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An analog of the Franck-Condon principle is formulated for nuclear gamma transitions in a polyatomic 
molecule, which come about'through the change of state of a molecule owing to the recoil of a nucleus 
on the emission or absorption of a y-ray quantum. For the case of a y-radioactive nucleus located at the 
center of symmetry of a molecule, a theory of the distribution of the electronic-vibrational nuclear lines 
in the spectrum is constructed, taking into account the intermixing of the vibrational modes in the 
electronic-nuclear transition. A six-atom molecule XY,Z, of symmetry type Djh is analyzed in detail as 
an example. Some matrix elements and transition probabilities relating to vibrational-nuclear transitions 
are also obtained. 
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1. INTRODUCTION 

The description of many quantum processes is based 
on simulating them with a se t  of coupled harmonic oscil- 
lators. In this case the Hamiltonian of the quantum sys- 
tem is a multidimensional quadratic form in the coor- 
dinates and momenta of the oscillators. TheSchradinger 
equation with such a Hamiltonian has been studied by 
Chernikov.' The general theory of N-dimensional non- 
stationary quadratic quantum systems has been given in 
recent papers,2 in which the coherent-state representa- 
tion3 is used to obtain an exact solution, and also the 
Green's function and the amplitudes and probabilities of 
transitions a re  calculated. 

An important concern in the study of a multidimen- 
sional quadratic system i s  dealing with the interaction 
between oscillators corresponding to different vibration- 
a l  modes. For example, in the case of electronic-vibra- 
tional transitions in polyatomic molecules this sort  of 
interaction manifests itself in a rotation of the systemof 
normal coordinates of the final state relative to the co- 
ordinate system of the initial state (intermixing of the 
normal coordinates). This is known a s  the Dushinskii 
e f f e ~ t , ~  which has to be taken into account in the calcula- 
tion, for example, of Franck-Condon factors (FCF). A 
method for calculating FCF and finding the geometrical 
configuration of the molecule in an excited eJectronic 
state which deals exactly with the Dushinskii effect has 
been given in earlier Obviously the methods 
for  exact inclusion of correlation effects in multidimen- 
sional oscillator systems that have been developed in the 
theory of electronic-vibrational spectra of molecules 
can be reformulated for the description of other quantum 
phenomena which can be treated with quadratic Hamil- 
tonians. In particular, we may mention the absorption 
of neutrons by nuclei in a crystal,' the MSssbauer ef- 
f e ~ t , ~  and absorption by impurity centers in  crystal^.'^ 

correspond to electronic-vibrational-rotational-nuclear 
transitions in the molecule. In the case of a polyatomic 
molecule with a y-radioactive nucleus located at its cen- 
ter of symmetry (a type of molecule which is particu- 
larly interesting experimentally) the rotational degrees 
of freedom can be neglected to good approximation, and 
the spectrum can be regarded a s  a spectrum of elec- 
tronic-vibrational-nuclear transitions. It is shown in 
Refs. 11 and 12 that in the adiabatic approximation the 
probability of an electronic-nuclear transition i s  pro- 
portional to the square of the ratio of the mass of the 
electron to that of the molecule, ( m , / ~ ) ~ ,  and therefore 
the main attention was paid to transitions between the 
vibrational levels of the ground electronic state. 

In the present paper we consider electronic-vibration- 
al-nuclear (vibronic-nuclear) transitions in a polyatomic 
molecule with a y-radioactive nucleus a t  i ts  center of 
symmetry. By formulating an analog of the Franck-Con- 
don principle we construct a theory of the intensity dis- 
tribution of vibronic-nuclear lines in a given spectrum. 
The transition probabilities a re  calculated in the har- 
monic approximation by using multidimensional vibra- 
tional wave functions belonging to the interacting elec- 
tronic states. A detailed investigation is made of the 
case of a six-atom molecule of the type XY3Z2 with the 
point symmetry group D,. Some matrix elements and 
probabilities relating to vibrational-nuclear transitions 
a re  also calculated. 

2. THE DUSHINSKI~ EFFECT FOR 7-TRANSITIONS OF 
A NUCLEUS IN A MOLECULE 

The vibrations of the nuclei of a'molecule with N vi- 
brational degrees of freedom in its ground electronic 
state is described in the harmonic approximation by the 
Hamiltonian 

Some recent  paper^^''^' have dealt with the y-ray spec- i n  
R= Tx (p?+m,'q?). 

