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The propagation of high intensity laser pulses in media at rest and in motion in the presence of absorption 
is studied. The pulses are assumed to be of ~ ~ c i e n t l y  long duration so that the nonlinearity of the 
medium is mainly due to its heating. The variation of the profile of the intensity and of the phase front of 
the pulse during its propagation is found. The focusing conditions are obtained. 
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I. INTRODUCTION. BASIC EQUATIONS 

As the intensity of electromagnetic waves propagating 
in a mediumincreases, their self-action becomes more 
and more important. Self-action effects a re  due to the 
dependence of the dielectric constant of the medium on 
the intensity of the propagating wave. Electrostriction 
and the Kerr effect can lead to this dependence. The 
phenomena due to these mechanisms, which cause the 
index of refraction to  be nonlinear, have been studied 
in detail (see Refs. 1-3, for example). In addition, 
variation of the density of the medium and, consequently, 
of the index of refraction can be due to heating of the 
medium by absorption of the energy of an intense elec- 
tromagnetic wave." In the present study we consider the 
effect of absorption on the propagation of laser  pulses 
of sufficiently long duration. 

The propagation of an electromagnetic wave in a med- 
ium is described by the wave equation 

as 1 e ( E )  S dk 1 - + - ( v L s ) z =  L---+-A~I'~*, 
az 2 2eo k da 2kZI 

where I is the intensity of the electromagnetic wave. 

If the duration of the CO, laser  pulse is  greater than 
sec (for the atmosphere), i t  is  possible to neglect 

in the nonlinear increment & , ( E )  to the dielectric con- 
stant the contributions of the Kerr effect and striction, 
and to take into account only the change of the dielectric 
constant due to heating of the medium (see Ref. 4): 

here 6T = T  - To is the temperature change of the med- 
ium. We shall also assume that the pressure manages 
to become equalized over the diameter of the beam, 
that is, the pulse duration is t >  a/v,, where a is the 
characteristic transverse dimension of the beam and v, 
is the speed of sound. Here 

1 a= 
AE-grad div E- - - [ e  (E) X El =0, 

ca ata 

where E (E) = S o  +i&, + & ,(E) is the dielectric constant. 
Let us substitute into this equation the expression where /3 is  the coefficient of thermal expansion, c ,  is 

the specific heat at constant pressure, p is  the density 
of the gas at T =To, and r = cp/c, - 1. The temperature 
change of the medium is given by the heat-conduction 

where e is the polarization vector, k = ~ & ~ / c ,  w is the eqUation 

frequency of the wave, and the z axis is chbsen to lie 1 a6T I 1 a 
AST----- (vOV)GT-- (v,V)GT=---I. 

along the wave propagation direction. Dropping the a 2 ~ /  x at x x x (7 

az2 and assuming the polarization to be constant, we 
find 

where A, is  the two-dimensional Laplace operator in the 
plane perpendicular to the beam, that is, to the z axis. 
This parabolic equation corresponds to the so-called 
quasioptical approximation. The conditions under which 
it is applicable a re  well known, and we shall not dwell 
on them here (see Refs. 1 and 5, for example). 

Here x i s  the coefficient of thermal diffusivity, a is the 
absorption coefficient, x =cP@ is the coefficient of 
thermal conductivity, v, is the velocity of the convective 
motion arising from the heating of the medium, and vo 
is the velocity of the medium far  from the laser  beam 
(the wind speed). 

In the following we shall consider the three cases 
where the main role is played respectively by the first ,  
second, and third term on the left-hand side of the heat- 
conductor equation (7). For  each of these cases we will 

Introducing the eikonal S of the complex amplitude E 
find the conditions under which we can neglect the last 

= ~ , e ' @  and separating the real  and imaginary parts, term on the left-hand side of (7), that is, the convective 

we get from (2) term. 

