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The boundary condition is derived for the kinetic equation for the distribution function of electrons 
interacting with Rayleigh and bulk phonons. Both the change of the phonon field as a result of the 
presence of the sample surface and the vibration of the surface itself are taken into account. The problem 
is solved with the aid of Keldysh's technique by determining the electron and phonon Green functions for 
the half-space. The condition found ensures the absence of current through the surface and is fulfilled 
identically in the equilibrium state. The result obtained can also be used for the case of the interaction of 
electrons with impurities in the layer adjacent to the surface. The transition to the Fuchs condition, with 
the diffusivity coefficient depending on the glancing angle and energy of the electrons, is discussed. 

PACS numbers: 63.20.Kr 

1. INTRODUCTION 

In solving problems that take into account the effect of 
the boundary of the sample on the kinetic properties it 
i s  necessary to know the boundary condition satisfied by 
the distribution function. In the theory of metals the 
boundary condition for  the electron distribution function 
i s  of greatest interest, since in many cases  the phonons 
can be assumed to  be in equilibrium. Fo r  electrons one 
usually uses the Fuchs boundary condition, which in- 
troduces a phenomenological parameter-the diffusivity 
coefficient. 

Recently a number of papers have appeared in which 
the boundary condition i s  derived taking into account a 
particular mechanism of interaction of the electrons 
with a nonideal surface (cf., e.g., Ref. 1). The simplest 
interaction leading to diffuse scattering i s  scattering by 
surface roughness. A boundary condition that takes this 
scattering into account was obtained in a paper by the 
author (Ref. 2). In a paper by Okulov and UstinovS the 
same problem was considered with allowance for  the 
finite height of the potential ba r r i e r  a t  the boundary of 
the metal with the vacuum. We note that, in principle, 
the effect of surface scattering is  important even at  the 
atomic scale of roughness, inasmuch a s  information 
about the properties of the surface is car r ied  away by 
the reflected electrons over a mean f r ee  path. 

Scattering by static surface irregulari t ies  occurs with 
conservation of the energy of the electrons, and only 
their momentum distribution is changed. As the tem- 
perature is raised the role of the interaction of the elec- 
trons with thermal vibrations of the surface increases. 
This interaction gives r i s e  to relaxation of the electrons 
in both momentum and energy, and is  the course of the 
temperature-dependent diffusivity. 

In a semi-infinite metal the independent acoustic 
modes a r e  the surface Rayleigh phonons and the bulk 
phonons, which, in the presence of the surface,  even in 
an  isotropic substance, cannot be completely divided 
into longitudinal and transverse phonons. 

As will be shown below, a t  large distances f rom the 

surface (large compared with the normal component 4 
of the wavelength of the phonons and electrons), the 
kinetic equation has  the s ame  form a s  for  an infinite 
metal. The contribution of shor ter  distances (the effect 
here  of the surface and bulk phonons, and a lso  of the 
boundary condition on the electron wave function) is  
written in the form of a boundary condition. Of course, 
this can be done only if a l l  the macroscopic parameters 
(the sample thickness d,  mean f r ee  path 1, and skin 
depth 6 )  a r e  large compared with the characteristic 
wavelength A,. Since we a r e  not in a position to con- 
s ider  distances of the order of interatomic distances, 
it i s  necessary that the length A, be large compared 
with these. This implies that, strictly, the result ob- 
tained below can be applied only in the situation of the 
anomalous skin effect: f>>6 o r  I>>d, when the decisive 
contribution is  that of glancing electrons with large 
wavelength A,. 

In the case  when these conditions a r e  fulfilled, we can 
assume that a boundary condition i s  specified a t  the 
surface of the metal, and, moreover, in deriving it we 
can disregard the external electromagnetic field and ne- 
glect collisions with phonons in the bulk. The lat ter  
statement requires some explanation. 

