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Dependence of the NMR relaxation time on the magnetic 
field in quasi-one-dimensional and quasi-two-dimensional 
crystals 

A. I. Buzdin and L. N. ~ulaevskff 
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The effect of electron transitions between chains on the dependence of the NMR relaxation rate T;' on 
the magnetic field H in highly conducting quasi-onedimensional compounds is considered. It is shown that 
the study of this dependence is an effective method for determining the transverse resonance integrals in 
quasi-onedimensional compounds. The dependence of TiL on H in donor-acceptor crystals of the TTF- 
TCNQ and HM'ITF-TCNQ type is found. The transverse resonance integrals in TTF-TCNQ are 
determined from data for the NMR relaxation. The experimentally 0bSe~ed logarithmic dependence of 
the NMR relaxation rate on the magnetic field in the compound HMTSF-TCNQ is explained. The 
dependence of the relaxation rate on the magnetic field in quasi-two-dimensional compounds is found. 

PACS numbers: 76.60.E~ 

1. INTRODUCTION system in conditions of strong scattering of electrons 

Experimental studies of the NMR relaxation in highly 
conducting quasi-one-dimensional crystals of the TTF- 
TCNQ type1* show that, a t  room temperatures and in 
sufficiently strong magnetic fields (10-40 kOe), the 
dependence of the NMR relaxation rate TI-' on the mag- 
netic field H i s  observed to be of the form TI-'- H-'/z 
characteristic for one-dimensional systems. The in- 
crease of the quantity TI-' with decrease of H breaks 
down in fields below about 10 kOe, and TI-' tends to a 
constant limit a s  H - 0. At the same time, the theory 
of NMR relaxation in metals shows that, when scatter- 
ing of electrons by impurities or  phonons is disregarded, 
the quantity TI-' in systems of any dimensionality is in- 
dependent of the magnetic field H s o  long a s  the Zeeman 
energy tiwe of the electrons remains small compared 
with their Fermi  energy c,. The latter condition is 
fulfilled by a large margin in the quasi-one-dimensional 
crystals investigated in Refs. 1-4. In connection with 
this it was noted in Ref. 1 that the dependence TI-' 
- H-'/z in quasi-one-dimensional crystals may be as- 
sociated with nuclear-spin relaxation via the electron 

moving along the chain. In this situation the spectrum 
of the long-wavelength electron spin excitations re- 
sponsible for the NMR relaxation via the electron sys- 
tem acquires a diffusive character: w(k) = D P ,  where 
D is the coefficient of diffusion of the electrons along 
the chain. When the motion of the spin excitations has a 
diffusive character the spin density a t  a given site de- 
creases with time t like t"I2, t-l, and t-d2 a s  t -  w in 
systems with dimensionaltiy 1, 2 and 3, respectively. 
This decay gives dependences of the rate of diffusion 
of the excitations on the frequency we of the form 

llnwel, and const as we - 0 for systems with di- 
mensionality 1, 2, and 3.') 

It has also been noted1 that the limitation of the re- 
laxation rate a s  H- 0 in quasi-one-dimensional metals 
is connected with the effects of the three-dimensional 
motion of the electron spin excitations, i.e., with 
transitions of electrons from filament to filament (in 
layer crystals the limitation of the increase a s  H'O 
is connected with transitions of electrons between 
layers).2) 
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Since the value of the relaxation rate a s  H- 0 in 
strongly anisotropic crystals depends in an essential 
way on the transverse resonance integrals describing 
the motion of the electrons between the filaments (or 
layers), a study of the dependence of the NMR relaxa- 
tion rate on the magnetic field gives the possibility of 
determining these integrals and thereby establishing the 
transverse structure of the electron spectrum of the 
crystals. 

In principle, direct information on the width of the 
energy bands in the perpendicular (to the chains o r  
layers) direction might be given by measurements of 
the transverse electrical conductivity of the metals. 
However, an estimate of the absolute value of the trans- 
verse resonance integrals from conductivity data is 
scarcely reliable in conditions when the anisotropy is 
very large (because of macroscopic defects and diffi- 
culties with contacts in direct-current measurements). 
In view of this, it appears to us to be more reliable to 
determine the transverse resonance integrals from data 
on the dependence of TI -' on H, since such measure- 
ments give information on the internal anisotropy in- 
trinsic to the crystals. 

To describe the three-dimensional motion of the elec- 
tron spin excitations the authors of Ref. 1 introduced a 
phenomenological parameter T;'-the frequency of 
electron hops between chains, and estimated it from the 
experimental data for TI-'(H). This procedure is sim- 
ple and physically visualizable, but only qualitatively 
reflects the essence of the dependence of TI" on the 
transverse resonance integrals in weak magnetic fields. 
Therefore, the aim of the present work i s  to  obtain the 
exact dependence of T, -' (H) on the microscopic charac- 
teristics of quasi-one-dimensional and layer crystals. 
A knowledge of this dependence makes i t  possible to de- 
termine quantitatively the characteristics of the electron 
spectrum of quasi-one-dimensional and layer crystals 
for  the transverse directions of motion of the electrons 
from experimental data on the dependence of the relaxa- 
tion rate on the magnetic field. 