1-1 

(1) 
trum of a nucleus in a molecule, a s  i t  is  affected by the 
change of the internal state of the molecule owing to the where qi and Pi are  a mass-weighted coordinate and i ts  
recoil of the nucleus a s  it emits or absorbs a y-ray conjugate momentum, corresponding to the i-th vibra- 
quantum. It was shown that an emission (absorption) y- tional mode, and oi is the corresponding normal fre- 
ray line has a structure; near the line for the free nu- quency. The wave function fo r  a stationary state of the 
cleus there a re  satellites, which in the general case Hamiltonian (1) is well knownI3 [v=(v,, v2, ..., vN)]: 
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The Hamiltonian which describes vibrations of the nuclei 
in an excited state is 

where the primed quantities refer the the k-th mode of 
the excited state. 

The electronic transition results in a change of the 
equilibrium positions of the nuclei. Such a deformation 
of the equilibrium configuration of the molecule is de- 
scribed by the DushinskG transformation4 

q'=Sq+d, (3) 

which connects the normal coordinates of the initial and 
final states. Here the N x N  matrix S describes a rota- 
tion of the system of coordinates, and the N-dimension- 
al vector d gives the shift of the equilibrium positions 
of the nuclei. We note that the components of the vector 
d a re  different from zero only for completely symmet- 
rical modes. The intensities of the vibronic bands a r e  
then determined, according to the Franck-Condon prin- 
ciple, by the squares of the overlap integrals (v'lv) be- 
tween the vibrational wave functions of the two electron- 
ic states, as calculated with allowance for Eq. (3). 

It i s  not hard to s e e  that vibronic-nuclear transitions 
can also be described in the framework of the theory of 
ordinary vibronic transitions if a certain modification of 
the Franck-Condon principle i s  used. In fact, the am- 
plitude for transition of the molecule from state a to 
state b owing to the energy of recoil  of the nucleus on 
its emission (absorption) of a y-ray quantum is given by 
the matrix 

Rs.-(b 1 exp (-ik,u) 1 a ) .  

Here k, i s  the wave vector of the photon, and u i s  the 
vector displacement of the radioactive nucleus from its 
equilibrium position. In the Born-Oppenheimer approx- 
imation (and with the rotational degrees of freedom neg- 
lected, on which we comment later), the amplitudes for 
vibronic-nuclear transitions, which describe the vibra- 
tional structure of the y-ray spectrum, a re  given by 
matrix elements of the form 

R,.,=(v'Iexp(-ik,u) Iv). (4) 

Furthermore, the recoil momentum received a t  the in- 
stant of emission (absorption) of the photon can be re- 
garded as a shift in momentum space of the equilibrium 
positions of the operators that model the vibrations of 
the nuclei. In other words, the operator exp(-ik,*u) is 
a displacement operator, and the matrix element (4) is 
an "overlap integral" between the wave functions of os- 
cillators shifted relative to each other both in coordinate 
space and in momentum space. When the recoil momen- 
tum is taken Lnto account an additional term appears in 
the Dushinskii transformation, which in this case be- 
comes 

where the vector 6 has a definite relation (which weshall 

explain) to k,. Accordingly the desired matrix elements 
&,of Eq. (4) will be overlap integrals (v'lv) between 
vibrational wave functions of the type of Eq. (2), calcu- 
lated by the use of the modified Dushinski; transforma- 
tion (5). We shall hereafter be considering transitions 
in a molecule with a y-radioactive nucleus located a t  its 
center of symmetry. This means that the only transi- 
tions that contribute to the shift u of this molecule will 
be those with vibrations that a re  not completely sym- 
metrical, s o  that d =O. Accordingly, the connection be- 
tween the normal coordinates of the interactingelectron- 
ic states will in our case be given by the formula 

qf=Sq+i6, (6 

which describes the interaction between the various 
modes in the vibronic-nuclear transition and is impor- 
tant in our further considerations. 

Let us now establish the relation between the vector 6 
and the wave number k, of the photon. For this purpose 
we expand the displacement vector u of the y-active nu- 
cleus in terms of the normal coordinates of the ground 
electronic statet2: 

u = m - ' " z  b.,q.. . (7) 
' 0  

Here m is the mass of the radioactive nucleus, and the 
components of the vector b, a r e  elements of the matrix 
b which gives the orthogonal transformation from the 
normal coordinates q to the mass-weighted rectangular 
 coordinate^.'^ The index s indicates the type of normal 
vibration, and the index o takes care of degeneracy. We 
confine ourselves to the transitions between nondegen- 
erate vibrational states in both electronic levels. Then 
it is not hard to show that the relation 

holds, where the vector n, which depends on k,, is 

Here +b8 is the angle between the vector k, and the direc- 
tion of the displacement of the radioactive nucleus owing 
to the s-th normal vibration, and A, =diag(wli'2, wZ1", 
..., WN'"). The quantity z, is given by1' 

where R = ( E $ ) ~ / ~ M C *  is the recoil energy and E! = E C ~  
is the energy of the nuclear transition. 

