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The radiation of soft photons from relativistic electrons and positrons moving in a 'crystal near one of the 
crystal- planes is considered. General formulas are obtained for the spectral distribution and intensity of 
the radiation; these formulas are valid both when there is channelling and when there is no channelling, 
and hold for arbitrary interaction potentials between the particles and the crystal. The difference between 
the radiation from electrons and that from positrons is examined. The dependence of the intensity of the 
radiation on the angular spread of the beam of particles is determined. 

PACS numbers: 78.70. - g, 61.80.Fe, 14.60.Cd 

1. INTRODUCTION while an oscillator potential i s  used in a number of pa- 

The well known theory of the bremsstrahlung of rela-  
tivistic particles moving in a crystal, which was de- 
veloped in papers by Ferretti, '  Ter-Mikaelyan, and 
ijberall,4 does not hold when channelling of the particles 
se ts  in.= The radiation under channelling conditions has 
been studied in several  These treatments, 
however, ei ther  involved a very special assumption 
about the potential of the interaction between the particle 
and the lattice, o r  e l se  were restricted to est imates of 
the spectral  intensity of the radiation. Besides this, 
there has so  f a r  been no consideration of the radiation 
from such particles in the transition region between 
channeling and nonchannelling conditions. Meanwhile, 
the influence of the lattice i s  a s  important in this transi- 
tional range of angles a s  in the channelling region. 

In this paper a theory i s  developed fo r  the bremsstrah- 
lung of relativistic electrons and positrons moving in a 
crystal  near one of the crystallographic planes. As i s  
well in this ca se  the motion of a particle in a 
crystal can be described in the framework of classical 
mechanics. We shall be concerned with the radiation of 
soft photons, and therefore we can use classical elec- 
trodynamics to describe the emission process. The rel- 
ative simplicity of this description enables us  to use  the 
same approach in treating the radiation from particles 
both when there i s  channelling and when there i s  none, 
without assuming any so r t  of model for  the interaction 
potential between the particle and the crystal. 

The motion of a particle near one of the crystal  planes 
can be described by a potential averaged over this plane, 
so  that the problem becomes one-dimensional. Owing to 
this, closed expressions can be obtained for  the spec- 
trum and the total intensity of the radiation with an a r -  
bi trary potential (Sec. 11). The general formulas s o  ob- 
tained cover both cases  of channelling and of no channel- 
ling, and also the intermediate region. 

In Sec. III we consider the degree to which the intensi- 
ty and spectral  distribution of the radiation depend on 
the form of the interaction potential between the particle 
and the crystal. In particular, i t  turns out that an oscil- 
la tor  potential gives an  intensity of the radiation higher 
than that found with more real is t ic  potentials. Mean- 

p e r s  dealing with bremsstrahlung in a crystal  when 
there i s  channelling. We note also that an accidental 
property of the oscillator potential, namely that the fre-  
quency of the vibrations is  independent of the amplitude, 
leads to the occurrence of a sharp  maximum in the 
spectral  distribution of the radiation, which does not 
appear with more plausible potentials. 

Next, an  analysis i s  given of the influence of the sign 
of the particle's charge on i t s  bremsstrahlung. It i s  
shown that there i s  an  important difference between the 
radiations from electrons and positrons in the case  of 
channelling (Sec. 111). This is  in qualitative agreement 
with the available experimental data.'' 

Finally, in Sec. IV we take the angular spread of the 
part icles in the incident beam into account and show that 
this spread smooths out the difference between the r a -  
diations from electrons and from positrons. 

2. A GENERAL EXPRESSION FOR THE INTENSITY 
OF THE RADIATION 

As i s  well known, the energy of the radiation from a 
relativistic particle in the frequency range (w, w +dw) i s  
given in classical electrodynamics by the formula13 

where do i s  an element of solid angle in  the direction of 
the wave vector k and 

Here v(t) =dr(t)/dt and r( t)  is the trajectory of the par-  
ticle in the external field 

where U(r) is the potential energy of the interaction of 
the particle with the external field. (We use a system of 
units in which the speed of light is c =I.) 