2. FORMULATION OF THE PROBLEM AND BASIC 
EQUATONS 

We shall consider that part of the nuclear relaxation 
rate of a nucleus with coordinate n which i s  determined 
by the isotropic (contact) hyperfine electron-nuclear 
interactionAZ,S,, where I, is the nuclear spin and S, 
the electron spin on molecule n (to describe the motion 
of the electrons we shall use the tight-binding approxi- 
mation). In a magnetic field the rate of relaxation a s  a 
result of this interaction for hoe<< T is determined by 
the expression 

where A is the hyperfine-structure constant and ~ ( n ,  we) 
is the local susceptibility of the electron system, with- 
out a magnetic field, for  the site n a t  frequency we? If 
we take into account the anisotropic electron-nuclear 
dipolar interaction of the nucleus n with the spin of the 
molecule m, we obtain for TI-' an expression of the 

where w, = y,H; y,, is the nuclear gyromagnetic ratio. 
As will be shown below, the change in the law for the 
dependence of TI-' on the field occurs a t  frequencies 
we - tir, where T is the mean scattering time and t, is 
the transverse resonance integral (in lower fields, TI-' 
ceases to depend on the magnetic field). Since on<< we, 
the third term in the expression (2) is  essentially inde- 
pendent of the field in the fields attainable in practice, 
and we shall not take into account below. 

For  crystals with one molecule in the unit cell the 
local susceptibility is  the same for all molecules and 
the expression (2) takes the form (1) with a renorma- 
lized constant A. In donor-acceptor crystals with two 
conducting chains the local susceptibility i s  different 
for the different chains. In this case the expression (2) 
takes the form 

where the indices a, P = 1 ,2  indicate the type of chain 
(acceptor o r  donor), n is the coordinate of the unit cell, 
~ ( n ,  a, cue) is  the local susceptibility of the chain of type 
a, which depends on o! but i s  practically independent of 
n, the parameters Aaa2 take into account the isotropic 
and anisotropic interaction of the nucleus a t  an o! mole- 
cule with the spins of molecules of the same type a, and 
the parameters AaBZ with a +  P take into account the 
ansiotropic interaction of a nucleus of an a molecule 
with the spins of molecules of -type P. 

For a system of free electrons, taking their scatter- 
ing by impurities into account we have 

d o  
x(n, a ;  a, )=- ig lpsa  ( ~ ( n a ,  na; r)G(na, na; a + & ) ) .  (4) 

where G (na, mP; w) is the Green function of the motion 
of an electron from molecule n a  to molecule mP at  
frequency w, and the symbol ( . . . ) denotes averaging 
over the impurities. 

Thus, with neglect of the Coulomb repulsion of the 
electrons the problem of the determination of TI-' re- 
duces to averaging a product of Green functions over the 
impurities. For a three-dimensional isotropic system 
the corresponding calculations of the susceptibility were 
performed by Fulde and Luther, who calculated the 
average of the product of Green functions in the ladder 
appr~ximat ion.~ In the three-dimensional case the con- 
tribution of all the other diagrams is small in the pa- 
rameter (kFl)-' ,  and the ladder approximation gives the 
solution of the problem for a system with a small quan- 
tity of impurities. In the present paper we also use this 
approximation, in an application to quasi-one-dimen- 
sional crystals, although it i s  known that in the one- 
dimensional case, generally speaking, all  the other dia- 
grams may not be small, even for k,l>> l, because of 
specific interference effects in the scattering of an elec- 
tron by impurities. Nevertheless, in the one-dimen- 
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sional case too, situations in which the ladder approxi- 
mation gives correct results a r e  possible. For exam- 
ple, Gogolin, Mel'nikov, and Rashba have shown that in 
a one-dimens ional system of electrons interacting with 
phonons and being scattered by impurities a t  not too 
low temperatures T T ~  >>I (where T, is  the mean scatter- 
ing time for scattering by impurities), in conditions of 
strong scattering by phonons (T,,<< 7,) and for a suffic- 
iently large width A of the phonon spectrum (ria>> 1)  
the motion of the electrons is described by an ordinary 
kinetic equation that is equivalent to taking only the 
ladder sequence of diagrams into a ~ c o u n t . ~  In practice 
these conditions a re  fulfilled a t  room temperature in 
crystals with a sufficiently small quantity of impurities. 
At present we cannot estimate the parameter T, in the 
crystals under consideration, and s o  we do not know 
whether the conditions a re  fulfilled in them.g However, 
the use of the ladder approximation for  wer<<l (T is the 
effective mean time of scattering of an electron by im- 
purities and phonons) leads to diffusive character of the 
propagation of the spin excitations and to  the dependence 
TI-'- H-"~, which is observed experimentally in TTF- 
TCNQ and NMP-TCNQ a t  room temperatures in mag- 
netic fields above 10 kOe. In effect, these experimental 
results a re  a proof of the applicability of the ladder 
approximation for  the crystals under consideration at 
those temperatures for which the dependence TI-' - H'lt2 i s  observed in sufficiently strong fields H, al- 
though we do not now know with certainty which pa- 
rameters determine the smallness of diagrams of the 
nonladder type in these conditions. Introducing the no- 
tation G (na,mP, w) =GUB(n, m, w ) ~ G , ~  (n- m, w), we 
write the expression (4) in the form 

