
"The analogous dependence Ti* - is also observed in 
dielectric crystals containing linear chains of localized 
electron spins. In this case the quantity Ti-' depends on the 
character of the propagation of the spin excitations in the one- 
dimensional chain of spins with Heisenberg interaction. For 
small frequencies we the propagation of the excitations also 
turns out to be diffusive at sufficiently high temperatures 
(cf. Ref. 6). 

')A contribution to the three-dimensional diffusion of the spin 
excitations is also given by the dipole-dipole interaction of the 
electrons. However, this contribution is  two to three orders 
smaller than the contribution from tunneling of electrons be- 
tween filaments, even in such strongly anisotropic crystals 
a s  TTF-TCNQ In dieleckic crystals with spin chains the 
dipole-dipole interaction of the electron spins makes the 
principal contribution to the three-dimensional diffusion of the 
spin excitations of the electron system. 

3 '~n  principle we could improve the procedure for determing the 
parameters t by using, e .  g., the least-squares method in the 
entire range of variation of the magnetic field H. However, 
without an increase in the accuracy of the experimental mea- 
surement of Ti-' this procedure will not give more-accurate 
values of t, since the experimental points coincide with our 
calculated curves within the experimental error  bars. We 
note that the most important region for the determination of 
the parameters t i s  the region of low fields H, and up to now 
it is in precisely this region that the experimental e r rors  for 
~ 1 - l  a re  rather large. 
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The specific polarization of a crystal is expressed in terms of the total electric field in terms of the 
polarizability tensor K(o,~) or in terms of the external field with the aid of the tensor P(o,k). It is shown 
that introduction of the dependence on k in B calls for knowledge of only the effective mass of the 
exciton, and when this dependence is directly introduced in K the number of unknown additional 
parameters becomes much larger. The use of only the general scheme of quantum-mechanical calculation 
of fl by supplementing it with macroelectrodynamic considerations has made it possible to determine 
P(o,k) and to use the latter to determine K(o,~), the refractive indices of all the light waves, and their 
polarization in crystals with different symmetry. The dependences of the exciton energies and of the 
matrix elements of the dipole moment on SEWN are determined in passim as w. The 
connection between these quantities pertaining to different mutually degenerate excitons is obtained. 
These general results, deduced without using exciton models, cannot be obtained by direct quantum- 
mechanical calculation. 

PACS n u m b :  78.20.Bh 

1. TWO FORMS OF CRYSTAL POLARlZABlLlTY P-xE, x (o,  k) =[s (o ,  k) -i]/4n, E, P-e"L'-a'', (1 

The macroscopic specific dipole moment P of a c r y s t a l  where  c (w,k) is the dielectr ic  t ensor  of the crystal .  The 

is traditionally expressed  in t e r m s  of the macrofield E field E cons i s t s  of the ex te rna l  field E, and the field E' 
by the formula generated,  without a t ime delay, by  the electrons and 
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nuclei of the crystal. The macroscopic field E', i.e., 
the field averaged over the cell volume, is the electro- 
static field of fictitious dielectric-polarization charges, 
therefore 

E ' = E - ~ , = - 4 n & ~ ,  s=k/ 1 kl ; (2) 

here and below a common superior bar  over two vectors 
denotes the dyad tensor: (AB),, =AXBY. 

In the quantum-mechanical calculation of crystal po- 
larization, the perturbation is the external field E,, 
since E' i s  already contained in the unperturbed SchrB- 
dinger operator of the crystal energy. Such a calculation 
yields in first-order approximation a linear relation be- 
tween P and E,: 

P=b(m, k)E,. (3 

Eliminating E'  o r  E, from (2) and (3), we obtain with 
the aid of (1) the connection between two forms of the 
polarizability, x and P. It can be expressed by any of 
three equivalent formulas: 

x= ( ~ - 4 x p G ) - ' ~ ,  @=(1+4nxG)-lx [i]; (4) 

b-1=x-i+4nG. (6) 
Here I is a unit tensor, I,, =6,,, (T) = (s, Ts), and T a s  
a second-rank tensor. 