Therefore, the system (3)-(7) describes the propaga- 
(3) tion of an intense pulse of duration t>a/v, in an iso- 
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tropic medium in the presence of absorption when 
striction and the Kerr effect a re  not important. We re- 
write these equations in the dimensionless variables 

-= Y S t - Ex 1 2, - =y", l r L z " ,  -=s, -x=t, -=gz, -=r, 
n a a ay" a2 T 10 

da d e  ~ 2 1  (8) '' - a -"=a, y=- - I,, 6=-- -a=,,o, ---- 
E o  C <Ir 7% X x 1 dl' 1 uza' 1 ' 

Here I, is the characteristic value of the intensity, and 
the other quantities were introduced earlier.  In these 
variables (dropping the tildes) the system (3)- (7) be- 
comes 

We have assumed that the medium is homogeneous 
(dc ,/dz =0) and that E ,  = 1, and have operated on (4) 
with V,, introducing a s  in Ref. 5 a vector u=V,S that 
lies in the plane perpendicular to the propagating beam 
and defines the operator of projection of the propagation 
direction on the (x, y) plane. In Eq. (9.3) we a r e  ne- 
glecting the second derivative with respect to the longi- 
tudinal coordinate compared to A,& ,. This is the same 
approximation which led us from Eq. (1) to (2). 

The system of equations (9) with an arbitrary dis- 
tribution of the intensity I(x, y, z =0) =I,(x, y) and phase 
~ ( x ,  y, z =0) =u,(x, y) of the electromagnetic wave at the 
entrance to the medium can, of course, be solved only 
numerically. Furthermore, we shall consider beams 
whose width is large compared to the wavelength. For  
such beams we can neglect in (9.2) the last term, which 
describes diffraction effects (see Ref. 5, p. 153). With- 
out this term, Eqs. (9) describe the propagation of 
electromagnetic waves in an absorbing medium in the 
geometrical-optics approximation. 

2. THE PROPAGATION OF STEADY BEAMS OF 
ELECTROMAGNETIC WAVES IN A MEDIUM AT REST 

We shall begin our study of the propagation of steady 
beams in a medium at res t  with two-dimensional beams. 
In this case Eqs. (9) take the form 

In (10.1) we have dropped in the right-hand side the 
term due to linear absorption (the accuracy of this ap- 
proximation for CO, laser  beams in the atmosphere is 
several percent; the inclusion of linear absorption does 
not affect the subsequent calculations in principle, but 
only makes them more complicated) and have intro- 
duced the power N of the electromagnetic wave 

is most convenient to  write it down introducing the 
characteristics, that is ,  the surfaces 

which a r e  the solutions of the equation 

d x / d z = u ( x ,  z ) .  (1 3) 

In the two-dimensional case that we a re  considering the 
characteristics (12) have the sense of rays, s o  it is 
convenient to define the function cp such that cp(x,z =0) 
=x. In the variables cp and z the system of equations 
(1 0) becomes 

From the f i rs t  equation we find that N =f(cp), where f 
is an arbitrary function. If we take into account the 
boundary conditions cp(x, z =0) = x  and I(x, z =0) =I,(x), 
that is, 

f 

N ( I ,  z=O) = J Zo ( x )  d ~ = N o  ( X I ,  
0 

then we obtain 

From the second of equations (14) we find that u 
=N0(cp)z/2 +u,(qo), where we have used the second bow- 
dary condition u(x, z = 0) = uo(x). Substituting this expres- 
sion into (12), we find the equation for q(x, z ) :  

x=cp+uo ( 9 )  Z + N ~  (cp) z2 /4 .  (16) 

Thus, the problem of the propagation of a two-dimen- 
sional steady beam in an absorbing medium has been 
solved exactly in the geometrical optics approximation 
for beams with an arbitrary distribution of the intensity 
Z(z = 0) =I,(x) and of the phase u(z = 0) =u,(x) at the en- 
trance to the medium (we recall that the eikonal S is re- 
lated to u by the equation u = V,S, that is, u = a ~ / a x  for 
the two-dimensional case). 

The intensity of the electromagnetic wave is 

I=aN/ax=z ,  ( c p ) c p ~ .  

Substituting cpi from (16), we find 

in the dimensional variables we have 

For  a vacuum (a =O) We have 

We shall begin our analysis of the solutions that we 
have obtained with the condition that a point focus exists. 
At the entrance to  the medium let the phase be such that 
in a vacuum the beam would be focused a t  a point with 
the coordinates x* =0, t * = l/b,, that is,') 

(11) 
uo=-box. (18) 

The e ikonal in this case is  S (z = 0) = - b,x"2, that is, a t  
The general solution to the system of equations (10) is the entrance to  the medium the phase front of the beam 

known (see Ref. 6, for example). For  our purposes it is parabolic. 
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P With the boundary phase (18) the equation of the char- 
acteristics (16) becomes 