In the ladder approximation we obtain a system of 
(5 

equations for the average of two Green functions: 

and analogous equations obtained from (6) by inter- 
changing the indices 1-2. In Eqs. (6) T, is the effec- 
tive mean free time of an electron on a chain of type a, 
and N,(O) = l/nv, and v, are  the density of states of 
electrons a t  the Fermi  level and the Fermi  velocity of 
the electrons of chain (Y (we consider the situation when 
the transverse resonance integrals a r e  small and the 
contribution of the transverse motion of the electrons 
to the density of states N,(O) is small). Introducing the 
notation 

we obtain from (6) 

and an expression for X,,, obtained from (8) for X,, by 
the interchange 1 -- 2. In formula (8) the quantity xu0 
is the static susceptibility of a chain of type a. In cal- 
culating (7), (8) we make use of the conditions T, we 
<< E,. Then in the calculation of the electron Green 
function the occupation numbers of the states can be 
taken a t  T = O  (but the time T, corresponds to the tem- 
peratures under consideration!). Following Ref. 8, we 
divide the range of integration in the expression (8) for 
x (n, a, we) into three regions: 1) w <- we, 2)- we < w < 0, 
3) w>O. In the region 2 the quantity X,, depends in an 
essential way on we, because of the opposite signs of 
the imaginary parts of the functions (G). Since w<< E,, 

in this region we can put here X,,(q, o, we) =X,,(q, 0, we). 
In the regions 1 and 3, because of the condition we << E,, 

we can put we = O  and extend the integration over the 
region 2: the corresponding expression is found to be 
purely imaginary and does not give a contribution to 
TI-'. The expression (8) finally takes the form 

We shall use the expression (9) afterwards, in the cal- 
culation of the quantity T, in quasi- one-dimensional 
and layer crystals. The further calculation of the quan- 
tity Imx (n, a, we) depends on the specific structure of 
the crystals. In the present article we shall consider 
quasi-one-dimensional crystals in which planes of ac- 
ceptor (A) and donor (D) chains alternate (crystals with 
the TTF-TCNQ structure), and crystals in which donor 
and acceptor chains alternate in all  the transverse di- 
rections (structure of the HMTTF-TCNQ type). For  
layer crystals the quantity TIm1 will be calculated only 
for  a structure with one layer in the unit cell. 

3. RELAXATION IN QUASI-ONE-DIMENSIONAL 
CRYSTALS WITH STRUCTURE OF THE 
T I  F-TCNQ TYPE 

The structure of the TTF-TCNQ crystal  in the plane 
perpendicular to the chains is  shown schematically in 
Fig. 1; also shown there a re  transitions of electrons be- 
tween atoms, described by the transverse resonance 
integrals t,,, t,,, and t,, (these are ,  respectively, the 
transitions between the nearest atoms of neighboring 
chains AA, DD, and AD). We denote by (Gaa0) the 
Green functions of the electrons in the layers cr when 
transitions between chains of different kinds a r e  not 
taken into account: 

G-. (pn pn a )  - ( ~ + ~ , - Y ~ I P . I  -2t- COS p= + 
where p, is the momentum along the chain and p,  is the 
momentum in the plane of chains of the same kind (along 
the axis c) in units of c-I (c is the distance between 
chains along the axis c). To describe the motion of the 
electrons in the direction of the axis a we make use of 
the discrete coordinate m-the label of the unit cell, 
which contains two layers of acceptor and donor chains. 
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(7,-' reaches 3 x lox4 sec-' at  T = 300 K in TTF-TCNQ, 
and w , ~ = l O - ~  for H=100 kOe). 

FIG. 1. Structure of the TTF-TCNQ crystalinthe plane per- 
pendicular to the chains; the TTF donor (D) chains are denoted 
by 0 and the TCNQ acceptor (A) chains by X; the transverse 
resonance integrals tii, t22, and tiz correspond to transitions 
between neighboring atoms of chains AA, DD, and AD, respec- 
tively. 