There a r e  two independent mechanisms of the effect 
of phonons on the boundary condition for  the electrons. 
F i r s t ,  there is the direct  electron-phonon interaction, 
describable by the coupling constant g. Because of the 
presence of the Rayleigh phonons, in the layer adjacent 
to the surface this interaction differs from i ts  bulk val- 
ue. The interaction with the bulk phonons i s  taken into 
account by the kinetic equation itself, and in the su r -  
face layer it is of little importance because of the con- 
dition I >> A,. Thus, only the Rayleigh contribution should 
be kept in this case. Secondly, vibrations of the sample 
surface lead to the result  that the initial boundary con- 
dition for  the electron wavefunction is fulfilled on the 
actual moving surface. Since the displacement of the 
surface is  determined by both Rayleigh and bulk pho- 
nons, he re  it i s  necessary t o  take both types of phonons 
into account. 
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2. THE COLLISION INTEGRAL 

We shall show that, far  from the surface, a t  distances 
large compared with the electron and phonon wave- 
lengths, the collision integral for the half-space is 
written in the same form a s  for an unbounded metal. 
We shall assume that the surface barr ier  for  the elec- 
trons is infinite, i.e., the wave functions of the electrons 
can be chosen in the form 

and we shall assume the phonons to be equilibrium 
phonons (actually, it i s  sufficient that their distribution 
function depend only on the energy); the x axis is chosen 
along the normal to the surface, and s is a two-dimen- 
sional vector in the plane of the surface; for  simplicity 
we consider an isotropic medium with a quadratic elec- 
tron spectrum. 

At large distances from the surface there a r e  only 
bulk phonons. The associated displacement of the med- 
ium is 

which is  specified by the frequency w, the two-dimen- 
sional vector k parallel to the surface, and the polariza- 
tion y of the incident wave; the normal component 
k ,  = (w2/C2y- J12)lt2 of the wave vector is positive in the 
reflected wave for  I w( > c, k; c ,  = c,, c, a r e  the longitudi- 
nal and transverse sound velocities, CY is a three-di- 
mensional vector index, and the e i  a r e  unit vectors 
depending on the direction of propagation. The reflec- 
tion coefficients RY I ,  a r e  found in the familiar way 
from the condition for the absence of surface forces. 
For a wave polarized in the plane of incidence, 

For a wave polarized a t  right angles to the plane of 
incidence, R,, = 1 and R ,, =O. In the collision integral 
the square of the modulus of the matrix element 

is multiplied by the occupation numbers of the electrons 
and phonons and integrated over pi and k and positive 
p i  and k , .  As the volume of integration tends to  infinity 
the square of the integral over s gives, a s  usual, the 
product of the surface area  with the 6-function of the 
tangential components of the momentum. The square of 
the integral over x is a sum of products of integrals, 
each of which contains an incident o r  a reflected wave. 
A product of integrals of which one contains an incident 
wave and the other a reflected wave does not give a 
factor proportional to  the size L, of the sample. Only 
for a product of integrals with waves of the same po- 
larization i s  this statement not entirely obvious. In this 
case there ar ises  the expression 

[? &sin p i s  sin p s  exp ( - iklz)  r , 
which contains the dangerous form 

crL, Z(u) =a-' sinz- exp (icrL.) , 
2 

where CY =p: -P, - k, .  However, on subsequent integra- 
t ion over (i.e., over a )  of a product of the quantity 
I (a)  with an arbitrary function, in the limit of large L, 
there appears the integral 

Fa u-' sin' a exp (Ziu), 
-- 

which is equal to zero. 

The square of the matrix element containing only the 
reflected wave makes the following contribution to the 
collision integral: 

jbp.'dp.'bkdk,E k,'e~'k,'e,l"Rl~lRlr~l 
1'1" 

X6 (k+p.-p.') 6 (klr+p.-p.I) 6 ( o + e P - e P ~ )  np ( I -  (N.+ 1) ; (4) 
the summation indices (2, P take the values x, y, z ,  
where, for CY, P=x, in accordance with our notation, 
k: = ky  0 .  We do not write out the terms that differ from 
(4) in the signs in front of p,, pi, and k7f in the argu- 
ments of the 6-functions. 

We make the change of variable ky  - k,. and sum over 
the initial polarization y, making use of the relation 

which expresses the conservation of the energy flux in 
the sound wave. We obtain an expression which, when 
combined with the contribution of the incident wave. 
coincides in form with the collision integral corres- 
ponding to an infinite space. 

3. ELECTRON AND PHONON GREEN FUNCTIONS FOR 
THE HALFSPACE 

We shall relate the distribution function for electrons 
flying from the surface to its value for  electrons flying 
toward the surface, a t  distances large compared with 
the normal component of the electron and phonon wave- 
lengths but small compared with a l l  the macroscopic 
parameters 1, 6, and d. At such distances we can ne- 
glect the effect of the electromagnetic field, expanding 
the Green functions of the noninteracting electrons and 
phonons in the wavefunctions in the absence of the field. 
Here we must assume the occupation numbers of the 
electrons to  be arbitrary, and those of the phonons, a s  
we stipulated earl ier ,  to be equilibrium occupation num- 
bers.  