From this equation we see that the characteristics 
p(x, z )  =const intersect a t  a single point, that is, a 
focal point exists only when the power No depends lin- 
early on cp; in other words, the beam intensity a t  the 
entrance to the medium must be a constant. With ac- 
curacy to  boundary effects we have 

I o ( z )  =e(l-x') (20) 

[e(x>O) =l ,O(x<0)  =o]. In this case [see (IT)] 

The boundary of the beam is determined by the condition 
cp =l. For cp s 1 the Power No(cp) =cp and Eq. (19) can be 
written a s  

The rays cp =const intersect at the point (the focus) 

It is interesting that there i s  a maximum focal length 
(z *),,,,, = 2; in the dimensional variables this is 

Therefore, when a steady beam propagates an absorb- 
ing medium there i s  a focus only if the boundary dis- 
tribution of the intensity is of the form (20), when the 
phase at the boundary is such that 

When this condition is satisfied there is a focus at the 
point (22), which can differ significantly from the focal 
point in a vacuum (x* = 0, z * = l/bo). 

If condition (23) i s  not satisfied (bo< 1), there is no 
focus. In this case the width of the beam is a minimum 
(and the intensity i s  therefore a maximum) at  the point 
z,, =2b0. The behavior of the rays (the characteristics 
cp =const) for a steady beam with the intensity distribu- 
tion (20) and phase distribution (18) a t  the entrance to 
the medium is shown in Fig. 1. Beams with an arbi- 
t rary  intensity and phase profile a t  the entrance to  the 
medium can be analyzed using expressions (16) and (17) 
a s  in the example that we have discussed. 

Let us now consider the propagation of steady three- 

FIG. 1. Propagation of a steady two-dimensional beam with 
constant intensity at the entrance to the medium (solid line): 
a) bo < 1, b) bo= 1, c) bo > 1. The dashed lines show the path of 
the rays in a vacuum. 

dimensional beams in a medium a t  res t  with absorption. 
Let the beam be symmetric a t  the entrance to the med- 
ium: 

Z(z,  y, z=O)=Io(r), u,(x,  y,  z=O)=uo(r) ,  

u.(z, y ,  z=O)=O, 

where r = (x2 + y2)"~ and (Y are  the cylindrical coordinates 
in the plane perpendicular to the beam propagation di- 
rection z and u = {u,, u,). For  such beams the system 
(9) has the following form: the first  two equations a r e  
the same a s  (10.1) and (10.2) (with x replaced by r )  and 
the third is 

I a a € ,  I aiv -- r - = - -  
r ar ar 2nr ar ' 

where u E U, and 

N=2n 1 lrdr 
0 

is the power of the electromagnetic wave. 

As in the two-dimensional case we shall introduce the 
characteristics (12) by means of Eq. (13) [the surfaces 
p(r,  z ) now have the sense of tubes of flow]. Then the 
solution to the system (10.1), (10.2), and (24) with the 
boundary conditions I(z = 0) =lo@), u(z = 0) = uo(r) can be 
written a s  

0 

N=No ( q )  =2n I ,  (r)rdr, (25) 
D 

From (13) and (26) we find the equation for cp(r, 2 ) :  

Expressions (25)-(27) solve the problem of the propa- 
gation of a steady axially symmetric beam of electro- 
magnetic waves in a medium a t  res t  with weak absorp- 
tion. The problem was solved for arbiratry boundary 
profiles of the intensity I(z =0) =Io@) and of the phase 
u(z =O) =u0(r). 

As an example let us consider the propagation of a 
beam with constant intensity I,(?') =Io@ (1 - r2 )  a t  z = 0, 
that is, No(r 6 1) =r2No and No@> 1) =No, where No is the 
total power of the beam in dimensionless units. Let 
us also assume that the phase a t  the boundary is such 
that in a vacuum there would be a point focus: uo= -by ,  
with bo= const [see (18) and footnote 11. The propaga- 
tion of this beam is illustrated in Fig. 2. In this case 
we have 

FIG. 2. Thermal defocusing of an axially symmetric beam 
with constant intensity at the entrance to the medium. 
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u2=[b,'+(N,/2n) In (rlrp) ]cp2, cpG1. 

The minimum radius of the beam r* is determined by 
the condition u = O  (rays parallel to the z axis); from the 
preceding equality we have r* =exp{2rb;/~J. This val- 
ue of the radius is reached a t  the point 

In contrast to the two-dimensional case, the radius of 
the axially symmetric beam does not go to  zero any- 
where, that is, for such a beam it is  impossible to have 
a focal point in the presence of absorption. 