The system of equations for the Green functions has the 
form 

where 6, i s  the Kronecker symbol. Going over to the 
momentum representation along the axis a and measur- 
ing the corresponding momentum P, in units of the in- 
verse spacing a-' between the chains along the axis a ,  
we obtain the following expressions for the Green func- 
tions : 

In the calculation of X,,O we make use d * exprek  
sions (12) for the one-electron Green fumetims, in 
which we perform an expansion in the quantities t =(GI, 
t,, t,,); the expansion paramelr is t r<<l  (we assume 
that E Fr >> 1; otherwise, the parameter d the expans- 
in t i s  the ratio t/c, << 1). The quantity Imx (n,m, we) is 
determined by integrating ReX,,4q, 0, we) over q. Tbse 
principal contribution to  this integral for T, w, 7,-' 

<< cFrr is given by the regions d imtegrat i i  over 4, 
near the longitudinal-momentum values q,=O and 4, 
=2k,,, inasmuch a s  a small energy transfer is  as- 
sociated only with transitions of electrons neartthe Fer- 
mi surface. We shall consider f i r s t  the expression for 
X,,(q, 0 ,  we) in the region of small momenta q,. Assum- 
ing that wer, << 1 and q,v,r, << 1 we obtain 

X, ,  (q, 0, o . )  =GljGtG2-64ti,'[~iv,(p,-'rl-l 
+U~-'T,-')']-'  cos2(qJ2)  I-' 

and G, is obtained from G, by the interchange of indices 
1 -- 2. From (13) it is clear that, with the condition we 
have used (wera <<I), the propagation of spin excitations 
with small momenta q has a diffusive character. (The 
opposite case of coherent propagation of excitations 
with small momenta q is realized for wera >> 1). We 
note that at room temperatures in quasi-one-dimen- 
sional compounds the condition we?, << 1 is fulfilled by 
a large margin even in fields of the order of 100 kOe 

However, in TTF-TCNQ at room temperature the 
quantity E,T, only attains values of 2 - 3, s o  that the 
condition we have used (zFra>> 1)  is fulfilled a t  the lim- 
it. The expression (1 3) makes it possible to find the co- 
efficients of diffusion along the crystal axes b, c, and a, 
and then the corresponding expressions for the electricai 
conductivity along the axes b, c, and a: 

The expresston (13) that we have obtained differs from 
the correspmding phenomenological expressions pro- 
posed in Refs. 1 and 3; moreover, it does not reduce to 
%em even in the limit of small momenta q, and q,. We 
note also that the region of applicability of (13) is not 
bounded by small transverse momenta, and this is ex- 
tremely important for the quantitative determination of 
the relaxation rate by means of ((2) and (9), since in the 
integration over q, a d  q,  all tk regions of integration 
give a comparable carttribrrtiaaz We can now substitute 
(13) into (9) and perf- t k  idtegration over the region 
of small momenta q, "Ihe irbzgral over q, with the 
function (13) conveqps at the upper limit, and the im- 
portant c ~ b u t i o r s  b given by momenta q,  2 ( ~ ~ / r ) ' / ~ v "  
<< r-'u-', '%%is estiDnai?e justifies our restriction to just 
the first  tern of the m s i o n  in vq,, since the ex- 
pansion -meter is @be qmarltity uqq,r (or tq,/&,). Per- 
forming the integmtion oven the momentum q, we obtain 
the coritstbution to w,"Ianx(m,l, we) from the diffusive 
propagat+on of the spin emikkions, in the form 

where b is the distance between mlecu les  along the 
axis b, and 

here, 

-41, z=f,'f,*+f,'fz*'fz"f15~f~"frT, 
I If 

fl.2=fr,zSif1,z=-ioW++T+ s in2z+g+zt  (X++iX-) ,  

X=X'+iX"=-w2W-+(g+2-g-~cosz y+ (T -  s in'xf  g-)' 
+2iw W- ( T -  sin' x+g-) , 

W , = 1 / 2 f  T ~ U ~ ~ / ~ T , V ~ ' ,  T t -4~z ( t , l l v22u , -2 f  tz?)//il( 
ga=4tlt,?" (If rrv2/~,v,)/fiZ(r~/rl+u1/uI). 

We obtain the function Fz(w) from (16) by interchanging 
the indices 1 -- 2 in the expressions for W ,  , T,, and 
g,; to obtain the expression for we-lIrnx (n, 2, we) it is 
necessary to  make the same replacement in the expres- 
sion (15). The dependence F(w) is determined by the 
five parameters r1/r2, v1/v2,  t122~2,t112/t122, and tzz2/tl12. 
For 

we obtain from (15) the "one-dimensional" regime 
F(we) - AS w - 0 the function F ( w )  tends to a 
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finite limit F(0) because of the transverse motion of the 
electrons, and F(O)-~, - ' /~ ,  where w, =8t27/ii2 for  t 
=tll =tz2 =t12 and v, =v2, T, =r2 =T. 

We shall consider now the contribution to 
Imx (n, CY, we) from the integration over the region of 
momenta q, near 2kF. Carrying out analogous calcula- 
tions, we find that the contribution to the imaginary part  
of the susceptibility from momenta q,- 2kF is small, 
in the parameter wer<<1, compared with the diffusive 
contribution that we have taken into account. 