3. THE TRANSITION AMPLITUDES 

As has been shown above, the amplitude R,,  of a vi- 
bronic-nuclear transition can be regarded a s  the over- 
lap integral (v' l v) between vibrational states I v> and 
Iv'> of the interacting electronic states, calculated with 
connection formulas (6) of the Dushinskii type. This ap- 
proach allows us to transfer many results from the the- 
ory of the vibronic spectra of  molecule^^-^ to the case 
under consideration. 

To calculate the overlap integrals (v' Iv) we shall use 
the coherent-state representation.3 A coherent state, 
which is a generating function for the states Iv> of Eq. 
(2), is of the form 
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(det A.) " 1 2 '1. la> =- ( ~ , a )  lal' 
(nn) -, ~ X P  

(a.q, ~ q )  + (*) (a, xeq) - - - 

(11) 
where a =(a , ,  at,  ..., f f N )  is a set  of arbitrary complex 
numbers, and the symbol (..., ...I means the ordinary 
scalar product. The coherent state 1 a'> corresponding 
to the vibrations in the final electronic state is obtained 
from Eq. (11) by the replacements a - a ' ,  q- q', A, - Am,. 

I t  is obvious that the "overlap integral" between the 
coherent states, (a'l a )  = (a'l exp(-ik, u) I a )  will serve 
as the generating function for the desired quantities 
(v'lv): 

Because the coherent state is expressed in the form of 
the exponential of a quadratic, the calculation of the 
overlap integral (a '  l a )  reduces to a standard Gaussian 
integral, and then the expansion of (a'! a )  in a power 
series provides a simple way to calculate the matrix 
elements R,,. 

The simple calculation of (a '  la) with the use of the ex- 
plicit expressions from Eq. (11) for the coherent states 
and of Eq. (6) gives 

where 

1 - L  1 i + M  (010)-2~/*(*~-)'~~(- deth. 2 2 -6) 2 

Here the real symmetric NxN matrices L and M and 
the real  N XN matrix K are  defined a s  follows: 

where the matrix J = x,,sx," gives the ~ush insk i?  rota- 
tion. The real vectors f and g are  connected with 6 by a 
relation of the form [cf. Eq. (8)] 

Expanding Eq. (12) in powers of a and a ' ,  we find the 
matrix element of a vibronic-nuclear transition: 

N 

(vrIv)-(010) (u,!~,'!)-'~H...(u, T) 

*-I (15) 
In terms of Hermite polynomials of 2N variables 15@16;  

here 

The calculation of the multidimensional Hermite poly- 
nomials can be carried out by means of recurrence re- 
lations which follow readily from the generating function 
(12). Namely, differentiating Eq. (12) with respect to f f , ,  

expanding in power series and equating terms of equal 
powers of 0 ,  we find 

Similarly, 

If certain vibrational modes a r e  not excited through a 
vibronic-nuclear transition, the corresponding overlap 
integrals reduce to Hermite polynomials of a smaller 
number of variables. To obtain the overlap integral in 
this case, we must strike out in the matrix (L/Z K/M) 
the rows and columns that correspond to unexcited 
modes. The remaining matrix elements will form a 
matrix giving the arguments of the reduced Hermite 
polynomial. For example, if only two modes in the 
upper electronic term a re  excited, the overlap integral 
can be written in the following form2: 

(u~ul'lO)=(O1O) (vII!u1'!)-"'HV~ .* (TI, ~ l ) ,  
I 1  

The overlap integrals with one nonzero vibrational quan- 
tum number can be expressed in t e rms  of the classical 
Hermite polynomials3: 

( v  0 = ( 0 0  u ! )  -'h ( / M )  ( )  Tk=i (2MM)-'"gk. (1 7a) 

Accordingly, to calculate the overlap integral (v' I v) 
with arbitrary v and v' one can calculate from Eq. (17) 
the overlap integral with one nonzero vibrational quantum 
number and then use the recurrence relations (16). 

The problem of calculating the matrix elements R,, 
thus reduces to finding the matrices K, L, and M and 
the vectors f and g. These quantities can be found from 
experimentally measured relative intensities of definite 
vibronic-nuclear transitions. 