To solve the problem formulated we shall make use 
of the Keldysh technique: in which, with the aid of the 
Green function 

G+ (r t ,  r r f )  =i($+(rlt')$(r, t ) )  , 

we can determine the electron distribution function 

1 
n(pr+t+) = -, de dt dr G+(rt, r't') 

2nt-f - - 
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where r r  r' =r , , t r  t' =t ,  . 
The Dyson equation for G+ has the form 

Here G e  is the causal function, eC contains ordering in 
the inverse time, G - differs from C+ in the order of the 
operators, and the C a r e  the self-energy parts. 

The Green functions with subscript zero should satisfy 
the appropriate boundary condition on the vibrating sur- 
face of the metal. In second order in the phonon dis- 
placements the surface vibrations can be treated in the 
same way a s  surface roughness was investigated in 
Ref. 2. We shall write out the corresponding contribu- 
tion later; for now we shall neglect the surface vibra- 
tion and require that the boundary conditions for the 
Green functions be fulfilled a t  x =O. 

In the derivation of the kinetic equation it is assumed 
that the collision frequency is small compared with the 
characteristic energy of the particles. Therefore, in 
the same approximation, in the right-hand side of Eq. 
(6) we must substitute Green functions that a re  of 
zeroth order in the phonon displacements but corres- 
pond to a certain arbitrary distribution of occupation 
numbers, determined by the kinetic equation. 

The retarded and advanced functions, which do not 
depend on the occupation numbers for a semi-infinite 
metal with an infinite potential barr ier  a t  the boundary 
at x =0, a re  obtained from the corresponding functions 
for the unbounded metal. For  example, for the Fourier 
component in the difference s - s' and t - t' of the re- 
tarded function we have 

Performing the integration in the well known expres- 
sion for the retarded function of the unbounded metal 

we obtain 

where p, =[2m (E +i6 ) - p ~ ] l / ~ .  The advanced function is 
found analogously: 

im 
GoA(zz'p.e)- - {exp[-ip,'lz-z'l l- exp[-ip,' (z+zl) I). (10) PI 

With the aid of the standard expansion in the eigenfunc- 
tions (1) of the half-space the function G; is expressed 
in terms of the occupation numbers: 

4im 
G,+ (zzfp,e) = - nC (p.e)sin p,z sin  PI^' 

PI 

We shall see  below that the quantity n C ( p , & )  is the dis- 
tribution function for the electrons incident on the sur- 
face. 

Knowing the functions G ~ ,  GA, and G', we find the 
causal functions from the general formulas of Ref. 4: 

Q=G++Gn, G=G+-GA. (12) 

We turn to the determination of the phonon functions. 
The boundary condition for them-the absence of ex- 

ternal forces acting on the surface-can be written in 
the form 

here, 

inwhich i a = - i a / a x f o r  a = x ,  while for a = y , z  the op- 
erator 2, reduces to multiplication by the corresponding 
component of the two-dimensional vector k. 

The retarded phonon Green function 

ZjaOn(rt, f t') --i0 (t-t') < [u, ( r t ) ,  up (rrt') I-> 

in an unbounded substance is obtained by means of the 
usual expansion in longitudinal and transverse waves. 
Its Fourier component in the difference s - s' and t - t' 
is equal to 

where p is the density of the substance and wr are  the 
frequencies of the longitudinal and transverse sound. 

The Green function of the semi-infinite medium sat- 
isfies for x,  x'>O the same elasticity-theory equation 
a s  the function (14), and the boundary condition (1 3). I t  
has the form 

The operator fi in the last term in (15) acts on the 
variable x, which then tends to  zero from the right: 

The indication of the direction of x-0' is  essential for 
x' = O .  Owing to the difference in the limit values from 
right and left, the product of the last two factors in (15) 
for  x' = O  is  not equal to unity. 

It is  easy to verify directly, by acting on the right-hand 
side of (15) with the operator fi, that the function (15) 
satisfies the boundary condition (13). 

We give the necessary expressions for 9: and 
~ ~ ( r t ,  Y' t') = a 2 g a e  (rt, rltl)/ar,ar; : 

the definition of A i s  contained in (3), and the root k y  
=(j(o +i6)/cy j 2  - k2)1/2 is assumed to be positive for real 
positive values of the expression under the root. 