As lkl -0, which corresponds to neglecting spatial 
disperison, the tensor n (but not 8) acquires favorable 
properties: it ceases to depend on the direction of s 
and its principal axes a re  determined by the crystal 
symmetry. On the other hand the tensor P, a s  seen 
from example from (6), continues to  depend on the di- 
rection s, and its  principal axes, a t  arbitrary direction 
of s, do not coincide with the princiapl axes of x . Only 
if s is directed along one of the principal axes of x ,  
meani ng also x -I, do the principal axes of 8 and x co- 
incide even a t  lkl # 0. If k is perpendicular to one of the 
principal axes of x (w, k) then, a s  seen from (6), this 
will also be a principal axes for  B(w, k), and the cor- 
responding principal values of P and x coincide then. 

However, the aforementioned advantages of the ten- 
s o r  x notwithstanding, many of the principal problems 
cannot be solved without the use of the tensor P. These 
include the separation of the exciton contribution to the 
polarization, which must be done when the auxiliary 
boundary conditions a re  f ~ r m u l a t e d , ~ ' ~  the determina- 
tion of the dependence of the polarizability on k (see 
below), and others. 

2. DEPENDENCE OF THE POLARlZABlLlTY ON k 

Using a very general definition of the concept "exci- 
ton," taking the exciton to  mean any crystal excitation 
that has a single continuous quantum number-quasi- 
momentum (the remaining quantum numbers a re  dis- 
crete), and without introducing any exciton model what- 
ever, one of us derived quantum-mechanically an ex- 
pression for P(w, k).lV5 If several close-lying exciton 
energy bands a re  located fa r  enough from the other en- 
ergy bands of the crystal, then 

here 1 is the number of the exciton band, and %',(k) is 
the exciton energy, assumed close in value to fiw. Next, 
PI =(I,6OI#II,6,,), where $O and $,, a r e  the ground and ex- 
citon states of the crystal, P is the dipole-moment 
operator per  unit volume of the crystal localized a t  the 
origin; V is the volume of the principal cyclicity region 
of the crystal, and Bo(w) is the 'background" value of B, 
depends little on w, and includes the contribution from 
the other excited states of the crystal. To take into ac- 
count the finite lifetime of the exciton relative to scat- 
tering by phonons and relative to a nonradiative transi- 
tion to other states, i t  is necessary to add to g,(k) the 
quantity - im,. 

The numerators of the fractions in (7) can be ex- 
panded in powers of P .  Examination of the models 
show that in this case the expansion parameter is 
<< 1, where a is the lattice constant and A is the wave- 
length of the light. It is assumed below that the zeroth 
term of the expansion differs from zero, i.e., the ex- 
citonic transition is allowed in the dipole approxima- 
tion. The terms-k2 in the numerators a re  then ines- 
sential and a r e  discarded. 

It is assumed below that a t  small k we have 

where M,, is the effective mass of the exciton in the s 
direction. This expansion converges quite rapidly. 
However, the quadratic term is most significant here, 
since it is located in the denominator of (7) alongside 
g,, - iiw and in the case of resonance, i.e., when Ew 
= $,,, discarding the quadratic term would increase /3 
infinitely. Similar fractions a re  contained in Po, but 
since there i s  no resonance we can put in them k =O. 
Thus, the dependence on k should be preserved only in 
%',(k), and this procedure is justified only because in 
the essential region the denominator is close to zero. 
We have thus determined the dependence of P on w and 
k. 

Similar arguments, which have s o  greatly simplified 
the dependence of the polarization on k, would not be 
valid were we to consider in lieu of P the tensor x o r  c . 
Thus, for particular exciton models it i s  possible to 
transfer the field E' from the unperturbed energy op- 
erator to the perturbation, i.e., regard the total field E 
a s  a perturbation and obtain by direct quantum-me- 
chanical calculation not P, but x in a form similar to 
(7). But even if i t  turns out that in the general case 
x and c have no pole in the vital region of frequencies 
w,  where the auxiliary waves a r e  essential and P has a 
pole. By way of example we cite the case of a longi- 
tudinal exciton: at resonance, i.e., a t  Aw = $ (k), 
a pole exists for P but not for u o r  c .  Moreover, in 
this case the corresponding principal value is c ,,(w, k) 
=O. Thig equation leads t o  the dispersion law of the 
longitudinal wave. If the corresponding principal value 
x,, is written in the form 

then the dispersion law of the longitudinal wave takes 
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the form 

It is  seen from this formula that, if we retain the second 
term of the right-hand side, there a re  no grounds for 
neglecting terms of order k2 in the numerator Q,, of 
formula (9) and in the "background" part n ,,. On the 
other hand neglect of this kind was justified in expres- 
sion (7) for P. 