4. THE PARAMETERS OF THE DUSHINSKI~ 
TRANSFORMATION. THE MOLECULE XY3Z2 

Let us construct a generating function - 
P(X) = C (v'; V)X'X'" 

o,.'-0 

for the "relative Franck-Condon coefficients" q(vt; v) 
= I V ' ~ V ) / ( O I O ) I ~ .  Here X=(x,, x2, ..., XN) and Xt=(x{, 
x i ,  ... , x i )  a r e  sets of arbitrary complex numbers. Xv 
denotes the product IIlxtvf . [A way to construct F(x) ex- 
plicitly, based on a knowledge of the generating function 
(a'lff) for the overlap integrals, is described in Refs. 2 
and 7 .] This generating function is given by 
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where 

Experimentally one observes intensities averaged over 
the angles I), at  which the photons a r e  emitted. There- 
fore  i t  is of interest to obtain a generating function for 
the averaged FCF, q(vl; v). The averaging procedure 
depends on the specific symmetry type of the molecule. 
As the subject of our further investigation we choose the 
six-atom molecule of the type XY3Z2, with the point 
qroup D,. This choice is due to the fact that a rigorous 
examination of the intensities of the vibronic-nuclear 
transitions in a molecule of this type shows the necessi- 
ty of taking the ~ u s h i n s k i i  effect into account. Also the 
restriction to a specific type of molecule does not im- 
pair the generality of the considerations. The method 
which will be expounded retains all important features 
of the general theory, and affects only the details of the 
way the averaging is done.4' The infrared spectra of 
molecules of the type XY3Z2 (PC1,F2, SbF3C12, PF3Br2, 
etc.) a r e  analyzed in some recent papers.1T 

The normal vibrations of the molecule XY3Z2 a r e  dis- 
tributed among the symmetry types in the following way: 
2A; + 2A; + 3 E' +Em. We choose a coordinate system 
with origin a t  the equilibrium position of the nucleus X, 
the z axis along the axis C, of the molecule, and the x 
axis passing through the equilibrium position of one of 
the nuclei Y. The vibrations that contribute to the dis- 
placement of the central nucleus X a r e  w, and w, of the 
type A; and w 5 ,  w6, and wl of type E'. 

We confine ourselves to the examination of transitions 
involving the nondegenerate vibrations of type A;. The 
vibrations w, and w4 will lead to displacements of the X 
nucleus along the z axis given by the quantities b: and 
b:. Accordingly, the matrix element (vjv/ l v3v4) can be 
written in the form 

The Dushinskii transformation (6), which leads to an in- 
termixing of the coordinates of type A; in the vibronic- 
nuclear transition, will be given by one angle of rotation 
x and the two-component vector 8: 

According to Eq. (15), the matrix elements (v'lv) can be  
expressed in terms of Hermite polynonials of four vari- 
ables, which depend on 2 x 2 matrices K, L ,  M and two- 
component vectors f and g. Using the explicit form of 
the matrix S, a s  seen in Eq. (20), and the definitions 
(13) for the matrices K, L ,  and M, we can write explicit 
expressions5: 

= L(- (w3 - w 3 )  ( a 4  + w4') - ( a 3  + w.) (w3' - w.') sin2 x (w3w,~:Yw;-co,')ln 2 x  

(wJco,)'!' (w3' - 0,') s i n  22 - (w3+ w,')(w, - w,') + (w, + w,)(w;- w;)sinaX 
(wawa','!' (w, + w;) cos X - (w,w,')"~ (0. + w;) s in  x K = - 2A-1 

= l ( ( w 3  - %')(w. + w.7 - ( ~ 8 -  w4)(w; + w.? sina x - (%'w.')'~* (%-@,)sin 21 
A - (%'w4'f1' (ox-w,)3in 2 x  (w, + wst) (w. -a,')+ (a3- ~,)(m,'+-m,~) sina x 

(21) 
where 

Accordingly, the elements of the matrices depend on 
the single parameter X,  and a knowledge of any element 
of one matrix enables us to calculate all  the other ma- 
trix elements. The vectors f and g can be expressed 
according to Eq. (14) in terms of the vector x given by 

where the parameters and z4  a r e  related to the nor- 
malized displacements by Eq. (10). Consequently, our 
problem is characterized by three parameters: X, z3 ,  
and 2 4 .  

I t  must be  pointed out that in the general case i t  is al- 
ways possible to obtain the quantities b,, and from them 
the parameters z,, when the constants of the secular 
equation of the molecule a r e  known. As we shall show 
later,  in dealing with vibronic-nuclear transitions in the 
framework of the proposed method i t  is not necessary to 
calculate the parameters b, in explicit form. 