The advanced function .@ A is obtained by changing the 
sign of the infinitesimal imaginary part of the frequency 
in the formulas (14)-(17): 
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Green functions containing the phonon occupation num- 
bers can be obtained for the equilibrium state with the 
aid of Landau's theorem. Usually, this theorem i s  writ- 
ten for the Fourier components of Green functions that 
depend only on the difference of the space and time 
variables. It is possible to see  that in the case of an 
inhomogeneous medium the difference consists entirely 
in the replacement of the real and imaginary parts [cf. 
(17.13) in the book5] by the half-sum and half-difference 
of the Green functions gR and 9 A: 

Thus, for the functions 9 * we find 

9)+ ( x z ' k o )  = B - ( z x 1 ! k ,  -o) . 

We shall discuss the formulas obtained. The last 
term in (15)-(17) takes account of the difference of the 
Green function from its value for the unbounded sub- 
stance. This term describes the mutual transformation 
of the sound waves on reflection from the surface, and 
also the propagation of the surface Rayleigh waves. The 
quantity A, proportional to detn9:(0ko), vanishes on 
the spectrum of the Rayleigh waves. For the Rayleigh 
waves, I wl < cy k. In this region the integration contour 
in (14) can be closed in the complex k,-plane without 
attention to 26, which must be retained only in the pole 
determinant in (15) (i.e., in A) and in (16) and (17). For  
this reason, for I wJ < c,k the difference 

where w, = (ctk is the spectrum of the Rayleigh waves, 
( being a number that depends on the ratio ct/c, (see, 
e.g., Ref. 6). 

With the aid of formula (18) we see that, in the region 
1 ol < ctk, the functions 

contain the usual factors, which depend in the given 
case on the Bose numbers of the Rayleigh phonons. 

4. THE BOUNDARY CONDITION 

We shall complete the derivation of the boundary con- 
dition. In accordance with what was said earlier,  by 
replacing G by Go in the right-hand side of (6) we find 
for each term an expression of the form 

With the aid of the formulas (12), and also the identity 
Z C + g C  +C+ +C-=0, we can transform the sum of the 
t e rms  containing the interaction: 

This expression can be further simplified if we note the 
following. As already mentioned, here we should take 

into account only the contribution of the Rayleigh pho- 
nons. In (21) this contribution falls off in the variables 
x, and x, over the phonon wavelength. The integration 
over x, and x, is conveniently carried out using the 
representation (8) of the functions Go. After this there 
still remains the integral over the variables p, and pi ,  
on which two functions depend, e.g., G: and G: in the 
last  term in (21). Closing the contour of integration 
over p, in the upper half of the complex plane, s o  that 
the integrand falls off for x>O and Imp,-+*, we see 
that the two poles of the integrand introduce terms of 
different characters. The first-the pole of the Green 
function (8)-gives a term that i s  slowly decreasing in 
x (thanks entirely to the extra part i6). The second, 
which arose after the integration over x,, gives a 
term that decreases in x over a phonon wavelength. 
The latter term must be omitted, since the boundary 
condition is written for a distance from the boundary 
that is large compared with a wavelength. Only the f i rs t  
term is obtained if, in the integral (20), for the f i rs t  
factor, e.g., G~(xx,P,&), we use from the outset the 
expression (9) with x- x, >O and integrate over x, be- 
tween 0 and *. Everything that has been said also ap- 
plies to the last  factor in (20). 

Thus, the prescription reduces to the following: for  
the functions Go, in the entire region of integration over 
x, and x, in (20), it is necessary t o  use the expressions 
(9) and (10) for  x - x, > 0 for the first  factor and for  x, 
- w' < 0 for the last  factor. If, in addition, we omit terms 
that depend only on x+x'  and do not give a contribution 
to the Fourier component in x -  x' with P,+O, we obtain 
the following expression: 

x e x p [ i p ,  ( z - z ' )  ] j d z , d z ,  sin p , z ,  sin p , z ,  
0 

x { [ n e ( p . e )  - I  I Z ~ : . ( ~ , X ~ P L )  

-n<(p .e )X . i , (x l z ,p .e ) } ,  (22) 

where the subscript sur shows that only the Rayleigh 
term need be kept. 

