
Symmetry and magnetic-resonance frequencies in 
magnetically ordered crystals 

V. G. Bar'yakhtar, I. M. Vitebskii, and D. A. Yablonskfi 

Donetsk Physicotechnical Institute, Ukminian Academy of Sciences 
(Submitted 13 October 1978) 
Zh. Eksp. Teor. Pi. 76, 1381-1391 (April 1979) 

A method for the classification and calculation of the frequencies of homogeneous magnetic resonance is 
developed and makes maximum use of the symmtery of the magnet. The advantages of the new method 
are particularly pronounced when complex noncollinear magnetic structures are considered. By way of 
example, all eight resonant frequencies (corresponding to the number of magnetic ions in the unit cell) in 
a rare-earth orthoferrite are classitied by symmetry type for various types of magnetic ordering. 

PACS numbers: 76.20. + q 

INTRODUCTION netic resonance of a rare-earth (RE) orthoferrite for 

Interest in the study of the high-frequency (HF) prop- different types of magnetic ordering. 

ert ies of magnetically ordered crystals has increased of 
late. In this connection, new approaches were devel- CLASSIFICATION OF THE OSCILLATIONS OF A SPIN 

oped,'.2 based on general symmetry considerations, SYSTEM 

using a Lagrangian formalism that makes it possible to 
obtain all the low-frequency branches of the spectrum. 
At the same time, the traditional approach based on 
solving the equations of motion for the magnetic mo- 
ments of the sublattices (or of the spin operators), using 
a phenomenological (or microscopical) Hamiltonian, 
still remains viable. In the calculation of spectra of 
complex crystals, however, with a large number of 
magnetic sublattices, the solution of the dispersion 
equations of high order encounters certain difficulties. 
It is customary in such cases  to combine different mag- 
netic sublattices in one (see, e.g., Ref. 3), but then 
information on the optical branches of the spectrum i s  
lost. 

We demonstrate in this paper a general procedure for 
calculating the eigenfrequencies of homogeneous oscilla- 
tions of a spin system, with maximum use made of the 
magnetic symmetry of the crystal. The equations of 
motion that determine the HF modes that differ in sym- 
metry a re  a s  a rule not intermixed; this lowers substan- 
tially, a s  a rule, the degree of the dispersion equations. 
In contrast to the generally used approach, the symme- 
try is taken into account not after the changeover to the 
small-deviation operators, but in the course of writing 
down and linearization of the equations of motion. These 
equations must be written out for  irreducible linear 
combinations of the spin operators, which in general 
a re  not small-deviation operators. 

The proposed method permits the calculations to be 
performed for  both collinear and noncollinear magnetic 
structures; in the latter case the advantages of the 
method become most clearly pronounced. The reason 
is that in the case of complex noncollinear magnetic 
structures the transition to the small-deviation opera- 
tors  prior to taking the system symmetry into account 
is a very cumbersome operation. In our approach, 
however, we use from the very outset a spin Hamil- 
tonian expressed in t e rms  of irreducible spin operators 
and having therefore a simplest possible structure. By 
way of example, we classify by symmetry type and cal- 
culate all the eigenfrequencies of the homogeneous mag- 

Since small  oscillations of a spin system take place 
against the background of a specified magnetic ordering, 
they must be also classified in t e rms  of irreducible 
representations of the magnetic symmetry group of the 
crystal (as is done, for example, when molecule vibra- 
tions a r e  considered4). The number of resonant modes 
of a given symmetry is not directly connected with the 
magnetic symmetry of the crystal. To determine this 
number one must invoke information on the concrete 
magnetic structure (know the positions of the magnetic 
ions), and resort  also to  model considerations. In the 
present paper we treat  the spin-system oscillations in 
the spin-wave approximation on the basis of a quadratic 
spin Hamiltonian. 

To find the resonant modes of a system consisting of 
n magnetic sublattices we can s tar t  from the equations 
of motion for the spin operators of the individual sub- 
lattices, wherein 3n equations for  the 3n components of 
the spin operators determine n res2nant modes (just a s  
the three equations fo r  i,, g,, and S, in a ferromagnet 
determine a single ferromagnetic-resonance frequency). 
To prevent intermixing of the equations that describe 
oscillations of different symmetry, we write them down 
not for the components of the sublattice spin operators, 
but for  3n of their linear combinations, which realize 
irreducible representations of the magnetic symmetry 
group of the crystal (irreducible operators). 