Up to now we have assumed the electrons to be non- 
interacting. It is not difficult, however, to take the 
Coulomb exchange interaction of the electrons into ac- 
count in the framework of the random-phase approxi- 
mation, in analogy with Ref. 8. Without dwelling on the 
calculations, we give the final result: in the expres- 
sions (15) for Imx (n, 1, we) it is necessary to make the 
replacements tl12 - P12tl12, tl; - Pltl;, V1 - Plvl, 7, - 71/P1, 
where P, =l  - V,/nvl; V, is the exchange Coulomb po- 
tential on the acceptor chain. The condition for applica- 
bility of the random-phase approximation is a weak 
Coulomb interaction, i.e., 1 - PI << 1 and 1 - P2 << 1. 

4. RELAXATION IN QUASI-ONE-DIMENSIONAL 
CRYSTALS WITH STRUCTURE OF THE 
HMTTF-TCNQ TYPE 

In crystals of this type the donor and acceptor chains 
alternate along the two transverse directions of the 
axes a and c (see Fig. 2). The interaction of nearest 
molecules of neighboring chains i s  described by two 
transverse integrals tl and t2. 

We choose the x and y axes as shown in Fig. 2 and 
introduce discrete coordinates m and n among these 
axes. The indices 1 and 2 refer, a s  earl ier ,  to the ac- 
ceptor and donor chains. In the momentum represen- 
tation (along x and y) we have equations for the Green 
functions GaB (p): 

G, ,  ( p )  =G,,'(p,) +t,GI,O(pX) [ l + e - " P = + p ~ ' l G ~ ~  (P*)  
+G,,O(p.)t,(e-iP=+e-*u)Gtl ( P I ,  

(1 7) 
G,, ( p )  =G220(pz) ti  [l+ei'p~+py)]GI1 ( p )  +GZLO(pz) t2(efp=+e'py) G I ,  (P). 

The solution of this system has the form 

FIG. 2. Structure of the HMTTF-TCNQ crystal in the plane 
perpendicular to the chains; the donor chains are denoted by 
0 and the acceptor chains by X, the transverse resonance 
integrals ti and t2 correspond to transitions between neighbor- 
ing donor and acceptor chains along the axes c and a, respec- 
tively; their difference is due to the anisotropy of the mole- 
cules. 

GI~(P)=G, ,O(P*)  [ I -~G, ,O(P*)GZ,O(P~)  It, cos( ( P = + P , ) / ~ )  
+t, cos ((p,-p, ) /2)  1'1-', (18) 

G,, ( p )  =[Gaz0(p.) G1,O(pz) [ t l  (l+e'(p=+Pu)) +tl(e'P=+e'pu) I I 
~ [ 1 - 4 G i ~ ' ( p ~ ) G z a ~ ( p ~ )  [ t i  cos ( ( ~ z + ~ v ) / 2 ) + t r  cos ( ( P = - P v ) / ~ )  ]'I-'. 

Using the values of Gag (p, w) that we have found and ex- 
panding them in the parameter t7, we calculate the 
quantities XaBO. For  W,T << 1 we obtain from (8) expres- 
sions for X,,(q, 0, we) for small  q,: 

G, (q., o)  =-io+ ( q , ~ , ) ~ . c , + 8 ( t , " + t ~ ~ )  vz - ' (~ l - l ~ I - l+vZ-L~ l - ' ) -L ,  

G2=Gl (l* 2 ) ,  
(19) 

o.=4e2tlza/niisc ( V , T ~ - ' + V ~ T , - ~ ) ,  
o,=deztzzc/xfi3a ( U ~ Z ? - ~ + V ~ T ~ - ' ) .  

Integration over the longitudinal momentum q, gives for 
the diffusive contribution to we-'Imx(n, 1, we) the expres- 
sion (15), where, in determining F1(w) from formula 
(16), it is necessary to put T, equal to zero  and re- 
place tl$- t12 +t; and cosy -[t12cos(x +y) + t;cos(x - y)]/ 
(t12 + tZ2). In the integration over q, in the expression 
for  Imx (n, a, we) the region of momenta about q,  =2k, 
gives the same small contribution a s  in the preceding 
section, and, consequently, may be disregarded in the 
determination of the dependence of the relaxation rate 
on the magnetic field. 

At present there is very little experimental data on 
the dependence of the NMR relaxation rate on the mag- 
netic field in compounds of the type HMTTF-TCNQ. 
We know of appropriate experimental results  only for  
the compound HMTSF-TCNQ.4 The data from measure- 
ment of the transverse conductivity in this compound1 
show that U,/U,E Thus, the transverse anisotropy 
of the compound HMTSF-TCNQ is rather large (t12/t$ 
-10); the structural data also indicate this. 

In crystals with A T-I >> tl >> t2 we can distinguish a 
"one-dimensional" region, with the dependence T,-' 
- H-'I2 in fields T-' >> we >- 8t12r/A2, and a "two-dimen- 
sional" region with the dependence TI-' - lnw, in fields 
8t127/E2 >> we >> 8t22~/A2. In the "two-dimensional" 
region the dependence T, -' (H) for 7, = 7, = T and vl =a2 
= u  has the form 

where the constant C describes the contribution that 
does not depend on the field. For we - 0 we find for 

TI (0) an expression that can be obtained from (20) by 
replacing we by 8tZ2r/ti2 and using a slightly different 
constant C (the difference in the constants C can be ob- 
tained by numerical calculations on the basis of the 
formulas (15), (16) with the replacement indicated 
above ). 