When the energy of the incident particle i s  high, the 
deflection f rom the direction of the original motion i s  
small ,  and therefore in f i r s t  approximation we can rep- 
resent  the velocity v(t) of the part icle in the form 
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where v i s  the velocity of the incident particle and v,(t) 
is the component of v(t) which is perpendicular to v and 
v,<< v. We shall assume that the stronger inequality u,/ 
v << m/c holds; this means that the scattering angle 9 
-v,/v is small in comparison with the characteristic 
angle 9,- m/c a t  which a relativistic particle emits ra- 
diation (m and & are  the mass and energy of the incident 
particle). Then in Eqs. (2.1) and (2.2) we can make an 
expansion in terms of the quantities kvJ(w - kv) and 
k-r,/(t). Keeping the main term of the expansion and 
integrating over do, we find 

where - 
6=om'/2ez, w ( q )  = j d&,(t)exp(iqt).  -- 

To the same accuracy the total energy emitted by the 
relativistic particle is  given by the formula 

/-A FIG. I. 
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potential energy (2.10) to describe the emission of ra- 
diation. The point is that the characteristic length 
along the momentum of the incident particle over which 
the radiation from an ultrarelativistic particle i s  
formed is of the order of magnitude of 8-'. Therefore 
for 6-'s a the radiation is affected by the location of in- 
dividual atoms in the plane k, y), and for a < 6-' .=,a/$ it 
is affected by the location of particular chains of atoms 
in that plane. The one-dimensional potential energy 
(2.10) can be used to describe the emission of radiation 
by particles only if the condition 6'' >> a/$ is satisfied. 

According to Eqs. (2.3) and (2.4) the trajectory x(t) of 
the particle in the field UCk) can be determined from -- the equation 

If the particle deviates periodically from the original 
1 a direction of motion, v,(t) =v,(t +TI, then according to x=--- U . ( X ) .  

e  ax 
(2.11) 

Ea. (2.5) 
A first  integral of this equation is 

(2.7) v , ( t ) = i  ( t )  =* { ~ [ e , ( x , ) - u . ( x )  ]/e)'", 

where T is the period of the oscillation, N is the num- where & L ( ~ o )  = & A  +Ucbo), EL =&e2/2, and x, is the impact 

ber of cycles @ >> I), and parameter (the value of the coordinate x a t  which the 
T particle enters the crystal). From this we find 

The total energy of the emitted radiation is given by 
Accordingly, the spectrum dE(x,)/dw and the total 

2e2 
A E - N - ( 2 ) ' j  d&,'. emitted energy AEk,) for an individual particle with 

3 m A  
(2'8) the impact parameter x, i s  given by Eqs. (2.71, (2.8) 

and (2.11)-(2.13). Integrating with respect to ds =N, 
When the particle moves in a the potential en- and x, and using the fact that the potential is periodic 

ergy V(r) of its interaction with the lattice can be writ- along the axis, we find the spectrum dl/dw and the 
ten in the form 

total intensitv I of the radiation in the case of a beam of 
v ( r ) = Z  ~ ( r - r , , ) .  (2.9) particles of unit density: 

where U(r - r )  is the potential energy of the particle's 
interaction with the n-th atom, which is at  the point r,. 
We shall consider the case of a particle which enters 
the crystal a t  a small angle 6 with the crystallographic 
plane b, y ) (see Fig. 11, and shall also regard the angle 
I/J between v and the z axis as small. If $<<R/a and B 
<<$@/a), where R is the screening radius of the atom 
and a is  the lattice constant @ << a), the particle will in- 
teract with a large number of atoms located in the crys- 
tallographic plane k, y 1. In this case, as i s  well 

one can describe the motion of the particle 
in the crystal by using the potential energy (2.9) aver- 
aged over t he plane k, y ), 

uc (x) = - ' J d ~ a z v  cr) ,  
N,N.aZ 

(2.10) 

where N ,  is the number of si tes along the axis i 
(i =x, y, z). The conditions that have been stated are,  
however, insufficient for the use of the one-dimensional 

I=NJV,a j AE (2 , )  dz, .  (2.15) 
0 

The quantities W ( g ) ,  B = J:dt6:, and T that appear in 
the formulas for dE/do and A E  can be expressed di- 
rectly in terms of the potential (2.10): 

Z x1 dx  
~ ( ~ ) = j ~ e ' # ' d z ,  z ~ = j - - d x ,  i T = { - ,  i (2.16) 

where 2,  2 ,  and t(x) a r e  given by Eqs. (2.11)-(2.13). In 
the expressions (2.16) the integration is taken along the 
path traversed by the particle during the time T. The 
limits of integration depend on the value of the impact 
parameter x,, the sign of the particle's charge, and the 
ratio of the quantities &, and Iu,(,,, where (U, I,,, is 
the maximum value of the potential of the crystal plane. 
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3. THE RADIATION WITH AND WITHOUT 
CHANNELLING 