The number k, of resonant modes that transform in 
accord with the i-th irreducible representations is 
usually equal to  k, = ni/3, where n, is the number of 
irreducible operators that transform in accord with the 
i-th representation. However, in the case when the spin 
of certain sublattices in the equilibrium state a re  
oriented along symmetrical crystallographic directions, 
the equality k, = n,  /3 may possibly not hold. The reason 
is that in the spin-wave approximation there a r e  now 
longitudinal oscillations of the sublattice magnetization. 
If 1, is the dimensionality of the i-th representation, 
then the number of different frequencies is equal to 
k,/l,, inasmuch a s  each frequency E i  is multiply degen- 
erate. In the next section we shall illustrate all the 
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foregoing in detail, using a s  an example RE orthofer- 
rites. 

FREQUENCIES OF HOMOGENEOUS RESONANCE OF 
RE ORTHOFERRITIES 

RE orthoferrites (chemical formula RFeO,, where R 
stands for an RE ion and Fe can be replaced by C r  o r  
Co) belong to the space group D',:. The unit cell con- 
tains four RFeO, molecules. Below T, -600 K the iron 
subsystem has in all  cases antiferromagnetic ordering 
(AF) of G type (see Table I) with a weak admixture of 
other modes (the possible types of magnetic symmetry 
of RE orthoferrites were investigated in Ref. 3). Using 
these data and the scheme described in the preceding 
section, we present a classification of the homogeneous 
oscillations of the spin system by spin types. 

In column 2 of Table 11 is indicated the magnetic sym- 
metry of the oscillating part of the magnetic sublat- 
tices; it corresponds to one of the irreducible represen- 
tations of the group of magnetic symmetry of the crys- 
tal  (these representations can be found in standard fash- 
ion on the basis of Table I). Column 3 of Table 11 indi- 
cates the number of resonant modes of corresponding 
symmetry (since the group is  Abelian, all frequencies 
a re  nondegenerate). 

In column 4 of Table I1 is given an arbitrary classifi- 
cation of the resonant frequencies for the case when the 
principal interaction is an isotropic exchange interaction 
between the Fe ions, which leads to AF ordering of G 
type in the iron system (the r, phase is not realized in 
this case). This condition is satisfied for a l l  orthofer- 
rites without exception. We shall arbitrarily call modes 
optical (0) o r  acoustic (A) if they a re  connected with the 
Fe sublattices, and designate by EPR the modes con- 
nected with the RE subsystem.') This distinction is 
meaningful so long a s  the corresponding frequencies dif- 
fer  substantially. The optical modes of antiferromag- 
netic resonance (AFMR) lie much higher than the re- 
maining one, a fact that we shall make use of in the cal- 
culations. The acoustic frequencies, in turn, usually 

TABLE I. Magnetic configurations* that are reducible with 
respect to the crystallographic group @. 

I re ( I 1 1 ZL,, 1 1 z1,, T~~ 

r 1 

rs 
I'. 
r, 
rs 

r* 
l-I 
r8 

*We use here 

In addition to the indicated pure (irreducible) configurations. 
mixed (reducible) configurations with several indices are 
possible, indicating irreducible components (e .g., ri2). 

TABLE 11. Classification of the frequencies of homogenous 
magnetic resonance in RFe03 by symmetry types 

*For the notation see the text. 

exceed the EPR frequencies (in the case of Kramers RE 
ions), but this fact is not used in the calculations. 
Finally, the last column of Table I1 indicates the HF 
magnetic-susceptibility tensor components x,, whose 
poles correspond to the oscillations of the given sym- 
metry. A dash in this column means that the indicated 
oscillations a r e  not connected with the oscillations of the 
resultant magnetic moment of the sample, and conse- 
quently can not be excited by a homogeneous high-fre- 
quency field. The reason i s  that none of the components 
of the magnetic field H a r e  transformed in accord with 
the corresponding irreducible representations. 