Experimentally the dependence Tlql(H) in HMTSF- 
TCNQ has  been investigated in fields f rom 10 to  100 
kO13.~ In this region, a s  can be seen from Fig. 3, the 
relaxation rate depends logarithmically on the field, 
in accordance with formula (20). The fact that the re-  
laxation rate in HMTSF-TCNQ i s  not observed to ap- 
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FIG. 3. Dependence of the relaxation rate in the compound 
HMTSF-TCNQ on the magnetic field H (in kilo-oersteds); 0 are 
the experimental data of Ref. 4. 

proach the "one-dimensional" dependence T, -' - H-Ir2 
even in fields of the order of 100 kOe indicates the 
greater value (as compared with TTF-TCNQ) of the 
resonance integral t, (this conclusion is in agreement 
with the results of measurements of the anisotropy of 
the conductivity-in HMTSF-TCNQ the ratio ob/oa=33, 
whereas ob/oa =I20 in TTF-TCNQ). The approach of 
TI-' to a constant with decrease of the field was not ob- 
served in Ref. 4, since measurements in weak fields 
were not made. We note that such measurements would 
give direct information on the quantity tZ2r. 

5. NMR RELAXATION IN LAYERED CRYSTALS 

In layered crystals the ladder approximation is ap- 
plicable under the same conditions a s  in a three-dimen- 
sional isotropic system, i.e., for  k,l>>l. In calculating 
the imaginary part of the local susceptibility we shall 
assume the motion in a layer to  be isotropic, and de- 
scribe transitions between layers in the tight-binding 
approximation, assuming that the resonance integral 
of the transition between layers t<< T"E, where T i s  
the mean scattering time of an electron in a layer. The 
calculations of the average of the product of one-elec- 
tron Green functions a r e  completely analogous to those 
described in Sec. 3, and the final result for ~ ( q ,  w) for 
small momenta q = (q,, q,) within a layer (q,, V,T << 1) 
has the form 

where q ,  is  the momentum for  motion of the electrons 
across the layers, in units of the inverse spacing be- 
tween the layers. The imaginary part (the part  of in- 
terest  to us) of the local susceptibility is  obtained by 
integrating we-lIrnx (q, we) over q. (The integration over 
large momenta q,, gives a contribution that is indepen- 
dent of w for wr<<l). The dependence of the relaxation 
on the magnetic field is determined by the contribution 
to  the integral over ql, from small  momenta qll, i.e., 
by the integral of the expression (21) over qll between 0 
and qll-1/1. As a result of the integration over 411 we 
obtain 

Thus, in strong magnetic fields w,>>8t2r/E2 (the "two- 
dimensional" regime), the relaxation rate in quasi-two- 
dimensional compounds increases logarithmically with 

decrease of the magnetic field, but a s  H-0 the relaxa- 
tion rate tends to  a constant value because of the motion 
of electrons between layers. Thus, experiments on the 
observation of the dependence of the NMR relaxation 
rate on the magnetic field in layered crystals make i t  
possible to  determine the resonance integral t. How- 
ever, the experimental observation of the logarithmic 
dependence is evidently possible in practice only in 
crystals with very weak electron tunneling between 
layers. In the intercalation layered crystals 
TaS,(aniline)J4 and TaS,(Py),/,, from data for the super- 
conducting properties the quantity 8Pr/i5 corresponds 
to an energy of the order of 1-3 K (Ref. 10) and the 
logarithmic dependence of TI-' on H can be observed 
only in fields exceeding 30 kOe. In accordance with 
this, we can explain the result of Ref. 11: in the com- 
pound TaS,(Py)l/, a t  room temperatures, no dependence 
of TI-' on the magnetic field was detected in fields up 
to 6 kOe. 

6. DETERMINATION OF THE TRANSVERSE 
RESONANCE INTEGRALS FOR TTF-TCNQ 

In Sec. 2 the expression (3) was obtained for the de- 
pendence of the relaxation rate on the magnetic field. 
It can be represented in the form 

where F,(w,)  is  determined by the expressions (16) and 
depends on the five parameters T,/T,, v1/v2, tlZ2r2, tllZ/ 
tlZ2, and tzZ2/tl,2. It is the last three parameters that 
characterize the transverse electron structure, and 
our problem i s  to determine them. The parameters 
CaO and Gag a r e  determined by the interaction of the 
nuclear spins with the electron spins and by the charac- 
ter  of the motion within the chains; the quantities C,, 
and C,, a re  determined entirely by the dipole-dipole 
interaction, while the parameters CaO and C,, a re  de- 
termined also by the contact interaction. 