It can be shown that the resonances of /3 and x coin- 
cide only when the denominator g,(k) of the fraction in 
(7) is  the energy of a strictly transverse exciton. 

Case of isolated nondegenep-ate exciton. This case is  
realized in crystals of various symmetry. In (7), the 
sum contains one term, which we shall designate by the 
index I .  Changing from to v.. say by means of formula 
(5). we get 

where the second-rank tensors no and Q(" and the con- 
stant K, a r e  connected with the parameters of P by the 
following formulas: 

As noted above in the discussion of the dependence of 
/3 on k. in a11 the quantities that enter in (12)-(14) we 
can neglect the terms of order of k2, and the result is  
a negligible relative e r r o r  of order Thus, these 
quantities take the same form a s  in the absence of spa- 
tial dispersion. In this case v-,,Q"). @,, and the con- 
stant K, does not depend on s. Therefore formulas 
(12)-(14) determine the explicit dependences of the 
quantities /3, and P, and of the exciton energy g,, on s 
a s  (kt - 0. A direct quantum-mechanical calculation of 
this dependence is  a complicated matter, calls for a 
determination of the crystal wave functions, and i s  
therefore impossible without using particular models 
of the exciton. Above, however, we have used only the 
general scheme of the quantum-mechanical calculation 
of P, supplemented by considerations of macroelectro- 
dynamics. The results pertain to the general definition 
used above for the exciton and were obtained without the 
use of models. 

The dependence of the limiting exciton energy PI, on S, 
defined by formula (14), is  a generalization of the result 
obtained by an exclusively quantum-mechanical m e t h ~ d , ~  
a s  well a s  of a result obtained by a reasoning analogous 
to the one described above1 (see formulas (35)1, but 
without allowance for the background polarizability 
(no =O). Formula (14) was obtained in Ref. 3 [see form- 
ula (24)] for the case of a uniaxial crystal. 

Recognizing that the transformations (4)- (6) a re  exact 
(and that in fi the relative e r r o r  is  of the order of (a/AJ2 
and will always be neglected), the use of the tensors @ 

(7) and sz. (11) leads to perfectly equivalent results. The 
\ 

advantage of the derivation of H given above is, a s  can 
be seen from the derivation, we can leave out of no and 
&(I) the terms of the order k2 which were mentioned 
following Eq. (lo), if we simultaneously set  IM 
equal to the effective mass of the Schradinger exciton 
M l s .  

We have so far  not used crystal-symmetry considera- 
tions. The latter determine in many cases the direction 
of the vector @, which is independent of s. This refines 
the s-dependences of P, and A,. For example, in cry- 
stals of rhombic symmetry @, is  directed along the 
crystal axes. In uniaxial crystal  5, for a nondegenerate 
exciton is directed along the crystal  axis. 

Case 0-f dozrbly degenerule c.r-citon bands. This case 
is realized in uniaxial crystals. The theory of the 
Schr'ddinger exciton can be obtained, a s  is  well known, 
from the macroelectrodynamic theory of light waves 
by taking the limits for the speed of light c - and for 
the wave refractive index n -  m, such that the wave vec- 
tor k = w ns/c remains finite.' In a uniaxial crystal one 
of the light waves-the ordinary ray-is strictly trans- 
verse. i.e., its specific-polarization vector is  perpen- 
dicular to s. It is easy to show that this specific po- 
larization is  parallel to P,.le3 The aforementioned 
limiting transition transforms this wave into an exci- 
ton. Let the number of this exciton be I = 1. We choose 
the r axis along PI, i.e., perpendicular to s and to the 
crystal axis C. We choose the z axis along C. The 
extraordinary ray is  polarized in the (C, s) plane. An 
analogous limiting transition leads in this case to the 
second of the two degenerate excitons. 1 =2, whose P, 
l ies in the (C, s )  plane. 