The matrices K, L, and M and the vectors f and g a r e  
found by the method of partial analysis,5'6 which requires 
a knowledge of experimentally measured relative inten- 
si t ies of particular vibronic nuclear transitions. Let US 

consider transitions of the form v,'vi -00 from the ground 
state without vibration. The generating function for the 
FCF q(vjv/; 00) =q(vjv/) follows from Eq. (19) after the 
replacementx-X,,,, T- M, h- g, where X(z,  is the 
diagonal 2 X 2 matrix (x;/o O/X;), M is the symmetric 
2 X 2 matrix (M, 1 / ~ 1 2  M ~ ~ / M ~ ~ ) ,  and g is the two-compo- 
nent vector (g,, g,). Expressing the vector g in terms 
of m by Eq. (14), using x from Eq. (22) and introducing 
the notation 

(and then also g, =g, cosq,), after averaging over the 
angle J?, we get the generating function for the averaged 
FCF: 

where Erfi ( x )  is the probability integral," and a 2 ( ~ ( , , )  
=g,(l - x,,, M"x(~ )go. Expanding Eq. (23) in a power 
ser ies ,  i t  i s  not hard to show that the following relations 
hold for the desired vectors and matrices: 

We note that the off-diagonal element M,2 characterizes 
the degree of nonfactorizability of the matrix element 
(vjv/I 00) into a product (v,'O 100)(0v/ 100). The condition 
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for M I ,  to vanish is q(11;00) = ( 9 / 5 ) q ( 1 0 ; 0 0 ) ~ ~ ] ,  
which is found when we average the factorizability con- 
dition q(1 l:00) =q(10;00)q(Ol;00) over $,. The relative 
intensities of the vibronic-nuclear transitions in the ab- 
sorption spectrum a r e  connected with the FCF in the 
following way: 

where 52(vjv;;vgv4) is the frequency of the transition 
V;V( - v3v4 in units cm". 

Accordingly, the finding of the parameters g and M  
reduces to the calculation from experimentally estab- 
lished relative intensities of certain definite vibronic- 
nuclear transitions [those whose FCF appear in Eqs. 
(24) and (25)] the corresponding FCF from Eq. (26), and 
then using Eqs. (24) and (25). I t  must be pointed out that 
the calculation of g and M from Eqs. (24) and (25) in- 
volves the problem of choosing the signs of square roots. 
In all of the calculations the present writers have car- 
ried out relating to the vibronic spectra of molecules, 
the best agreement with experiment has been achieved 
with the arithmetic choice of the signs, i.e., with the 
signs shown explicitly in Eqs. (24) and (25). Also, the 
ambiguity can be eliminated by comparing the relative 
intensities of the transitions with higher vibrational 
quantum numbers (?I;,  v;> 1) as measured experimen- 
tally and a s  calculated from the recurrence relations 
(16). The unique choice of the diagonal elements Mtl,  
i = 1, 2 is usually fixed by stipulating ! M i ,  I < 1. 

this makes it possible to calculate the other matrix ele- 
ments from the equations (21). 

Knowing the matrices M  and S [from Eq. (20) with the 
known value of x], we can calculate from Eqs. (13) the 
matrices K and L. Then i t  is not hard to show, starting 
from Eq. (14), that the vectors fo and go a re  connected 
by the relation fo=K(l + ~ ) " g , .  Thus from the value 
found for go we get fo, which gives the vector f ,  since f i  

=foi cosJl*. 

Accordingly, starting from the experimental values of 
three relative intensities of y-transitions of a nucleus in 
the molecule, we can calculate completely the matrices 
K, L, and M  and the vectors f and g. Then from re- 
currence relations we can find the matrix element of any 
transition v jv l  - v3v4 and finally predict its intensity. 

We note that if there were no ~ u s h i n s k i i  effect (S = 1) 
the nondiagonal elements of the matrices K, L, and M 
would be zero while the diagonal elements become sirn- 
ple functions of the normal frequencies 

Furthermore, the matrix element (v;v,' Iv3v4) breaks up 
into the product of two factors ( v j  l v,) (v; lv,), each of 
which can be expressed in terms of Hermite polynomials 
of two variables. 