In studying steady beams in an immobile medium we 
have neglected convection. Let us find the condition for 
which this approximation is valid (see Ref. 7 for more 
details). All the above results a r e  valid if the ratio of 
the discarded convective term in the heat-conduction 
equation (7) to the f i rs t  term is av,/x << 1. From the 
Navier-Stokes equation 

av, 1 - + ((v.,+v,) V)V,= - - P p + v A v , + ~ g 6 T ,  
d t  P (28) 

(v is  the kinematic viscosity and p = P  - (g. r)p is the 
pressure minus the hydrostatic pressure) we get for 
the convective velocity v, = pga26 T/v. According to (24) 
6 T = d / r  n . Therefore, 

For the atmosphere pa& /ap = c - 1 =5.65 x 1 04, the 
density of a i r  is Po =1.25 x10-3 g/cm3, the coefficient 
of thermal expansion is P =3.67 x10-3 deg", the specif- 
ic heat a t  constant volume is C, =7.143x108 erg/g. deg, 
the thermal diffusivity is  x =0.28 cm2/sec, the adiabatic 
exponent is  Y = c,/c, = 1.4, the absorption coefficient is  
aCo2 =0.8x10-8 cm-l, the speed of sound is us =3.33 
x l @  cm/sec, the kinematic viscosity is v =0.15 cm2/sec, 
and the acceleration of gravity is g =0.98x103 cm/sec2, 
s o  for a beam of radius 25 cm from a CO, laser  (w 
=1.773x1014 set", k =5.92x103 c m - )  we have au,/x 
= 4 ~ 1 0 ~ ~ [ k W ] .  

3. STEADY PROPAGATION OF ELECTROMAGNETIC 
WAVES IN A MOVING MEDIUM 

In this section we shall consider the propagation of a 
laser pulse in a medium with absorption in the presence 
of a wind perpendicular to the beam. Let us begin with 
the case of two-dimensional beams. If the pulse dura- 
tion t is  such that t>>a/v, (here a is the characteristic 
transverse dimension of the beam and v, is the wind 
speed: for a = 10 cm and u, = 10 m/sec we have t 
>> sec) and the wind speed satisfies the condition 
Do =au,/x >> 1 (for a =10 cm and x =0.2 cm2/sec we have 
uo>> 0.02 cm/sec), in the heat-conduction equation (9.3) 
we can drop the last  term on the left-hand side and for 
two-dimensional beams the system (9) acquires the fol- 
lowing form: the f i rs t  two equations a r e  the same a s  
(10.1) and (10.2), while the third, dropping the tilde, is 

(we assume that the wind velocity i s  directed along the 

C 

x axis). In this approximation the heat is carried away 
from the wave propagation region by the flow of gas mov- 
ing in the perpendicular direction, rather than by ther- 
mal conduction a s  in the preceding case. In using the 
approximation (29) it is necessary to  bear in mind the 
fact that in addition to the condition go>> 1, which (very 
weakly) limits the wind speed from below, there i s  
another condition limiting it from above: the wind 
speed must not exceed the speed of sound. If this latter 
condition does not hold, the pressure in the gas cannot 
be equalized and the heat-conduction equation alone is 
insufficient for describing the medium. 

As in Sec. 2, using Eq. (13) we introduce the charac- 
terist ics (12) and the solution of (10.1) (the power N) is 
of the form (15). The problem i s  to find the function 
~ ( x ,  z). We find the equation fo r  q(x, z )  by substituting 
(29) into (10.2) and using (13) for  u: 

We use next the fact that usually u,>> 1. We seek the 
solution of this equation in the form of a ser ies  

x=xo(z,  cp) + x , ( z ,  cp)/u0+x2(z,  (p)/uol+ . . . 
with the boundary conditions 

Substituting this series into (30) and keeping only the 
f i rs t  two terms, we find that 

where 

It can be shown that 

Expressions (15) and (31) thus solve the problem of 
the propagation of a beam of electromagnetic waves in 
a medium with a wind, for a pulse duration t >  a/v, and 
an arbitrary distribution of the intensity Z(2 =0) =I,(%) 
and phase u(z =0) =u,(x) a t  the entrance to the medium, 
using perturbation theory in the parameter g = (b~u,)". 
In the dimensional variables 