Let us consider the case of unchannelled particles, c, 
> I U, 1 ,=. The transverse energy r ,  = ce2/2 is sufficient 
to carry it over the potential barr ier  (see Fig. 2), s o  
that the limits of the integrations in the expressions 
(2.16) will be x, and (%,+a). These formulas can be 
used both for electrons and for positrons, the only dif- 
ference being that for electrons U, = - I Uc 1, and for 
positrons U, = I U, I .  

If E, >> I U, I ,,, an expansion in terms of the param- 
eter Uc/c, can be used in Eq. (2.16). Setting N =N,a/T 
and including terms proportional to U,/&,, we find 

where N,=N,N,N, i s  the number of atoms in the crystal, 
g =2i~n/a 61 =O, *I, k2,. . . ) is the reciprocal lattice vec- 
tor, and U,(g) is  the Fourier component of the potential, 

U. ( g )  = f &u. ( 2 )  exp ( igx) .  (3.3) 
a 

The first term in Eq. (3.1) agrees with the result of 
h e r a l l ' s  paper,4 which he derived in the first  Born ap- 
proximation, and which naturally does not depend on the 
sign of the charge of the particle. The correction, 
which does depend on the sign of the charge, agrees 
with the result of Ref. 14, which was derived in quantum 
electrodynamics with the second Born approximation in 
the interaction of the particle with the field of the crys- 
tal. 

In the case E,  < I U, I,, the transverse energy is too 
small for the particle to pass over the potential barrier,  
so  that channelling of the particle is  po~sible. '~'" The 
condition for a particle with given x, to be channelled is 
c,(x,) < (U,),,, for positrons and &,(xo) < 0 for electrons. 
The inequality E,(x,) >U(x) defines the range of x over 
which the motion of a channelled particle occurs for  
given x, and c,. 

All particles can be divided into two groups, chan- 
nelled and unchannelled. Depending on which of these 
groups includes an incident particle, there will be dif- 
ferent limits of integration in the formulas (2.16) for the 
quantities W ( g ) ,  B, and T. For unchannelled particles 
the limits a re  a s  before, x, and (x,+a). For channelled 
electrons the region of integration consists of two inter- 
vals, (-x,, x,) and &,, -x,), and for  channelled positrons 

/"\El (3b) 
FIG. 2. 

w 
0 a I 

it consists of the intervals (x,, a - x,) and (a - x,, x,). 
For c, = 0 all particles a r e  channelled. 

Let us  now consider the case in which the energy of 
interaction between the particle and the particle crystal 
plane is of the form 

U(x)=V,cp ( lx l lR) ,  (3.4) 
where V ,  is a constant and Cn(x/R) is a dimensionless 
function which falls off rapidly for Ix 1 >>R. If, for ex- 
ample, the potential of an individual atom is a screened 
Coulomb potential 

U ( r )  = (Ze 1 e 1 l r )  exp ( - r lR)  , 
then according to Eq. (2.10) 

Substituting Eq. (3.4) in Eq. (3.2) and separating out all 
dimensional quantities, we get for the total intensity of 
the radiation when there is no plane channelling of par- 
ticles the formula 

where cp'=dp(s)/ds, and the index "-" refers to elec- 
trons, "+" to positrons. 

In the case c, = 0, when all particles a re  channelled, 
the total energy of the radiation from positrons and 
from electrons is given, according to Eqs. (2.15) and 
(2.17), by 

[ A -  ' 
where 

a re  numerical coefficients of the order of unity. 

In the derivation of Eqs. (3.6) and (3.7) we have used 
the fact that the function ( ~ ( 1 %  I/R) falls off rapidly. 

It is seen from the equations that the total radiated in- 
tensity is  different for electrons and positrons. For &, 
> I Uc I,, the radiation from positrons is greater than 
that from electrons, and the difference increases a s  the 
angle e decreases. For E,  = 0, i.e., for 0 = 0, the radia- 
tion from positrons is smaller than that from electrons 
by a factor a/R (see Fig. 3). Furthermore, according 
to Eqs. (3.6) and (3.7), the total radiation from chan- 
nelled positrons is of order of magnitude a/R times 
smaller than for unchannelled particles, whereas the 
radiation of electrons is of the same order of magnitude 
whether o r  not there i s  chamelling. The reason for this 
is that in the field (3.4) the oscillation periods of chan- 
nelled positrons and electrons differ by a factor a/R. 