For an isolated doubly degenerate exciton, Eq. (7) 
is  written in the form 

- - 
VP,P,' VP'P,' 

p = p o  + f 
8, .+f iZkZ/2M, . -ho 82,+fiZk'/2M,.-Ao ' 

Changing from f i  to x by means of (5). we get 
Q"' Q'2' 

%'Xo + + 
8,,+fi'k'/2M1.-ho 82 , -Az(s )  +fi'kz/2M2.-fio 

. (16) 

Here n o  is connected with Po by formula (12), while the 
vectors @, and the tensors Q(" (I =1,2)  and A, a r e  de- 
termined by formulas (13) and (14). 

As Ikl - 0 it is necessary to require that n be inde- 
pendent of s ,  and it follows from the symmetry of the 
uniaxial crystal that x,, = nzz  = n,, =O; x , ,  = x,,. From 
this we get 

where K does not depend on S, 

here x and y a r e  unit vectors along the axes x and y. 

Case of cubic crystals. This case could be treated in 
analogy with the preceding one by going to the limits 
c - n -  We shall, however, sacrifice the uniformity 
of the exposition in order to illustrate with this example 
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another analysis method. This enables us to emphasize 
incidentally some properties of the polarizabilities P 
and H. 

Assume that for  an arbitrary specified direction s 
we know P in the form (7). Let the coordinates axes x, 
y, and z be the principal axes of the tensor P. Their 
directions, generally speaking can depend on Ikl with s 
fixed. 

We consider f i rs t  the case lkl =O. Any direction in 
space is then a principal one for n and H-l. We specify 
an arbitrary direction of s and us (6); we can then 
easily show the following: 

a )  The direction of s and all the directions in a plane 
perpendicular to s a re  principal for 8-' and P. We 
choose the z axis along s. 

b) In directions perpendicular to s, the principal 
values of P a r e  the same, since they coincide with the 
principal values for n . 

c)  Since the aforementioned principal axes of P do 
not depend on w ,  they a r e  also principal axes of Po and 
of the numerator of any fraction of (7) having a different 
frequency dependence, i.e., having different Ils. 

d) If the term 1 in the denominator of (7) contains a 
nondegenerate energy 8,, (an energy unequal to the en- 
ergies in the denominators of the other fractions), then 
the dyad P,Pf should have the principal axes indicated 
in Item a) above; this i s  possibly only if P,ll s. 

e) If double degeneracy exists, $,, = gZs, then the 
summary numerator PIP: +P,P$ must have the same 
principal axes. This is possible either if P,IIPAls, 
which returns us to Item d) and corresponds to random 
degeneracy, or if P, and P, lie in the xy plane. In the 
latter case, in order for any direction in the xy plane 
be a principal one for the tensor PIP: +P,P;, it is 
necessary and sufficient to have P, 1 P, and I P1l2 = I  PZl2. 
However, the pair of orthoghal vectors P, and P, can 
be arbitrarily oriented in the xy plane. 

Degeneracy of higher multiplicity i s  possible, but it 
would be accidental, since it would not follow from 
symmetry requirement. As in the foregoing considera- 
tion of crystals of lower symmetry, in the analysis of a 
cubic crystal we shall also confine ourselves to the 
minimum number of fractional terms needed in (7) to 
satisfy the symmetry requirements. As will be shown 
below, i t  is necessary for this purpose to introduce 
three terms in which 8,, = gZs * 8,. 

Let now Ikl become different from zero but remain 
small. As a result 8,&) a r e  subjected to small pertur- 
bations that lift the degeneracy, inasmuch a s  in (8), 
generally speaking, MIS+ M,,. In the equations for P I  
we confine ourselves to the zeroth approximation in Ikl, 
an assumption justified in the discussion preceding and 
following formula (8); the correct choice of the zeroth 
approximation in the general case, however, is known 
to be determined by the perturbation. In this case the 
pair of mutually orthogonal vectors PI and P, acquires 
not an arbitrary orientation in the xy plane, but definite 
directions. If k i s  directed along one of the threefold 

or  fourfold axes, then the degeneracy of $,(k) and g2(k) 
is not lifted, and the orientation of the orthogonal vec- 
tors  P, and P, remains arbitrary. In the remaining 
cases, if k lies in a mirror-symmetry plane of the 
crystal, then one of the vectors P, or  P, lies in the 
same plane, and the other is perpendicular to it. On 
the other hand if k is directed arbitrarily, then the di- 
rections of PI and P, can be determined only by a quan- 
tum-mechanical calculation, which can be carried out 
only for concrete exciton models. 