Here the intensity is I = aN/ax =I,(cp)q:. Substituting 
cpi from (31), we obtain 

Let us consider beams with a parabolic phase front 
a t  the entrance to the medium [see (18), b, =const]. For 
such beams 

We begin our analysis of our solutions with the case 
where a t  the boundary of the medium z = O  the intensity 
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has the form of a step (20). For this boundary profile 
the intensity (32) looks like I(q < 1)  = (1 - b$)-l, 
I(q > l ) rO,  where we have neglected edge effects. From 
the equation for the characteristics (33), which in this 
case is of the form 

we see that the focus, that is, the point at  which the 
rays cp =const intersect, has the coordinates x* = - l /  
2b3, and z * = l/b,. The location of the focus in the 
beam propagation direction (along the z axis) is the 
same as  it would be in a vacuum for a given boundary 
focusing [see (18)]. The wind caused the focus to shift 
in the transverse direction toward the wind. The path 
of the beam in this case is illustrated in Fig. 3. 

Let us determine the conditions under which a point 
focus is possible. From the equation for the charac- 
teristics (33) we see that all the rays intersect at  a 
single point if the intensity at the boundary I,(%) is a 
linear function of x, that is, neglecting edge effects. 

(see Fig. 4). For this boundary intensity, Eq. (33) has 
the form 

a< cp< b. From this we see that the rays intersect at 
the point 

Let us consider the case where a beam with a plane 
phase front u(z =O)rO is incident on a medium with a 
wind. Letting b,-0 in (35), we find 

This beam will be focused by the wind at the point x* 
=- B/A, z * ~  =2v0/A. As seen from the expression for 
z * ~ ,  the wind focuses only those beams whose intensity 
increases along the wind: A =dI,/dx> 0. Beams whose 
intensity decreases along the wind (A < 0) a re  mono- 
tonically defocused. 

We can similarly consider the propagation, in a med- 
ium with a wind, of a beam such as  in (34), which di- 
verges at the entrance to the medium (b, < 0). When the 

FIG. 3. Propagation of a steady two-dimensional beam 
with constant intensity at z= 0 in a medium in motion. The 
direction of the x axis coincides with the wind direction. The 
focus is shifted toward the wind by an amount Ax= 1 /2vobz .  

intensity of the beam increases in the direction of the 
wind (A > 0) the beam is focused by the wind. It can be 
shown using (35) that in this case the focal point is at 
x* = - B/A, z* = I  b,l -'exp{2v0b2,/~). 

Therefore, stationary thermal focusing by a wind i s  
possible for two-dimensional beams with a linear pro- 
file at the boundary (and A =dI,/dx > 0) propagating in 
an absorbing medium. 

For beams with an arbitrary intensity profile at the 
entrance to  the medium it can be shown using (33) that 
the point focus that would exist in a vacuum at the point 
x* =O,z* =l/b, is replaced by a focal region shifted 
windward. This region is where the rays intersect near 
the point x* = - 1 /2v0bZ,, z * = 1 /b, and has the dimensions 
Ax-1 /2v0b:, Az = 1/2 v,b; (Fig. 5). 

Before concluding this section let us consider three- 
dimensional beams. If at the entrance to the medium 
the beam is symmetric [that is, I(x, y,z =0) =I,(r),r 
= (x2 +y2)u2] and focused at the point u(z =0) =- b,r, b, 
=const, and the wind is directed as  before along the x 
axis, the solution to the system (9) [with Eq. (9.3) in 
the form (29) and 6 =0] has the form 

where 

while the function q(r,  a, z)  is determined by the equa- 
tion 

In this expression a is the angle between the x axis and 
the transverse vector r. In Fig. 6 we show the cross 
sections of the tubes of flow [the surfaces p(r,  (Y,Z 

= const] cut by the planes z =const, The shapes of these 
cross sections a re  in agreement with the numerical 
calculations of Wallace and Lil ly  (Fig. 4 of Ref. 8, the 
case of constant irradiance). 

FIG. 5. Thermal defocusing of a two-dimensional beam in a 
medium in motion. The x axis is chosen to l ie  along the wind 
direction and Ax= 1/2vob,2, Az- l /2vobo3.  
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FIG. 6. Cross sections of tubes of flow cut by planes z=const 
for a beam which is axially symmetric at z =  0 and propagates 
in a medium in motion. The direction of the x axis coincides 
with the wind direction. The figures are for a) z =  0, b) z 
=zi, c) z=zz (z2>z1>O). 