For the determination of the unknown parameters we 
have at our disposal the dependence TI,-'(H) of the re- 
laxation rate a t  the protons in TTF(D4)-TCNQ samples 
(there a r e  protons on the acceptor only-the donor 
molecule is deuterated) and the dependence TI,-' (H) 
of the relaxation rate at the protons in TTF-TCNQ(D4) 
(Ref. 1). These experimental data a r e  not sufficient 
to determine the numerous independent parameters of 
the problem. Since, in the experimental data, the 
e r r o r  in the determination of the quantities TI,-'(H) 
is rather large, and the quantities TI,-' a re  not sensi- 
tive to  all  variations of the parameters, we shall make 
additional approximations in the expressions for T," 
and determine some of the parameters from other, in- 
dependent measurements of the magnetic susceptibility 
and conductivity. F i r s t  of al l  we put C,, = C,, =0, since 
the quantities C,, and C,, a r e  determined by the dipole- 
dipole interaction, which is small  compared with the 
contact interaction. (By the estimates of Ref. 12, the 
parameters C,, and C,, amount to about 20% of the pa- 
rameters C,,.) h r t h e r m o r e ,  we shall not take into 
account the Coulomb repulsion of the electrons in the 
expressions for F,(w) and F,(w). We shall consider 
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the functions 

which depend now on only five parameters. We shall 
determine the parameter v,/v, from the data of Ref. 13, 
in which the ratio X , O / ~ , O  of the static susceptibilities 
of the acceptor and donor chains, equal in our approxi- 
mation to  v,/v,, was found. We take the parameter T,/ 

T, equal to v,/v,. This relation is valid if the electron 
mean free time i s  determined principally by the scat- 
tering of the electrons by intermolecular vibrations and 
the temperature is sufficiently high (T >> o,,, where 
w,, a r e  the Debye frequencies of the chains). The three 
parameters associated with the transverse resonance 
integrals of interest to us remain unknown. In the situa- 
tion when the parameters t,,, t,,, and t,, do not differ 
very much, the function F(w) depends essentially on 
only one parameter with the dimensions of frequency, 
which determines the crossover from the dependence' 
F(w)- w-lt2 to the dependence F(w) =const a s  the f re-  
quency i s  lowered. Therefore, from the data for TI,-' 
and TI,-', only two parameters can be determined suf- 
ficiently unambiguously: the absolute parameter tlZ2r, 
and one relative parameter. To determine the second 
relative parameter we have used the ratio of the con- 
ductivities 

and expressed the parameter t,,2/tl,2 in terms of the pa- 
rameter tl12/t,,2. The remaining two parameters 4,,/ 
tIz2 and t , , ,~ were calculated from the data of Ref. 1 for 
B,,,(H) in TTF@,)-TCNQ and TTF-TCNQ@,) crystals, 
using the parameters H,,, determining the behavior of 
B,,,(H) in high fields, when B,,,(H) = (H,,,/H)'/~. The 
calculation gives t2,2/t,,2 = 2, tl12/t222 = 3.5, and tZz2r, 
=0.31x10n sec-I for T =298 K, v,/v, =3/2 (Ref. 131, and 
a,/a, = 8  (Ref. 14). Using the parameters found, we cal- 
culated the curves 0, ,,(H) numerically. These calcu- 
lated curves, together with the experimental data of 
Ref. 1, a re  given in Fig. 4. As can be seen from Fig. 4, 
the agreement of the calculated curves with the experi- 
mental points is perfectly good.3) 

We can now estimate the values of the transverse re- 
sonance integrals, if the quantity T, is  known. By tak- 
ing T,-' + T,-' =0.32 X 1015 sec  from the optical measure- 
ments of Ref. 15, we obtain t,, =14 K, t,, =10 K, and t,, 
=26 K. For comparison we give the results of a cal- 
culation of the transverse resonance integrals by the 
method of molecular orbitals: t, =2.5 K, t,, =13 K, and 
t,, =17 K.16 We can also verify the consistency of our 
parameters by calculating the absolute values of the 
conductivity a, from (14) and comparing it with the re- 
sults of measurements of u,. The calculation gives a 
quantity of about 4 ohm" cm-I; experimentally, a, 
=4 - 6 ohm-' cm-I (Ref. 14). The agreement of the 
theory with the experimental data i s  perfectly good, 
even though we made a rather crude approximation, as- 
suming the interaction of the electrons to be unimpor- 
tant, in the calculations of B,(H). In fact, however, al- 
lowance for the not very strong Coulomb interaction re- 
duces principally to a renormalization of the parameters 

FIG. 4. Dependence of O(H) , , ,  on (H1,2/~)1'2 for TTF-TCN&; 
@and 0 denote the experimental data of Ref. 1, and the curves 
1 and 2 are calculated theoretically for TTF(D4) -TCNQ 
TTF-TCNQ@(), respectively. 

used, and our calculations take into account that part 
of the interaction which reduces to a simple proportional 
renormalization of the quantities v,, v,, T,, and T ~ .  Thus, 
the most important question becomes that of whether 
the repulsion of the electrons in TTF-TCNQ is large 
o r  small. Our model of weakly interacting electrons 
gives a good description of the experimental data for 
the NMR relaxation rate and conductivity and agrees 
with the results of quantum-chemical  calculation^^^ for 
the transverse resonance integrals. However, final 
conclusions on the role of the Coulomb repulsion in de- 
termining the relaxation rate and conductivity in TTF- 
TCNQ can be drawn only after consideration of these 
phenomena in the framework of a model with strong 
Coulomb repulsion. 