In this connection we shall examine the radiation of 
positrons in a crystal in more detail. If, a s  is often 
done,617 we take as the interaction potential the oscilla- 
to r  potential 
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then in the absence of channelling the spectrum and the 
total intensity of the radiation a r e  found from Eqs. (3.1) 
and (3.2) to be 

32e"aV,)z e2 
I-N. - 

9m2 maa ' 

where n 3 6/ge, ge = 2nO/a. Under conditions of channel- 
ling, for c,=O we get from Eqs. (2.14) and (2.16) 

which agrees with the results of Ref. 6. Here g =2r/T, 
T =na/O,, where 0, is the critical angle for  channelling, 
0, = (2~(,/&)~'~. 

Accordingly, for motion of positrons in an oscillator 
potential the total intensities of the radiation with and 
without channelling differ by a factor two. The spectral 
distributions in the two cases a r e  decidedly different. 
With channelling the spectrum has a single sharp maxi- 
mum at  g = 6, while in the absence of channelling there 
a r e  many sharp maxima a t  frequencies which satisfy the 
conditions 6/ge = 1,2, . . . . The f i rs t  maximum is order 
of magnitude smaller than the maximum intensity with 
channelling by a factor 28/8, [see Eq. (3.12)]. 

Let us now proceed to the study of the spectral distr i-  
bution of the radiation in the case of the more general 
potential (3.4). It follows from Eq. (3.1) that in the ab- 
sence of channelling the spectra of the radiations from 
electrons and positrons contain a maximum in the range 
of frequencies w - c20/m2R. In order of magnitude we 
have for the maximum intensity 

dl dl, R' ---- 
do do a'8 ' 

where &/do is the intensity of the radiation from an 
amorphous medium in this same frequency range, dl,/ 
dw =Nce2(Ze2/m)2. In addition, there a r e  sharp maxima 
and minima in the spectrum (3.1) at a6/2n8 = 1,2, . . . . 
With decreasing 0, the intensity of the radiation a t  the 
maximum must increase, according to Eq. (3.14). This 
increase, however, occurs up to the point at which the 
particles fall into the channellized condition, i.e., at 
which 0 > 0,. 

We note that with decreasing 0 there can also occur a 
violation of the inequality 9<<m/c, which is  the condi- 
tion for the applicability of the general formula (2.7). 

We shall not deal with this case here; it is considered 
in detail in earl ier   paper^,'^"^ and we remark only that 
the inequality in question can be violated only a t  ener- 
gies c >10 GeV. 

According to Eqs. (2.14) and (2.16), for channelled 
particles with 8 = 0 the maximum radiation for both elec- 
trons and positrons l ies in the frequency range w - c2/ 
mZT. The intensities at the maximum a r e  different for  
electrons and for positrons; for  electrons, 

dI- dl,, R' ---- (3.15) 
do do a"* ' 

whereas for positrons, 

dl, dl,, RS ---- 
do do aSOB. ' 

Next, we note that in the spectrum (2.7) of the radia- 
tion from a single channelled particle there a r e  sharp 
maxima and minima a t  6T/2n = 1,2, . . . However, in 
the field (3.4) the vibration periods of particles with dif- 
ferent impact parameters x,  a r e  different, s o  that the 
positions of the maxima a r e  different for  different par-  
ticles. The result is that the radiation from channelled 
particles has a spectrum which is a smooth function of 
the frequency (in contrast with the case discussed earl i-  
e r  of the radiation from unchannelled particles). 

We call attention to the fact that the realistic potential 
(3.4) leads to a picture of the distribution of the radia- 
tion which i s  qualitatively different from that given by 
the oscillator potential. In the case of the oscillator po- 
tential there is a single sharp maximum (inclusion of a 
small correction to the oscillator potential to allow for 
anharmonicity7 leaves this result practically un- 
changed), whereas in the case of a more realistic po- 
tential no sharp maximum appears. 