In the calculations of this section we did not take into 
account the convective motion of the medium due to 
heating. We shall show that even for very powerful 
beams the convective velocity can be neglected com- 
pared to the typical velocities of the motion of the med- 
ium (the wind speeds). In fact, f rom the Navier-Stokes 
equation (28) we have 

The quantity 6T is given by the heat-conduction equation 
(29) 

s o  that 

For  the atmosphere (see the parameters above) and a 
CO, laser  beam we have ul/uos 1 0 - 6 ~  @w] for v02 1 
m/sec. 

4. THE SHORT PULSE APPROXIMATION 

If the duration t of the laser  pulse is such that t <  a2/x 
and at the same time t <a/v, (but, of course, t > a/v,, a s  
required by our description of the medium), only the 
second term remains on the left-hand side of the heat- 
conduction equation (9.3). For  two-dimensional beams 
in this approximation the system of equations (9) is a s  
follows: the first  two equations a r e  the same a s  (10.1) 
and (10.2), while the third is 

As in the two preceding sections, we shall use the meth- 
od of characteristics to solve the system of equations 
(10.1), (10.2), and (37). The solution of the f i rs t  equa- 
tion with the boundary conditions 

N (2, z=0, t) =NO(z) - j (2) & 
* 

has the form (15); the characteristics cp(x,z, t) a r e  
introduced a s  the solutions of Eq. (13) [the boundary 
condition for this equation is q(x, z =0, t )  =XI. Substitut- 
ing (37) into (10.2) and using (13) and (15), we find the 
equation for q(x, z, t): 

The quantity is defined in (36) and b, =- uG(cp). 
We have used the boundary condition u(x, z =0, t) =u,(x). 
Calculating the ratio of the terms quadratic in the time 
to  those linear in the time in (38), we find for this ratio 

To estimate the accuracy of our method we compared \ 
its predictions for three-dimensional beams [expres- 
sions (44) and (45)] to the numerical solution of Eqs. 
(9) found by computer [Eq. (9.3) was solved using the 
approximation (37)]. The results  a r e  in excellent agree- 
ment, even when y = l  (see Fig. 7). 

Therefore, the problem of the propagation of a two- 
dimensional beam of electromagnetic waves in a med- 
ium with absorption when the pulse duration is t 

a/uJ has been solved for an arbitrary distribu- 
tion of the intensity Zo(x) and phase uo(x) at the entrance 
to the medium (z =0) using perturbation theory in the pa- 
rameter y [expressions (15) and (38)]. 

For  beams with a parabolic phase front a t  the entrance 
to  the medium [see (18)], uo = - b,+ and b, = const. The 
intensity of these beams i s  I =aN/ax =N;(q)cp; =Io(q)cp;. 
Substituting cp: f rom (38), we find 

The function q(x, z, t )  is given by Eq. (38). 

Equations (38) and (39) a r e  easily generalized to the 
case where the intensity profile a t  the boundary z = O  is 
time-dependent: I(x, z =0, t) = f, (tV2 ( x )  (a modulated 
signal a t  the boundary). For  such beams it is sufficient 
to replace the time t in (38) and (39) by 

j fI(t)dt. 
a 

It i s  also of interest to consider the case where a 
beam with a plane phase front is incident on the medium. 
Letting b,-0 in the equation for the characteristics 
(38), we find 

~=p-~ /~ tz~I~ ' ( cp)  . (40) 

In this case the intensity i s  

Z=I, (cpj rp/=Zo(cp) [ l+ii,tzZZo" (cp) I-'. 

As the f i rs t  example let us consider the propagation 
of a beam with intensity of the form (20) at the boundary. 
For this profile, expressions (38) and (39) coincide, 
apart from edge effects, with the corresponding expres- 
sions (17') for a vacuum, that is, for such a beam the 
medium does not have any effect (neglecting edge ef- 
fects). 

FIG. 7. Minimum radius of a parabolic axially symmetric 
beam (a) and the distance at which the radius of an axially 
symmetric beam attains the minimum (b). The solid lines 
show expressions (46) and (45) and the points show the result 
of the numerical computer calculation. 
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/ As the next example let us consider a beam with the 
boundary phase (18) u(z = 0) = uo =box, b ,  = const and the 
boundary intensity profile Z(z = 0, x, t) =Io(%) 
= (1 - x2)8(1- 2). In this case the equation for the 
characteristics (38) has the form 

~ = j 1 - b ~ z - ( t : b . ~ ) @ ~ ( b ~ z ) ] q .  