- 
X= 
Xur 
x z z  - 
- 
- - 

X= 
Xvu. Xzz .  Y.yr - 

- 
Xvu 

XX., XZ., x x z  - 
- 

x z *  
XX,, xw, x x v  - - 

Of I Number of / A. order- of type 
oscl~latlons resonant modes G* orderlng 

We proceed now to calculate the resonant frequencies. 
We write down the Hamiltonian of the system in the form 

%-.+ipe-re+%pe-R+%R-R= z ~ C t , ~ ~ 3 ~ ~ 3 ~ ~  

r1 

rz 

r3 

rr 

where the spin operators SQ,, and ŝ O,, pertain respective- 
ly to the ions Fe and R; a, p = x ,  y , z ;  m and n a re  the 
numbers of the unit cells; p ,  v = l ,2 ,3 ,4  and 5 ,  g = 5,6,7, 
8 a r e  respectively the numbers of the positions of the Fe  
andR ions in theunit cell. In the case of the RE ions the 
effect of the crystal field causes the dimensionality of 
the "effective" spin at low temperatures to be 1/2 (Ref. 
6) (this pertains mainly to Kramers ions). We shall 
therefore take 2, to mean precisely the effective-spin 
operator. The operator of the magnetic moment of the 
RE ion is connected with the operator 6,( via the aniso- 
tropic g factor; this circumstance must be borne in mind 
when the susceptibility i s  calculated. 

Since we a r e  interested only in homogeneous states 
(i.e., k = 0) of the spin system at T = 0, we can consider 
in place of (1) the Hamiltonian 

rr 
rs 

r r  

rr 
ra 

rsr 

where 
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0 
A+ EPR 
O+ EPR 

A 
EPR - 
- 

EPR 

O+A+EPR 
O t A t  EPR 

EPR 
EPR 

Not reallzed 

O t A  
O+A+1EPR 

2 EPR 
- 



Each of the coefficients K, L,  and A in (2) takes on 144 
values (when account is taken of the numbers of the sub- 
lattices and of the coordinate indices). Because of the 
lattice symmetry, some of them are  equal to one anoth- 
er. Using these relations, which a re  determined com- 
pletely by the symmetry elements of the q i  group and 
by the positions of the Fe  and R ions in the unit cell, 
we transform the Hamiltonian (2) into 

where 

A , . , . , . . .  A .. 
The operators F,, C,, G,, A,, F,, C,., G,, and 
A, in (4)-(6) a re  expressed in terms of ST and $ in 
exactly the same manner a s  their mean values (see 
Table I); to distinguish them from the latter, all the 
operator quantities a re  marked here and below by a 
caret. The magnetic-interaction constants in (4)-(6) 
a re  linearly expressed in terms of the constants, K, L, 
and A of the Hamiltonian (2). Taking Table I into ac- 
count, it i s  easily noted that all  the terms in (4)-(6) a re  
invariant to transformations of the D',; group. Thus, the 
new constants I, D, P, Q, UR, VR, WR, and YR are  al- 
ready independent (their total number is  58 a s  against 
the 3 x  144 constants, K, L,  and A). 

We note finally that the parameters I in (4) include the 
isotropic exchange interaction between the Fe  ions, so 
that the following inequality i s  valid: 

and similarly for I,,, I,, , and I,. In addition, 

which i s  the condition for the realization of AF ordering 
of type G. 

We proceed to calculate the resonant frequencies. To 
prevent intermixing of HF modes of different symmetry, 
we shall write the equations of motion not for the spin 
operators of the individual sublattices, but for their ir- 
reducible combinations that were introduced above. 
Since the group D1,: is Abelian, these operators a re  ir- 
reducible also with respect to any of the possible mag- 
netic-symmetry groups of the ground state of the ortho- 
ferrites. 

The equations of motion take the standard form2' 

ii=[=[c~, 21, (9) 

where i? is one of the irreducible operators introduced 
above. A s  a result of commutation, terms that a r e  
quadratic in the irreducible operators appear in the 
right hand side of (9). We shall linearize Eq. (9) in the 
spirit of the random-phase approximation, i.e., we 
shall replace the product of two operators 26 in accord 
with the scheme 

This procedure corresponds at T = 0 to the spin-wave 
approximation. (The terms of the type ( 2  ) (6  ) cancel 
out in the equations of motion of the ground state is suit- 
ably chosen.) We note that the substitution (10) is fully 
analogous to the classical linearization procedure, when 
the product of two quantities ab  is replaced by the ex- 
pression 

The irreducible operators satisfy the following simple 
commutation relations: 

and the remaining relations a r e  obtained by cyclic per- 
mutation of the indices. 