5. CORRELATION EFFECTS 

The elements of the matrices K and L and the compo- Let us now consider the correlations between the vari- 
nenb  ous vibrational modes that are excited in a vibronic-nu- 

I clear transition. We again confine ourselves to the case 
fo l=  z ( K J )  r i d  of a molecule XY3Z2. The complete theory of correla- 

1-1 tion effects in the intensity distribution of vibronic bands 
a r e  determined similarly. We have in the spectra of polyatomic molecules is given earlier - 

fot-[3q(00;10) I!", for=I=) publications.? 
L,i=-q(oo;10)+[2q(00;20)-'/,9(oo;10)L]", IL,'] < I ,  An important characteristic of the excitation of a mode 

L,z=-q(00;02) +[2q (00;OZ) -'/,q (oO;ol)zl'", 
(27) is  the average number of excited vibrational quanta 

As has been shown above, our problem is characterized 
by three parameters, which can be chosen to beg , ,  g2,  
and any one of the elements of the matrix M .  This means 
that it is sufficient to have experimentally measured re- 
lative intensities of only three vibronic-nuclear transi- 
tions: 10- 00, 01 - 00, and one of the following three: 
11 - 00, 20 - 00, and 02 - 00. The f i rs t  two enable us to 
calculate the shift parameters g ,  and g2, and the other 
one is necessary to determine an element of the matrix 
M .  Furthermore, i t  follows from Eq. (21) that from any 
known element of the matrix M  one can calculate the 
mixing angle X: 

- sign M I  { - 
tgX3' F+G 

determined relative to a many-dimensional distribution 
function of the form 

The Greek index p = 1, 2, 3, 4 numbers the quantum 
numbers in the following order: v3, vd, v j ,  v,'. The 
subscript Jlz means that the quantity i s  not averaged over 
the angle $,. The use of a bar over v,,, to indicate aver- - - -- 
aging over the mode must not be confused with the use of 
the bar in q(v{v;; v3v4) for the average over the angle. 

Let us denote by iTu the average of the quantity v,,, 
over the angle Jl,. The explicit value of 5, with the in- 
termixing of the modes taken i n e c o u n t  can be obtain- 
ed from the generating function F ( X ) .  In fact, the n- th 
order moment of the distribution function (28) can be 
found from 
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From this we can obtain an expression for the variance 
uUu2 =up2 - tT:. Finally, a quantitative measure of the 
correlation between the p-th and v-th modes i s  the cor- 
relation coefficient r,,: 

r,.=cov (k, v)/ (oW2awz) '". (30) 
Here cov(p, v) i s  the second-order correlation mo- 
ment, which is obtained by applying the operator 
x,(~/~x,)x,(~/~x,,) to F R ) .  

We saw earlier that the calculation of the matrices K, 
L,  and M and the vectors f and g can be accomplished 
by consideration of transitions with the excitation of not 
more than two vibrational modes. This is also true for 
finding the correlation moments. We shall give the ap- 
propriate expressions for vibronic-nuclear transitions 
v;v/ - 00. The calculation of correlation effects for 
transitions of other types can be accomplished by an ob- 
vious modification of these relations. 

In accordance with Eq. (29) the average number V,, of 
quanta excited in the p-th mode ( p  = 3, 4) through the 
vibronic-nuclear transition v;vd - 00 is 

- , ( M Z ) . , - ( d e t M ) Z  1 
u . + ~ =  de t ( l -M2)  +T {[ (1 -M)- 'go1J2 .  (31) 

The dispersion u,,' is given by 

( M Z )  ,.+ (Mi , ) ' -2 (de t  M)' ( M z )  ,,- ( d e t  M)' ' 
( J t+r , i+ r  = d e t ( i - M z )  ' +'[ d e t ( 1 - M z )  1 

The correlation moment cov(3, 4) can be written in the 
form 

1% [ ( l  + d e t M ) ' + ( $ M ) ' ]  c0v(33 0 - [ d e t ( l - M 2 )  

Having all the second-order moments, we can calculate 
the correlation coefficient (30) between the two modes. 
The case r,, = 0, which means that MI, =0, corresponds 
to independent excitation of the modes, i.e., the absence 
of any Dushinskii effect. 

When only one mode is excited in the final state, i.e., 
for transitions v,,'O- 00, Eqs. (31) and (32) become sim- 
pler: 

1 ZM,.' 1 I + M , .  
o:+.,,+2 = ---[- I - M  + M ,  - g o : - ]  l - M , ,  ' 3 

We note that consideration of the excitation of only one 
mode does not mean that the Dushinskii effect isneglect- 
ed. The matrix element Mi, in Eqs. (33) and (34) de- 
pends on the mixing angle x and i s  determined from ex- 
perimental data [cf. Eq. (2511. 