The minimum width of the beam is determined by the 
condition ax/az =O; this condition is satisfied at the 
point z =z*  = (1 +t/b2,)-'t;l, where the width of the beam 
is 

The behavior of the rays for a beam with a parabolic 
boundary profile is illustrated in Fig. 2. 

Let us look at yet another example. Let us consider 
the propagation of a parabolic beam with a minimum on 
the axis I,(x) =*(I - 9) and a plane phase front at the 
entrance to the medium (uo = 0). The equation for the 
characteristics (40) takes the form cp = (1 - tz2/2)-lx, 
from which we see that the rays (the curves cp =const) 
intersect at  the point x* =0, z*  = (2/tyl2. In the di- 
mensional units 

that is, this beam i s  focused into a point. This is the 
familiar phenomenon of the thermal self-focusing of a 
beam with an intensity that decreases toward the center 
(see Ref. 9, for example). 

We shall not consider examples of beams with more 
complicated boundary intensities and phases. Each of 
these can be studied using the equation for the charac- 
teristics (38) and the expressions for the intensity (39). 
Let us now look at three-dimensional beams. 

If at  the entrance to the medium the beam is sym- 
metric, that is, the intensity and phase a r e  of the form 

here r = (2 +y2)1/2 and a are the cylindrical coordinates 
in the plane perpendicular to the beam propagation di- 
rection z ] ,  the solution of the system (9) [where the 
third equation is in the approximation (37)] is such that 
the power N of the beam [introduced in (24)] is 

0 

N(r, z, t )  =N0(q) =2nJ I,(r)rdr. (41 
0 

The characteristics cp(r, z, t )  are  given by the equation 

r=q+uo (9) z- (t14b,2) ZOr(q) @,(b,z) +O (Plb,'), (42 ) 

where 

@ 2 ( ) ( l - ) - - l ,  b o ~ - u o ' ( ~ ) .  

The ratio of the terms in (42) which a r e  quadratic in the 
time to those linear in the time is 

Expressions (41) and (42) solve the problem of the 
propagation of an axially symmetric pulse of duration 
t<{a2/x, a/uJ in a medium with absorption in perturba- 
tion theory in the parameter y for an arbitrary distribu- 
tion of the intensity Z,(r) and phase u,(r) at the entrance 

to  the medium (it should be kept in mind that u =V,S, 
where S is the eikonal). 

Since it differs from the two-dimensional case only 
by details, as  an example let us consider only the case 
of parabolic beams. At the entrance t o  the medium let 

lo (r)  = ( 1 4 )  €3 ( I - ? )  ; uo=-bb, bo=const. (43) 

The equation for the characteristics (42) becomes 

The minimum radius of the beam is  given by the condi- 
tion (ar/az),= 0. From (44) we find that here 

and the radius of the beam is 

From expressions (41), (44), and (24) we find the in- 
tensity 

that is, 

The propagation of this beam is  illustrated in Fig. 2. 
In Fig. 7 we have compared the predictions of our ap- 
proximate theory [expressions (45) and (46)] to the exact 
solution of the system of equations (9) found by com- 
puter [the third equation is in the approximation (37)] 
with the boundary conditions (43). This comparison 
shows that the theory gives a good description of the be- 
havior of the beam for even y =  1. 

The results of this section a r e  valid a s  long as con- 
vection can be neglected, that is, tul/a<< 1 [see (7)]. 
From the Navier-Stokes equation (28) we have u, - t@gbT; according to (37) the temperature change i s  
6T=td/c,p, i.e., 

(here A is the energy in the pulse). For the atmos- 
phere (see above) and a beam of radius 5 cm from a 
CO, laser we have t~ , /a=lO-~t~A[J] .  

