational detector of Weber type 
(measuring 1 =lo2 cm), such a pulse i s  equivalent to 
the action of an acceleration field F/m -lo-' - lo-" 
cm/sec2. I s  it possible to detect such a weak distur- 
bance? The answer to this question is crucial for 
modern gravitational-wave experiments. 

Taking a quantum oscillator as a model of a gravita- 
tional detector in the limiting case of zero  tempera- 
ture,  and assuming that it i s  in a coherent state (as the 
state nearest to a classical state), we can formulate a 
rule for  detecting a force acting on the oscillator. It 

is natural to regard the force a s  detectable if it  shifts 
the wave packet (or rather,  i ts  center) by an amount 
of the order  of i ts  width. In the coordinate represen- 
tation, this shift i s  Akq, ( f i / 2 m ~ ) ' ~ ~ .  Hence, fo r  the 
quantum sensitivity limit we have 

which for the typical parameters m = lo4 ,  w -lo4, and 
i - 2  x of a gravitational detector' gives (F/m),, 
-10-lo cm/sec2, which is in the middle of the range in 
which we a r e  interested. 

This and s imi lar  considerations2 forces us to approach 
the problem of detecting gravitational bursts  with more 
care.  In reality, the temperature of an antenna is not 
zero  but, in fact ,  corresponds to a high excitation level 
and, it would seem,  there is no need to invoke quantum 
arguments. A classical analysis of the sensitivity of a 
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