We now discuss the question of what physical con- 
clusions can be drawn from the results we have obtained 
for the transverse resonance integrals. The transverse 
resonance integrals in TTF-TCNQ a r e  small  compared 
with the characteristic parameters of the Peierls  transi- 
tion. Therefore, the gap that appears in the Peierls 
transition covers the entire Fe rmi  "surface" in this 
compound and the transition in TTF-TCNQ leads to a 
dielectric ground state. In HMTSF-TCNQ the situation 
is different. In this compound the relaxation rate does 
not depend on the magnetic field in fields of up to 60 
kOe (Ref. 4) and the width of the band in the direction of 
the axis a is found to be substantially greater than in 
TTF-TCNQ. Therefore, although a superstructure does 
appear in HMTSF-TCNQ, the corresponding gap only 
partially covers the Fermi  surface and the compound 
HMTSF-TCNQ remains metallic a t  al l  temperatures. 

The values of the transverse resonance integrals also 
make i t  possible to estimate the contribution of electron 
tunneling in the interaction of charge-density waves in 
TTF-TCNQ.17 This contribution turns out to be unim- 
portant in comparison with the contribution from the 
elastic interaction of displacements on different chains. 
This question is considered in more detail in Ref. 18. 

The authors thank the participants in V. L. Ginzburg's 
seminar, and especially D. I. ~ h o m s k i i ,  for useful 
discussions of questions treated in the article. 
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"The analogous dependence Ti* - is also observed in 
dielectric crystals containing linear chains of localized 
electron spins. In this case the quantity Ti-' depends on the 
character of the propagation of the spin excitations in the one- 
dimensional chain of spins with Heisenberg interaction. For 
small frequencies we the propagation of the excitations also 
turns out to be diffusive at sufficiently high temperatures 
(cf. Ref. 6). 

')A contribution to the three-dimensional diffusion of the spin 
excitations is also given by the dipole-dipole interaction of the 
electrons. However, this contribution is  two to three orders 
smaller than the contribution from tunneling of electrons be- 
tween filaments, even in such strongly anisotropic crystals 
a s  TTF-TCNQ In dieleckic crystals with spin chains the 
dipole-dipole interaction of the electron spins makes the 
principal contribution to the three-dimensional diffusion of the 
spin excitations of the electron system. 

3 '~n  principle we could improve the procedure for determing the 
parameters t by using, e .  g., the least-squares method in the 
entire range of variation of the magnetic field H. However, 
without an increase in the accuracy of the experimental mea- 
surement of Ti-' this procedure will not give more-accurate 
values of t, since the experimental points coincide with our 
calculated curves within the experimental error  bars. We 
note that the most important region for the determination of 
the parameters t i s  the region of low fields H, and up to now 
it is in precisely this region that the experimental e r rors  for 
~ 1 - l  a re  rather large. 
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Contribution to the theory of spatial dispersion and 
auxiliary light waves in the exciton absorption region 
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Institute of Semiconductors, Ukrainian Academy of Sciences 
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Zh. Eksp. Teor. Fiz. 76, 1445-1453 (April 1979) 

The specific polarization of a crystal is expressed in terms of the total electric field in terms of the 
polarizability tensor K(o,~) or in terms of the external field with the aid of the tensor P(o,k). It is shown 
that introduction of the dependence on k in B calls for knowledge of only the effective mass of the 
exciton, and when this dependence is directly introduced in K the number of unknown additional 
parameters becomes much larger. The use of only the general scheme of quantum-mechanical calculation 
of fl by supplementing it with macroelectrodynamic considerations has made it possible to determine 
P(o,k) and to use the latter to determine K(o,~), the refractive indices of all the light waves, and their 
polarization in crystals with different symmetry. The dependences of the exciton energies and of the 
matrix elements of the dipole moment on SEWN are determined in passim as w. The 
connection between these quantities pertaining to different mutually degenerate excitons is obtained. 
These general results, deduced without using exciton models, cannot be obtained by direct quantum- 
mechanical calculation. 

PACS n u m b :  78.20.Bh 

1. TWO FORMS OF CRYSTAL POLARlZABlLlTY P-xE, x (o,  k) =[s (o ,  k) -i]/4n, E, P-e"L'-a'', (1 

The macroscopic specific dipole moment P of a c r y s t a l  where  c (w,k) is the dielectr ic  t ensor  of the crystal .  The 

is traditionally expressed  in t e r m s  of the macrofield E field E cons i s t s  of the ex te rna l  field E, and the field E' 
by the formula generated,  without a t ime delay, by  the electrons and 
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