6. VIBRATIONAL-NUCLEAR TRANSITIONS 

Let us now turn to vibrational-nuclear transitions be- 
tween nondegenerate and twofold degenerate vibrational 
states of a molecule. With the expansion (7) the requir- 
ed matrix elements take the forms 
R,.,.=(v.'Iexp(-ik,b,cos$,q.m-"') Iu.), (35) 

R..,., r l = ( ~ f l ' I e x p [ - i k ,  s in 0(b,q2,cos.cp+b,,q,,sincp) m-"l Ivl). (36) 

Here 0 is the angle between the direction of the vector 
k, and the z axis, perpendicular to the plane of the two- 
fold degenerate vibrations, is the angle in the plane of 
vibrations, and Ivl> is the state of a twofold degenerate 
oscillator characterized by the vibrational energy E, 
= Aw(v + 1) and the vibrational angular momentum Y= El, 
with 1 =v, v - 2, ..., -1 or 0. All vibrational states belong 
to the ground electronic term. 

A. Let us f i rs t  consider transitions between nonde- 
generate states. As before, we begin by calculating the 
matrix element Reslag of the transition between coherent 
states. The initial (one-dimensional) coherent state 
I a,> is of the form (11) with N = 1 and Xu = w,'I2, and 
the final state I a:> is obtained from I a, > by the re- 
placement a, - a:. We shall omit the index s hereafter 
for simplicity. I t  is not hard to verify that 

where [see Eq. (lo)] z s z ,  =(AkY2/2mw)b,2. From this, 
expanding R,,  in power ser ies  in a and a'*, we geti2 

We note that the matrix element of the Weyl displace- . 

ment operator D(a) ,  of which exp(-ik, u) is a special 
case, has been calculated in the basis of oscillator wave 
functions and expressed in terms of Laguerre polyno- 
mials in papers by FeynmaniB and ~chwinger '~ .  In Ref. 
12 expressions have been given, on the basis of Eq. (371, 
for  the probabilities of vibrational-nuclear transitions 
for molecules of various types of symmetry. 

In the case of a completely symmetrical vibration sl 
there is  no displacement of the y-active nucleus, which 
is at the center of symmetry of the molecule, s o  that 
the matrix element RY,slVsi is different from zero only 
fo r  transitions without any change of the vibrational 
quantum number, i.e., v,,' =us,. 

Let us introduce a quantum number n =v' - v. Then 
the probability of a vibrational-nuclear transition is giv- 
en by the formula 

By the method used earlier in deriving Eq. (19), we con- 
struct a generating function for the transition probabil- 
ities: 

It is easy to see  that if we give the quantity x the mean- 
ing of the Boltzmann factor exp(-Aw/k~), we can use a 
simple integral transformation to obtain the probability 
for a transition in which the vibrational quantum number 
changes by n: 

-- - - - - -. 

1+2 
wm=cl -x )  ~...+.- = e.P ( - z c o s ' ~ ~ )  ( 22YUms2*). (38) 

l - x  
r-0 

Here Z,(x) is the modified Bessel function.'' An expres- 
sion like (38) is well known in the theory of electronic- 
vibrational spectra of molecules and crystals (see a re- 
cent review articlez0). 

Let us now average the generating function F(x, y) 
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over the angles a t  which the photon is emitted: 

1-2 i-z 

Using the well known expansiont6 of Erf(x) in powers of 
x ,  we can obtain the probabilities averaged over the 
angles, P,,, , . 

'ItKo limiting cases of Eq. (38) a r e  worth pointing out. 
For  tiw/kt >> 1 transition probabilities a re  distributed 
according to the Poisson law, W, =n"(n! )"exp(-2). In 
the opposite case, for t iw/k~ << 1, we get a normal dis- 
tribution W,, = ( 2 n ~ ~ ) ' ~ /  'exp[- (n - ~ ) ~ / 2 o ~ ] ,  where X =z 
cos2+, u2 = 22 (k~/Ew)cos~+. Here X is the average num- 
ber of vibrational quanta excited in the vibrational-nu- 
clear transition. 

B. The distribution of the intensities of the y-ray sat- 
ellites in the case of vibrational-nuclear transitions can 
also be described by means of an analog of the Franck- 
Condon principle. In fact, i t  follows from what has been 
said that the matrix element R,, is the overlap integral 
between oscillator wave functions shifted in momentum 
space. 

We shall consider vibrational-nuclear transitions be- 
tween nondegenerate vibrational states of a molecule, as 
characterized by the transition amplitude (35). In the 
case of a system of oscillators the amounts of their 
shifts a r e  determined by the distribution of the recoil 
momentum over the normal coordinates. We return to 
the idea of coherent states, and introduce into the dis- 
cussion an a plane {a = [(w/2ti)'/ 2q + i(2Ew)" 'pl). The 
initial and final states of the oscillators are represented 
in the a plane by circles of radii v t f 2  and v " / ~ ,  dis- 
placed relative to each other by the amount (2z)If 2cos+ 
along the imaginary axis (the momentum axis, see  Fig. 
1). 