The self-energy parts C* a r e  equal to 

I;* (rt, f t ' )  =-G* (rt,  f t') D3 (f t', rt) . 
To find the distribution function a t  large distances 

from the surface it is necessary, in accordance with (5), 
to  integrate G+ (22) over x- = x  - x' between -2x+ and 
2x+ under the condition I x+p,I >> 1. For  the incident 
wave, i.e., for p,<0, a contribution proportional to 
6(p,+pl) ar ises  only from G: (11). Integrating next over 
E , we obtain for p, < 0 

n(p ,p . )  -ne (p. ,  e =  (p:+p.')/Zm). (23) 

For  the reflected wave (p, > 0), using (18) we find 

x f s  sin p i .  sin p i ,  
0 
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where 

The calculation of the integral over xl and x, is ele- 
mentary-the dependence of D' on these variables is  
given by the formulas (17)-(19). 

We write the boundary condition thus obtained in the 
form 

n(p=p.)==n(-p.p.) + j  flp.'de'. 

The integral term in this formula describes the de- 
parture from specular reflection. The function W, is 
determined by formula (24)  and depends on the couplirg 
constant with the phonons : 

where we have introduced the following notation: 

In (25), the function W , ,  which does not depend on the 
coupling constant, takes-into account the contribution of 
the surface vibrations to the boundary condition. This 
term can be calculated by the same method by which the 
static surface roughness was treated earliel.2: 

The function 9, can be represented by means of the 
relations (16) ,  (18) .  and (19)  as follows: 

5. CONCLUSION 

We shall discuss the boundary condition (25) .  It is 
easy to see that the boundary condition ensures the ab- 
sence of current through the surface, irrespective of 
the concrete form of the distribution function. In fact, 
the normal component of the current is equal to 

1%- 4 4n jv&(p)d3p=& IPp.de[n(pg.)-n(-pg.) I .  

The difference n ( p ,  p , )  - n ( - p r p s )  at the surface of the 
sample is found by means of the formulas (25)-(27). The 
integral that arises is equal to zero, since the inte- 
grand is odd under the change of variables psc = PL E ' .  

The regions (28)  and (29)  describe the contribution of 
the bulk phonons to the vibration of the sample surface; 
in the region (29)  the longitudinal wave arising in the 
reflection of the incident transverse wave attenuates 
over a wavelength. The formulas (28)  and (29)  can be 

represented in the form of integrals over k, of a product 
of Bose occupation numbers with a 6-function express- 
ing energy conservation in the excitation of the longi- 
tudinal and transverse phonons. 

The condition (25)  is fulfilled identically for an equili- 
brium system of electrons. In this case the integral 
in (25)  vanishes, as  can easily be seen directly using 
the Fermi distribution function for the electrons and 
energy conservation. 

A quantitative estimate of the influence of phonons on 
the reflection of electrons from the surface requires 
calculation of the electrical conductivity with the aid of 
the boundary condition (25) .  Nevertheless, it is  clear 
that since the formulas (26) and (27)  contain the density 
of the substance in the denominator, the diffusivity of 
the surface has a small factor ( r n / ~ ) ' / ~ ,  where M is 
the lattice-ion mass and m is the electron mass. Even 
so, the phonons can have an appreciable effect on the 
temperature dependence of, e.g., the resistivity of a 
thin plate, since the "surface" contribution taken into 
account by formula (25)  is proportional to a lower power 
of the temperature than the volume contribution, which 
is proportional to TS at low temperatures. We note also 
that the diffusivity increases substantially in the case 
of a long mean free path, when an electron has time to 
collide many times with the surfaces of a small sample 
during the mean free time. 

We shall discuss how the condition (25)  goes over into 
the Fuchs boundary condition. In the approximation lin- 
ear  to the deviation from equilibrium the integral (25)  
breaks down into a sum of two terms, in which the non- 
equilibrium correction n, to the electron distribution 
function is contained in different forms. In one, n, de- 
pends on the integration variables pi and c', while in 
the other it depends on the external variables ps and & . 
The first of these terms can be neglected in comparison 
with the second in the case when the distribution function 
varies sufficiently rapidly in a region comparable with 
the characteristic momenta and frequencies of the pho- 
nons. It is then that a condition of the Fuchs type is 
obtained. However, the diffusivity coefficient in this 
case is a rapidly varying function of the glancing angle 
of the electrons, and also, possibly, of their energy. 