"More accurately, iio = - boZ; in the dimensional variables the 
beam is focused a t  the point x* = 0,  z* = Ro , so that uo = - x/R 0 

and 
( r 2 1  1 H - 1 - -= - - 
R: Y .R: (rIo 1 $1 
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Effect of depolarizing collisions on the photon echo in a 
magnetic field 
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A connection between the different relaxation characteristics, which describe the change of the optical- 
coherence matrix under the influence of elastic depolarizing collisions, is established for the first time 
ever. The calculation is performed for a Van der Waals interaction on a transition with level angular 
momenta j, = jb = 1. It is found that the relative difference between the relaxation characteristics ranges 
from 5 to 20% for the considered values of the interaction parameters. The possibility is demonstrated of 
experimentally measuring the characteristics that describe the relaxation of the optical-coherence matrix 
on the transitions j-+j(j>l) and j*j + 110'2 1/2) by the photon-echo method in a gas situated in a 
longitudinal magnetic field. It is found for the 1+1 and 1/2*3/2 transitions that the magnetic field 
intensity can be chosen such that the polarization echo vector component perpendicular to the 
polarization plane of the exciting pulses is due entirely only to depolarizing collisions. 

PACS numbers: 42.65.Gb, 42.50. + q 

Recent y e a r s  have s e e n  p r o g r e s s  in  nonlinear laser 
spectroscopy, which p e r m i t s  the  study of quantum- 
transition s t r u c t u r e s  obscured by  the Doppler broaden- 
ing of spec t ra l  l ines .  An extensive bibliography on th i s  
topic is contained in the  monograph of Letokhov and 
Chebotaev.' In a g a s  medium, the resonance levels  of 
moving a toms  (molecules) are usually degenerate .  A 
consistent calculation of the e las t i c  col l is ions shows 
therefore that the relaxation of that  densi ty-matr ix 
component which descr ibes  optical coherence ( t ransi-  
tions between the considered levels)  is determined not 
by a single quantity but by a n  aggregate  YC*), where  
I ja - jJ S x j ,  +jb, and j, and j ,  are the angula r  mo- 
menta of the levels  of the t ransi t ion.  The aggregate  of 
the quantities Y(*) de te rmines  in e s s e n c e  the proper -  
t i es  of the resonant e lectromagnet ic  radiation that  
passes through a gas medium. In part icular ,  the gain 
of a weak probing wave on a transi t ion with level  angu- 
lar momenta j, = 1 and j, = 2, in a medium sa tura ted  by 
a s t rong  field, depends essent ial ly  on the r a t i o  of the 
relaxation charac te r i s t i cs  of the  dipole polarization 
.7(" and of the quadrupole polar izat ion Y(z) of the med- 
ium. So tar, however, t h e r e  are no concre te  theoret i -  
cal or experimental  resu l t s  concerning the ratios of the 
different y("). 

In the f i r s t  p a r t  of th i s  paper  we calculate  all the re- 
laxation charac te r i s t i cs  7 (") f o r  the t ransi t ion j ,  = j ,  
= 1 in the case of a Van d e r  Waals  interaction of the 

colliding a toms .  T h e  connection between the relaxation 
c h a r a c t e r i s t i c s  having different va lues  of x are es- 
tablished h e r e  f o r  the f i r s t  time. The  r e s u l t s  allow u s  
t o  check the c o r r e c t n e s s  the assumption,  used  in many 
papers ,  that all the Y ' "  ' are approximately equal. 

In the second p a r t  of the paper  it is shown on the b a s i s  
of a theore t ica l  calculation that  the differences Y ( " )  
- Y( ' ) (X # 1 )  can  be de te rmined  by d i r e c t  experiment  
using photon echo  i n  a g a s  medium placed in a longi- 
tudinal magnetic field. 

The photon echo  method h a s  been coming into e v e r  in- 
c reas ing  u s e  f o r  the  s tudy of gas media.*-'= I t  is e m -  
ployed to de te rmine  successful ly the relaxat ion charac-  
teristics of resonant  t ransi t ions,  as well as to identify 
atomic and molecular  t ransi t ions.  In part icular ,  Wangs 
h a s  obtained theoret ical ly  the influence of the difference 
.T("' -Y(''(H f 1 )  on the polar izat ion of photon echo on 
the  t ransi t ions j - j ( j > l )  and j = j + l ( j a  1). On the re- 
maining t ransi t ions,  the echo amplitude depended only 
on the quantity .TO.), and its polarization w a s  not af- 
fected by  the  depolarizing col l is ions.  

Application of a longitudinal magnetic f ie ld on a g a s  
medium in which a photon echo  is produced extends sub-  
s tant ial ly  the  capabi l i t ies  of the photon echo. Thus, 
f o r  example,  a specific rotat ion of the photon-echo 
polar izat ion vec tor  is observed,  different f r o m  the 
F a r a d a y  rotation. This  effect was predicted by  Aleks- 
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