Taking (4)-(6) and (11) into account we can write down 
the equations of motion for all  24 irreducible operators 
introduced above. The result of the distribution (10) is 
determined by the magnetic symmetry of the crystal, 
i.e., it depends on the concrete method of magnetic 
ordering. For example, in the phase rl only the mean 
values of the operators d,, C,, e,, and eR, differ from 
zero (see Table I), and the mean values of the operators 
$%, ey, e,, &,,, and & appear in the phase TI,. The 
structure of this system reflects not only the lattice 
symmetry, but also the symmetry of the magnetic or- 
dering. For  example, if the symmetry of the phase in 
which the oscillations a r e  considered is  r,, then the 
system of equations breaks up automatically into four 
independent blocks (in accord with the four irreducible 
representations of the magnetic-symmetry group r,, 
see Table 11). Analogously, in the case of the phase rl 
the number of independent blocks i s  equal to eight, and 
in the phase r, it is equal only to two. We note that 
wherever we refer to a magnetic symmetry group we 
have in mind only the spatial symmetry elements, (i.e., 
all  o r  some of the elements indicated in Table I). On 
the other hand, the introduction of the time-reversal 
operation l? yields in this case no additional information 
whatever concerning the resonant modes. 

If we now replace in the obtained system of 24 equa- 
tions the mean values of the irreducible operators by 
their equilibrium values obtained from the condition of 
the minimum of the energy of the ground state, then this 
system i s  left with only 16 independent equations. The 
corresponding secular equation for the determination of 
the resonant frequencies i s  an equation of eight degree 
in E Z  and determines eight resonant modes (in accord 
with the number of magnetic sublattices). 

Investigating separately each block of coupled equa- 
tions, we obtain all the frequencies of the oscillations of 
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the corresponding symmetry. We now demonstrate the 
procedure described above with a concrete example. 
Let the magnetic ordering symmetry be r,. We con- 
sider first  the symmetric oscillations of the spin sys- 
tem, i.e., the oscillations with symmetry r,,. To this 
end we write down the equations of motion for the opera- 
to r  ex, since it transforms in accord with the represen- 
tation r,. After the uncoupling (with account taken of 
the fact that only the mean values G,, A,, F,, and F,, 
differ from zero), we find that A,, e,, and e, also be- 
come intermixed in the equation for &,; we write down 
the equation of motion for each of them. As a result, 
after decoupling, we obtain a closed system of six linear 
equations for the operators ex, A,, k,, A,, k,, and e,. 
We note that this system does not include the operators 
P,, and e,,, although they should enter in this block 
from symmetry considerations. This is caused by the 
use of the spin-wave approximation (the absence of 
longitudinal oscillations of the sublattice magnetization). 
Thus, the RE subsystem does not participate in oscilla- 
tions of symmetric type in the r, phase. 

Equating to zero the determinant of the system, we 
obtain a fourth-degree equation in E2.  If the mean 
values G,, A,, and F, a re  replaced by their equilibrium 
values, then the free term in the secular equation van- 
ishes and we obtain an equation quadratic in E2. TO 
write down the answers we shall use the following ob- 
vious approximations: 1) the isotropic exchange between 
the Fe ions greatly exceeds all  other interactions [in- 
equality (?)]; 2) the noncollinearity of four iron sublat- 
tices is due to antisymmetric exchange interaction be- 
tween the iron ions, which is much stronger than the 
single-ion anisotropy and the dipole interaction (this is 
always true for 3d ions with singlet orbital state). We 
make no simplifying assumptions whatever with respect 
to  the interactions XF,, and xi,,. We emphasize that 
these approximations serve only one purpose-to sim- 
plify the determination of the equilibrium directions of 
the sublattice magnetizations in the iron subsystem. 

In the phase r, at T = 0 we then obtain 

The frequencies of the symmetric oscillations in the 
phase r, a re  

E:' ( I )  =2G.[ ( 1 2 1 - 1 3 . )  ( I I U - I a . )  Ith,  (13) 

The HF mode E::) (1) is optical, while E E )  (2) is 
acoustic; G, and F, a re  given in (12). In accord with 
the inequality (?), the coordinate index of the constant I 
can sometimes be left out. The terms with the param- 
e ter  D in (14) determine the renormalization of the 
acoustic mode because of the mixing of the configura- 
tions of type F, C, and A,  while the term P,, F, de- 
scribes the influence of the RE of the subsystem 
(although this subsystem is not involved in this case in 
the oscillatory process itself). 