We note that the formulas (24)  and (27)  enable us to 
consider surface scattering of electrons that is not as- 
sociated with phonons. For example, the expression 
(27)  also describes the scattering of electrons by a ran- 
dom surface x = [(s). In this case the function 9, is 
related to the correlator of the irregularities: 

Ma (0,  s-sf, o) =<f ( s )  6 ( s t )  )2n6 ( 0 )  

and we arrive at the boundary condition obtained in 
Ref. 2.  

Another example is  the scattering of electrons by im- 
purities located randomly in the layer adjacent to the 
surface. If we describe the interaction with such im- 
purities by the Hamiltonian 

g V(r-rJ ,  
1 

the boundary condition will be determined by the formu- 
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l a  (24), in which the function D,, i s  expressed in terms 
of the correlator 

iD,:, (rt, r't') = V(r-rj) V(rr-T,,) , (z i,' ) 
which contains averaging over the configurations of the 
impurities r,. 

In conclusion I express my gratitude to  A. A. Abriko- 
sov and I. M. Lifshitz for a discussion on the work and 
important comments. 
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Interaction of Bloch walls with dislocations in garnet films 
possessing a cylindrical domain structure 

L. M. Dedukh and V. I. Nikitenko 
(Submitted 5 October 1978) 
Zh. Eksp. Teor. Fiz. 76, 1369-1380 (April 1979) 

The dislocation and domain structures of monocrystalline f h s  of (YBi),(FeGa),O,,, grown on 
gadolinium-gallium garnet plates, are investigated by an optical polarization method and by selective 
chemical etching. The interaction with dislocations is studied for walls of stripe domains in a labyrinth 
structure and of cylindrical magnetic domains. For the first time, a direct experimental investigation is 
carried out of the potential contours for the motion of a 18V Bloch wall in the microstress field of an 
individual dislocation. The forces exerted by the dislocation on individual elements of the domain wall 
are measured. A theoretical calculation is made of the potential and forces of magnetoelastic interaction 
of various sections of the domain wall with the internal-stress field of the dislocation. The experimental 
data are compared with the calculation and with the predictions of current theories. The comparison 
reveals some peculiarities not considered earlier in the kinetics of the surmounting by a wall of potential 
barriers due to dislocations. 

PACS n u m b  75.70.Kw, 75.50.Gg, 61.70.Yq 

INTRODUCTION 

Study of the role of defects of the crystal lattice of afer-  
romagnetic material in the formation of i t s  domain struc- 
ture and in the kinetics of change of that structure is nec- 
essary for creation of a systematic theory of the mag- 
netization of real  magnetically ordered materials. Spec- 
ial interest attaches to the explanation of the nature of 
the interaction of domain walls with dislocations, the 
longest-range sources of internal stresses. Use of an 
optical polarization method for solution of this problem 
made it  possible for the f i rs t  time to carry  out direct 
experimental investigation of the influence of individual 
dislocations on elementary events of the magnetization 
process'*2 in the example of monocrystals of yttrium- 
iron garnet. Comparison of experimental data with the 
predictions of current theories revealed basic contra- 
dictions between them. In particular, i t  was found that 
in a real crystal the interaction of a Bloch wall with a 
dislocation begins at distances far  exceeding the thick- 
ness of the wall. During the process of their inter- 

action, new domains originate in the dislocation-micro- 
s t r ess  field and a t  the wall. These data were obtained 
on a many-axis ferrimagnet, characterized by appreci- 
able anisotropy of the energy of a Bloch wall,3 under 
conditions of motion of several walls through the speci- 
men and presence of surface closure domains. I t  might 
be supposed that the regularities observed were char- 
acteristic solely of crystals whose magnetic structure 
allows formation of new domains magnetized in a di- 
rection not coinciding with the magnetization of the main 
domains. In order to elucidate the reasons for the dis- 
agreement between experimental data and theory, i t  was 
of interest to investigate also the anisotropy of the inter- 
action of dislocations with a Bloch wall under condi- 
tions when i t s  energy is independent of the direction of 
i t s  normal to the plane perpendicular to the wall. 

The present communication presents the results of a 
study of the regularities of the motion of a 180" domain 
wall in the elastic field of an individual dislocation in 
magnetically uniaxial, epitaxial films of (YBi),(~eGa),0,,. 

696 Sov. Phys. JETP 49(4), April 1979 0038-5646/79/040696-07W2.40 O 1979 American Instituteof Physics 696 