4. INFLUENCE OF THE ANGULAR SPREAD OF THE 
PARTICLES I N  A BEAM ON THE RADIATION 

As i s  well known, actual sources of particles a r e  
characterized by a certain spread in the angle 0, and 
therefore in c,. When the beam goes through a crystal 
this spread varies with the depth 1 (in particular, owing 
to dechannelling), s o  that it is  natural to describe a 
beam with a distribution f (&,,I). We shall analyze the 
question of the influence of this spread of the particles 
in the beam on the radiation. 

For ultrarelativistic particles the characteristic dis- 
tance X over which there i s  a major change in the dis-  
tribution of the particles in c, is large in comparison 
with the distance the particle moves during the period of 
a vibration and with the distance 6-I -a/@, which is char- 
acteristic for  the radiation when there is channelling 
(for c = 1 BeV, for example, the dechannellizing length 
is" X,> 1 cm, and a/@,- cm). In other words, the 
emission from each layer (1,1+ A 1 )  , with a/0, < A I <X, 
occurs independently, so  that for the spectral distribu- 
tion and the total intensity we can use the formulas 
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which a re  direct generalizations of Eqs. (2.14) and 
(2.15). Here d2E (x,, &,,l)/dwdl is the energy emitted by 
the particle in the frequency interval (w, w+dw) per unit 
length traversed in the crystal, dAE(x,, ~ , , l ) /d l  is the 
total energy emitted per unit path length in the crystal, 
and L is the thickness of the crystal. 

If L <<X, the distribtuion function of the particles can 
be regarded a s  independent of 1 and completely deter- 
mined by the external source. We shall examine this 
case in more detail. We confine ourselves to the con- 
sideration of the emission from channelled particles, 
which, a s  was shown in Sec. 111, shows most distinctly 
the dependence of the radiated intensity on the sign of 
the charge. 

For a strictly parallel beam of particles entering the 
crystal along a crystal axis [for this case the distribu- 
tion function is f(cl) = b(~,),  where 6(&,) is the delta 
function], Eq. (3.7) shows that the main contribution to 
the total intensity comes from particles with impact pa- 
rameters (nu - R) s x, s (nu + R), where n is the number 
of the plane. Most of the particles in a beam with &, = O  
[those with impact parameters (nu + R) Sx, s [(n + 1)a - R] 
play practically no part in the emission. 

Let us now determine the contribution to the radiation 
from particles that enter the crystal between lattice 
planes if the distribution function of these particles dif- 
f e r s  appreciably from zero in the region &, s 1 U, I ,,. 
We shall confine ourselves to the simplest model: 

Since in this case characteristic values of &, are  of 
the order of magnitude of ] U, I ,,, particles that enter 
the crystal in the range of impact parameters (nu - R )  
s x ,  s (na+R) will have enough energy to pass over the 
potential barrier (see Fig. 2). According to Eqs. (2.15) 
and (2.16) the radiation from each of these particles 
(in contrast with the case just now considered, that of 
a strictly parallel beam with &,=O will be comparable 
with that from particles that enter the crystal in the 
range of impact parameters (na + R) s x ,  5 [(n + l ) a  - R]. 
Since there a re  many more of these latter particles, 
the contribution of particles with (nu - R) Sx, s (nu + R) 
to the radiation can be neglected. Then to find the total 
intensity of the radiation we can set  the quantity U,(x,) 
equal to zero and carry out the integration over x, in 
Eq. (4.2). The result is 

where the function AJ3(&,) is given a s  before by Eq. 
(2.8), and we have for positrons 

and for electrons 

with x ,  determined from the condition E,= U,(x,). 

Using Eqs. (3.4) and (4.3)- (4.6), we now finally find 

where 

a r e  numerical coefficients of the order of unity. 

Comparing Eqs. (3.7) and (4.9), we see that in the 
case of channelled positrons the angular spread of the 
particles in the beam has a major effect on the radia- 
tion. The radiation from a strictly parallel beam of 
positrons has an intensity smaller by a factor a / ~  than 
that emitted by a beam with the distribution function 
(4.3). 

In the case of channelled electrons the intensities of 
the radiation emitted from parallel and from nonparallel 
beams a re  of the same order of magnitude. 

It follows from Eqs. (3.7) and (4.7) that a s  the spread 
of the particles in the beam increases the difference be- 
tween the intensities radiated by channellized electrons 
and positrons becomes smaller. 
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