We consider now oscillations with symmetry r2, (the 

magnetic-ordering symmetry is a s  before r,). The 
symmetry r2, corresponds to  four resonant modes (see 
Table II), s o  that in the general case it is necessary to  
solve a fourth-degree secular equation. We confine our- 
selves, however, for  simplicity, to the case of a non- 
magnetic RE ion (e.g., YFeO, o r  LaFeO,). The system 
of equations describing this oscillation mode then con- 
tains the operators k,, e,, e,, e,, P,, andb,. ~ o l l o w -  
ing exactly the preceding procedure, we obtain for the 
frequencies (without the contribution of the RE subsys- 
tem) 

The f i rs t  of the frequencies is optical and the second is 
acoustic. We note that in the exchange approximation, 
i.e., in the absence of anisotropy) the two optical modes 
with different symmetry have the same frequency, but 
the latter is, of course, the same in the different mag- 
netic configurations. 

The remaining two HE modes have the symmetry r,, 
and describe the oscillations of the spin system with 
violation of the inversion center 7. Since the positions 
of the F e  ions coincide with the crystal-lattice inversion 
centers, only the RE subsystem take part  in these oscil- 
lations. The c!osed system of linear equations includes 

A A A 

the operators G,,, A,,, A,, and Gm. Since we make no 
simplifying assumptions whatever concerning the inter- 
action constants in .XF,,, and XR,,, the results obtained 
for  the frequencies a re  rather unwieldy (although their 
derivation is straightforward). 

We thus have for the frequencies of the oscillations of 
type I?,, in the r, phase 

where 

If we neglect the Je,,, interaction, this expression be- 
comes much simpler: 

i.e., these frequencies a r e  degenerate in this approxi- 
mation. 

It is left for us to  consider the configurations r, and 
r,. The procedure for calculating the homogeneous- 
resonance frequencies was described in detail above. 
Since the equations of motion a r e  written for  irreducible 
operators, they break up automatically after linearliza- 
tion into independent groups that describe the oscilla- 
tions of a spin system of definite symmetry. The pos- 
sibly symmetry types of these oscillations can be identi- 
fied immediately by determining the irreducible repre- 
sentations of the magnetic-symmetry group of a particu- 
l a r  magnetic phase. We present below the results for  
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the resonant frequencies in the phases rl and r,. The 
upper and lower indices label respectively the symme- 
t ry  of the magnetic ordering and the symmetry of the HF 
mode (i.e., the symmetry of the oscillating part  of the 
sublattice moments). The quantity in the parentheses is 
the arbitrary number of the resonant frequency. 

The phase I',: 

G,=4S, A,=-DI,GJ2(I,-I,), C.=-DI.G,/2(I,-I,), C,=4s; (18) 

E:" (1)=2G,[ (12.-1,,) ([,.-I$,) I"; (19) 

where 

Dl? D2,l Cnz Ql'-ZG;(I1-I,) [ ~ ( I S ~ - I S ~ )  + - - - - Q ~ ~ ~ ]  , 
2 ( [ , -I , )  2(It-Is) 

The principal information on these frequencies is con- 
tained in Table 11. We add only that the quantity Qy,Gy, 
which is frequently encountered in these equations, has 
the meaning of the effective field produced by the iron 
at the RE ions, and Q,,G,, is conversely the effective 
field of the RE ions at the Fe ions. 

The dynamic coupling of the RE subsystem with the 
iron subsystem occurs for oscillations with symmetry 
r, [see (20)l. 

The phase r,: 

the last expression in (26) determines the equilibrium 
directions of the RE sublattices in the x-y plane; 

where 

where 

In the r, phase the two acoustic modes (r,, and r,) are  
thus dynamically coupled with the RE subsystem [see 
Eqs. (28) and (30)]. 

We consider now the calculation of the tensor &,6 of 
the high-frequency magnetic susceptibility of orthofer- 
rites. It follows directly from symmetry that the oper- 
ators lfif of the magnetic moments of the RE ions a r e  
connected with the operators of the effective spins $7 by 
the relations 

The plus sign corresponds to  5 = 5 and 6 and the minus 
sign to 5 = 7 and 8. At the same time, the g factor of the 
iron ions is isotropic and equal to 2. Thus, in the pres- 
ence of a high-frequency magnetic field h(t) i t  is neces- 
sary  to add to  the Hamiltonian (3) a t e rm 

After linearizing the equations of motion we now obtain 
a system of linear inhomogeneous equations, whose 
solution yields the components of the tensor &,6. The 
most important properties of the tensor b6 a r e  re- 
flected in Table 11, but i t s  explicit form is too unwieldy 
to  be written out here. 