After the degeneracy is lifted. the principal axes of P 
are  not arbitrary dimensions in the plane perpendicular 
to s, but only the directions 41 P, and y(l P,. They in turn 
a re  the principal axes of each of the dyads in the nu- 
merators of the fractions in (7). Therefore, s o  long a s  
the introduction of the spatial dispersion consists mere- 
ly of taking into account the dependence of I, on Ikl in 
the denominators of (7) and of neglecting the dependence 
of P I  on Ikl , the principal axes x, y. and z do not de- 
pend on Ikl, i.e., they a re  the same a s  in the absence 
of spatial dispersion. 

We proceed now to determine n in terms of 13 at  (kl 
#O.  The axes x, g, and z are  the principal axes of the 
dyad E. According to (6) they a r e  therefore not prin- 
cipal axes of x -' and 14 likewise a t  I k! # 0, with 

Similar formulas connect n o  and Po. If we use for fi 
the expression (7) with 1 = 1,2,4,  where $,, is the non- 
degenerate energy and P,llsllz in accord with d), and if 
we also stipulate n, = x , = H,, in the limit a s  Ikl -0, 
then we get ultimately from (19) 

K i s  here independent of s. 

The results (20) and (21) were obtained without using 
the exciton model, something impossible to do by a di- 
rect quantum-mechanical calculation. These formulas 
show that in the resonance region cubic crystals can 
have large optical anisotropy. 

The foregoing results show that by introducing in (7) 
three fractional terms we were able to satisfy all the 
symmetry requirements in a cubic crystal. Were we to 
introduce a smaller number of terms, say two. we 
would obtain a particular case of the theory expounded 
above, which can be easily obtained by setting one of the 
P I  equal to zero. But then the f i rs t  relation of (21), 
which follows from symmetry, shows that the remaining 
two P, also vanish, i.e., the polarizabilities a r e  equal 
to Po and no. This means that in the considered spectral 
region there a re  no dipole-allowed excitons at all. The 
number of fractional terms in (7) can exceed three. 
This does not follow from symmetry requirements, but 
is possible a s  a result of an accidental landing of other 
dipole-allowed exciton levels in the considered spectral 
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region. From symmetry considerations, however, it 
can be shown that the additional exciton levels and the 
corresponding fractions in (7) can appear only in the 
form of analogous triplets, and two levels within each 
triplet a re  degenerate. The appearance of each such 
triplet produces in each of the formulas of (20) an ad- 
ditional fractional term. 

Proceeding from consideration of cubic crystals t o  a 
general discussion, we note that in (8) we have assumed 
that EP,(~) can be expanded in powers of lkI2 at  a fixed s. 
The possibility of such an expansion for crystals with 
inversion center was proved for a l l  exciton bands, and 
for  crystals without an inversion center for many ex- 
citon bands by calculating the exciton models. To be 
able to expand the energy (8) in powers of k,, k,, and 
k, with expansion coefficients that do not depend on s 
it is necessary that M,, have the following dependence 
on a: 

However an examination of the models show that for the 
overwhelming majority of the crystal classes substantial 
deviations from (22) a r e  ~btained.~-'O Consequently, 
g,(k) can in general not be expanded in powers of k,, k,, 
and k,. Therefore in the region of resonance 6-' can 
likewise not be expanded in powers of kz,  k,, and k,. 

We note in conclusion that cases when the expansion 
of the exciton energy in powers of Ikl contains a linear 
term a r e  rarely encountered (the crystal classes C,, 
D,, C,, D,, C,. D,). It is the necessary to replace (8) by a 
linear expansion, but in all the remaining respect the 
method developed above remains in force, since rela- 
tions (4)-(6), a s  well a s  the requirement that x be in- 
dependent of s at lkl =O. remain in force. 

3. REFRACTIVE INDICES OF LIGHT WAVES 

The refractive indices can be definedin terms of the 
tensor P. The corresponding form of the Fresnel equa- 
tion is  shown in Ref. 3. In the present article we shall 
define them in terms of the tensor E =1 +4nx using the 
known Fresnel relation 

Neglecting the spatial dispersion (k = O  in &), this is a 
quadratic equation in n2. Given s, this equation yields 
two values of n (ordinary birefringence). When account 
is taken of the dependence of & on k =wns/c, the degree 
of Eq. (23) and the number of its roots increase-ad- 
ditional light waves appear. 