According to ~andau? '  the character of the transition 
of the system from one state to another is determined by 
the points of intersection of the corresponding phase 
trajectories of the system. In other words, the points 
that a r e  important for the transition a r e  those a t  which 
i t  will change neither q nor p. It must be emphasized 
that this assertion is more general than the classical 
Franck-Condon principle, since the points of intersec- 
tion of the phase trajectories can also lie in the complex 
region. The contribution of each point of intersection to 
the transition probability can be estimated, for example, 
by the method of steepest descents.22 Obviously the 
maximum transition probability i s  attained as the result 
of confluence of intersection points, i.e., in the case of 
mutual tangency of the phase trajectories. The two pos- 
sible types of tangency correspond to the two branches 
of the Condon parabola in the (v, v') plane; the analytic 
expression for this curve can be found in the usual way 
and is 

u1=u+2 (tu)" cos l)+z cosz l). 

Inside the parabola the transition probabilities as func- 
tions of v and v' oscillate, and they fall off exponentially 
outside the parabola. Using the well known asymptotic 

FIG. 1. Intersection of the phase trajectories of the initial 
and final states of an oscillator. 

forms of the Laguerre p~lynomials , '~  we can give aquan- 
titative description of the behavior of the probabilities 
P,,, in the plane of (v ,  v'): 

a)  inside the parabola (0 < z cos2 < 2 V, V = v + v' + 1) 
i 

cos e = (& ) " cos 9; 

b) near the parabola (zcos2# - 2 ~ )  

where A i k )  is the Airy functioni6 

c) outside the parabola (2cos2$ > 2V) 

where 28 = V(sinh2JIt - 25111, cash%$, = ( Z / ~ V ) " ~ C ~ ~ J I .  

C. To find the matrix element R ,  ,, .,, , Eq. (36), we 
f i rs t  calculate the matrix element of the transition be- 
tween the corresponding coherent states 1 /31/32>, which 
are the generating functions for  the states i vl> (see Ref. 
23). Again calculating a Gaussian integral, we get [ i  
= $if4 mu)'/ Ok, sine]: 

1 
Rp. , r -w- s~p  [-T ( I ~ i l 2 + l ~ l ' + l ~ t ' I 2 + I ~ z f I ' ) ]  

x exp(-k'(b~'cosz cp+bz,'sinzcp) +p,$lf '+fi&" 
+I[bt, sin cp(-$1+pz+@l"-p2")-ibt.cos c p ( ~ l + ~ z + ~ l " + ~ ~ " )  I). 

(39) 
Expanding this expressing in powers of /3,, b2, P i ,  /3;, 
we find 

R.*l,,.r= exp[-P(bz,'cos'cp+b2,'sinZ cp)] 

If the symmetry properties of the molecule a r e  such that 
bZx =b2,, =b2, this expression can be simplified. In this 
case we have for the transition probability 

P.*I,..,- exp (-21, sin' 8) (z: sin' 8) I+'' (viL - I )  (q!) 

where z 2  = ( f i&,2/4rn~)b~~.  

We give the f i rs t  few values of the angle-averaged 
transition probabilities 
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Owing to the symmetry properties 

P.'l,..l P..I,,o~ Poo..~ -= - 
Poo,, % ~ O O , O O  (40) 

these values of the probabilities include all possible 
transitions with v ,  v ' c  2. 

Owing to the factorization most of the results for the 
nondegenerate case can be applied to these formulas. 
We give the formula for the probability of a transition 
between some state with fixed I and a state with fixed 1': 

where x = exp(-tiw/k~). 

"Staff Member, Institute of Physics, Academy of Sciences, 
Belorussian S. S. R. (R. p. 1259, Tr. p. 1) 

' h e r e  and hereafter the symbol I viv,)  i s  used a s  an abbrevia- 
tion for the state vector 1 0, .  . . , v i ,  . . . , v,, . . . , 0) in which 
only two modes occur, with the frequencies w ,  and w,. Sim- 
ilarly, the symbol I v i )  means that there i s  only one excited 
mode with the frequency w,. 

')we point out that whereas the many-dimensional Hermite 
polynomials a re  defined identically in Refs. 15 and 16, the 
definitions of the classical (one-dimensional) Hermite poly- 
nomials a r e  different. We use the Bateman definition.I6 The 
writers a re  obliged to K. Yung for this remark. 

4'We note that of the six symmetry types dealt with in Ref. 12. 
the molecyle XY3Z2 is the only one in which a nontrivial 
Dushinskii effect is  possible. For the other five types one 
can simply set the mixing angle x equal to zero in the formu- 
las which follow. 
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