We point out in conclusion that the procedure of calcu- 
lating and classifying the frequencies of homogeneous 
oscillations of a spin system, which was proposed in the 
present paper, can be used in the analysis of any multi- 
sublattice magnetic structure (antiferromagnetic or  
ferrimagnetic). It i s  also possible to  consider the nu- 
clear magnetic subsystem (in investigations of the dy- 
namic frequency shift in NMR). 

The authors thank I. E. ~zyaloshinski i  for a discussion 
of the work and for  a number of useful remarks. 

"1t i s  shown in Ref. 5 that for magnets having a noncollinear 
magnetic structure of exchange origin the number of acoustic 
modes is three, if the number of the sublattices exceeds two. 
In orthoferrites the number of acoustic modes i s  two, since 
their magnetic structure is collinear in the exchange approxi- 
mation. 

%he resonant frequencies can be calculated also on the basis 
of the Landau-Lifshitz equations in which, however, it i s  
necessary to change over from the sublattice magnetic- 
moment vectors to their irreducible linear combinations. 
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The transverse thermoelectric power and the magnetoresistance were measured in cadmium of high purity, 
of orientation [10i0] in fields up to 150 kOe. Oscillations of the thermoelectric power were observed in a 
wide range of angles when H was rotated in the (10i0) plane. Coherent magnetic breakdown between the 
first and second bands of the Fermi surface is used to explain the results. 

PACS numbers: 72.15.Jf, 72.15.Gd 

Until recently, magnetic breakdown (MB) in cadmium 
was investigated mainly with the aid of the de Haas- 
van Alphen (dHvA) effect.'.' The studies of the Fermi 
surface of cadmium by Tsui and Stark' has shown that 
MB can occur between sheets of the Fermi surface of 
the f i rs t  and second band through a gap of spin-orbit 
origin. Thus, the section of the monster in the r K M  
plane can take the form of single-, two-, and three-lobe 
figure in the case of MB near the point K. A unique 
"bridge" is provided in this case for the carr ier  by the 
sharp peak of the a-pocket in the f i rs t  zone, which 
passes close to the K point but without touching i t  (Fig. 
1). When H was rotated in the (1130) plane around the 
direction of the opening of the monster, new extremal 
sections y' were observed in Ref. 1. They result from 
MB in the AHL plane between the pocket of the first  
band and the corrugated cylinder of the second, and 
branch away on the angular diagram from the usual sec- 
tions of the monster y. The combined two-band region 
which is produced because the cylinder is bounded from 
above and from below by pockets, has the observed ex- 
tremal sections y'. 

However, a study of the MB phenomena by the dHvA 
method is a f a r  from simple problem because of the 
complex spectrum of the observed frequencies and of 
the difficulty of i t s  interpretation. From this point of 
view, the thermoelectric-power method, which has 
recently yielded a number of interesting  result^,^'^ is 
preferable. It is shown that the thermoelectric-power 
coefficient S is sensitive to a restructuring of the elec- 
tron energy spectrum by the magnetic breakdown, and 
depends little on the various scattering process in 

strong magnetic fields H. Compared with the magnet- 
oresistance, whose oscillations a re  not observed in 
MB that leads to a change from open to closed trajec- 
t ~ r i e s , ~  a measurement of S(H) makes i t  possible to 
observe such configurations in experiment. In addition, 
both the thermoelectric power and the magnetoresis- 
tance a re  oscillating functions of the magnetic field a s  
a result of the Shubnikov-de Haas effect. To our knowl- 
edge, no such Shubnikov oscillations of the thermoelec- 
tr ic powers have observed so far,  and the observed os- 
cillations have been convincingly attributed to MB. 

Cadmium remains perhaps the only hexagonal metal 
for which no investigations of oscillatory quantum phen- 
omena were made by the thermoelectric-power method. 
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FIG. 1. Section of monster 
and pockets by the (llZO) 
plane along the KH line. 
The arrows show the di- 
rection of electron motion. 
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