Crystals with rhombic symmetry. In these crystals 
there exist only nondegenerate exciton bands. We con- 
fine ourselves to the case when s lies in the mirror- 
symmetry plane of the crystal-the yz plane. The co- 
ordinate axes x, y, and z  are  chosen along the twofold 
crystal axes. They a re  not the principal axes of the 
tensors x, and Q'" in (11). Equation (23) reduces to 

Only one of the diagonal elements of the dyad Q"' differs 
from zero. 

If Q% # 0, then c ,, and C , have no spatial dispersion 
and by equating the square bracket in (24) to zero  we ob- 
tain one unknown wave polarized in the yz plane. Equat- 
ing on the other hand the round bracket in (24) to zero 
and taking (11) into account, we obtain to  waves equally 
polarized along the x axis with refractive indices 

where 

If Q:: # 0, then E, and E ,, have no spatial dispersion 
and by setting the round bracket in (24) equal to zero 
we obtain one known wave polarized along the x axis. 
On the other hand, equating the square bracket to  zero 
and taking (11) into account, we obtain two waves po- 
larized in the yz plane with refractive indices 

If Q:: 20,  then the result can be obtained from (27) by 
the substitution y  z z .  

Uniaxial crystals. In this case we consider an arbi- 
t rary  direction of s. Choosing the z axis along C, and 
the x axis perpendicular to the (C, s )  plane, s o  that 
these axes coincide with the principal directions of the 
tensors x, and Q(", we arr ive  again a t  Eq. (24). If ELL 
approaches the energy of the nondegenerate exciton, 
then only one component Q:: of the tensor Q'') differs 
from zero. The vanishing of the round bracket in (24) 
leads then to one ordinary wave polarized along the x 
axis. The vanishing of the square bracket in (24) when 
account is  taken of (11) leads to two waves polarized in 
the yz plane and having refractive indices determined by 
a formula such as (27). 

If Ew approaches the energy of the doubly degenerate 
exciton bands, then x is  given by (18). In this case & ,, 
and & ,, have spatial dispersion, but E ., does not. Equat- 
ing the round bracket in (24) to zero, we obtain two 
waves with like polarization along x and with refractive 
indices determined by formulas (25) in which we must 
put 1 =l. Equating the square bracket in (24) to zero, 
we obtain two waves polarized in the y z  plane. Their 
refractive indices a re  determined by a formula such a s  
(27), in which we must put l =2  and make the substitu- 
tion y l z  everywhere. 

Cubic crystals. Specifying the arbitrary direction s, 
we choose the coordinates x, y, and z  along the princi- 
pal directions of the tensor x and of c ,  a s  indicated in 
the corresponding subsection of the preceding section 
(see the text preceding formula (19)]. In this case 
zll s, (E) = E ., and Eq. (23) takes the form 

The tensor x is determined by formula (20), which 
shows that al l  three principal values of x have spatial 
dispersion. 

Equating to zero the factor E,, in (28), we obtain a 
longitudinal wave with a refractive index 
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where $, is given by (21); it does not depend on s. 

Equating to zero the second factor in (28), we obtain 
two waves with like polarizations along the x axis. 
Their refractive indices a re  determined by formulas 
(25) and (26), in which we must put 1 =1, Go, = go. 

Finally, equating to zero the third factor in (28), we 
obtain two waves identically polarized along the y axis. 
Their refractive indices are  given by (25) and (26), in 
which we must put 1 =2 and &, = E,. 

We note that the number of auxiliary waves (on top of 
the two waves of ordinary birefringence) is equal to the 
number of excitons that enter into resonance, i.e., to 
the number of fractional terms in (7). Thus, one ad- 
ditional wave appears in the region of the nondegenerate 
exciton, two in the region of the double degenerate one, 
and three in cubic crystals. This is understandable, 
since the additional wave is produced from the exciton 
wave a s  a result of the electromagnetic wave that ac- 
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companies the exciton wave and as a result of the time 
delay. 
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