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The propagation of high intensity laser pulses in media at rest and in motion in the presence of absorption
is studied. The pulses are assumed to be of sufficiently long duration so that the nonlinearity of the
medium is mainly due to its heating. The variation of the profile of the intensity and of the phase front of
the pulse during its propagation is found. The focusing conditions are obtained.

PACS numbers: 42.60.He, 42.65.Jx

I. INTRODUCTION. BASIC EQUATIONS

As the intensity of electromagnetic waves propagating
in a mediumincreases, their self-action becomes more
and more important. Self-action effects are due to the
dependence of the dielectric constant of the medium on
the intensity of the propagating wave. Electrostriction
and the Kerr effect can lead to this dependence. The
phenomena due to these mechanisms, which cause the
index of refraction to be nonlinear, have been studied
in detail (see Refs. 1-3, for example). In addition,
variation of the density of the medium and, consequently,
of the index of refraction can be due to heating of the
medium by absorption of the energy of an intense elec-
tromagnetic wave.? In the present study we consider the
effect of absorption on the propagation of laser pulses
of sufficiently long duration.

The propagation of an electromagnetic wave in a med-
ium is described by the wave equation

2
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where € (E) =€, +i€, + &,(E) is the dielectric constant.
Let us substitute into this equation the expression
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where e is the polarization vector, k=wVE ,/c, w is the
frequency of the wave, and the z axis is chosen to lie
along the wave propagation direction. Dropping the 82E/
922 and assuming the polarization to be constant, we
find
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where A, is the two-dimensional Laplace operator in the
plane perpendicular to the beam, that is, to the z axis.
This parabolic equation corresponds to the so-called
quasioptical approximation. The conditions under which
it is applicable are well known, and we shall not dwell
on them here (see Refs. 1 and 5, for example).

Introducing the eikonal S of the complex amplitude E
=Eoe‘”s and separating the real and imaginary parts,
we get from (2)
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where I is the intensity of the electromagnetic wave.

If the duration of the CO, laser pulse is greater than
107 sec (for the atmosphere), it is possible to neglect
in the nonlinear increment €,(E) to the dielectric con-
stant the contributions of the Kerr effect and striction,
and to take into account only the change of the dielectric
constant due to heating of the medium (see Ref. 4):

er= 22 o1, )

here 6T =T - T, is the temperature change of the med-
ium. We shall also assume that the pressure manages
to become equalized over the diameter of the beam,
that is, the pulse duration is ¢>a/vs, where a is the
characteristic transverse dimension of the beam and v,
is the speed of sound. Here

de de 1 /0 Cp

ﬁs—ﬁpa—p‘, k"=——p—(—p)P=—F (6)
where B is the coefficient of thermal expansion, cp is
the specific heat at constant pressure, p is the density
of the gas at T=T,, and I'=cp/cy—1. The temperature
change of the medium is given by the heat-conduction
equation

AaT—T—at——x—(vQV)ar—% (V.V)6T=—%I. )
Here x is the coefficient of thermal diffusivity, o is the
absorption coefficient, » =cppx is the coefficient of
thermal conductivity, v, is the velocity of the convective
motion arising from the heating of the medium, and v,
is the velocity of the medium far from the laser beam
(the wind speed).

In the following we shall consider the three cases
where the main role is played respectively by the first,
second, and third term on the left-hand side of the heat-
conductor equation (7). For each of these cases we will
find the conditions under which we can neglect the last
term on the left-hand side of (7), that is, the convective
term.

Therefore, the system (3)-(7) describes the propaga-
tion of an intense pulse of duration ¢{>a/vs in an iso-
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tropic medium in the presence of absorption when
striction and the Kerr effect are not important. We re-
write these equations in the dimensionless variables

T W i S ot e ]
P x, 2 Y, Z "=z, ar "z x=t, T—Ez, IT"—T
v . &8 0 a 1 (8)
— a=?,, _—_T=T—a' 'Y=—I —_—

€& C 9 ' o '

Here I, is the characteristic value of the intensity, and
the other quantities were introduced earlier. In these
variables (dropping the tildes) the system (3)-(7) be-
comes

81/0z+div (Iu) =—al, 9.1)
du [ ,

a—+(uV)|.l—-2—V_|_ez — V.= 0 A_LI” 9.2)
A 8,—08,/0t— (VoY) eo=1I. (9.3)

We have assumed that the medium is homogeneous

(de ,/dz =0) and that €,=1, and have operated on (4)
with V,, introducing as in Ref. 5 a vector u=v,S that
lies in the plane perpendicular to the propagating beam
and defines the operator of projection of the propagation
direction on the (x, y) plane. In Eq. (9.3) we are ne-
glecting the second derivative with respect to the longi-
tudinal coordinate compared to A,€,. This is the same
approximation which led us from Eq. (1) to (2).

The system of equations (9) with an arbitrary dis-
tribution of the intensity I(x, y, z =0) =I,(x, y) and phase
u(x, y,z =0) =u,(x, y) of the electromagnetic wave at the
entrance to the medium can, of course, be solved only
numerically. Furthermore, we shall consider beams
whose width is large compared to the wavelength. For
such beams we can neglect in (9.2) the last term, which
describes diffraction effects (see Ref. 5, p. 153). With-
out this term, Eqs. (9) describe the propagation of
electromagnetic waves in an absorbing medium in the
geometrical-optics approximation.

2. THE PROPAGATION OF STEADY BEAMS OF
ELECTROMAGNETIC WAVES IN A MEDIUM AT REST

We shall begin our study of the propagation of steady
beams in a medium at rest with two-dimensional beams.
In this case Egs. (9) take the form

(8/02+ud/dz) N=0, (10.1)
(8/02+ud/dz)u="/,0¢,/ 0z, (10.2)
%,/ 9z*=0N/0z. (10.3)

In (10.1) we have dropped in the right-hand side the
term due to linear absorption (the accuracy of this ap-
proximation for CO, laser beams in the atmosphere is
several percent; the inclusion of linear absorption does
not affect the subsequent calculations in principle, but
only makes them more complicated) and have intro-
duced the power N of the electromagnetic wave
N(z, z)=5 I(z, z)dz. (11)

The general solution to the system of equations (10) is

known (see Ref. 6, for example). For our purposes it
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is most convenient to write it down introducing the
characteristics, that is, the surfaces

@(z, z) =const, (12)
which are the solutions of the equation
dz/dz=u(z, z). 13)

In the two-dimensional case that we are considering the
characteristics (12) have the sense of rays, so it is
convenient to define the function ¢ such that ¢(x,z =0)
=x. In the variables ¢ and z the system of equations
(10) becomes

(0N/02)¢=0, (0u/dz)e=N/2. (14)

From the first equation we find that N =f(¢), where f
is an arbitrary function. If we take into account the
boundary conditions ¢(x,z =0)=x and I(x,z =0) =1 (x),
that is,

N(z,2=0)= [ Lo(z)dz=N,(2),
then we obtain

N=N,(9). 15)

From the second of equations (14) we find that u
=Ny(¢)z/2 +uy(p), where we have used the second boun-
dary condition u(x, z =0) =u,(x). Substituting this expres-
sion into (12), we find the equation for ¢(x, z):

z=@+uo(9) 2+ No(¢)2/4. (16)

Thus, the problem of the propagation of a two-dimen-
sional steady beam in an absorbing medium has been
solved exactly in the geometrical optics approximation
for beams with an arbitrary distribution of the intensity
I(z =0)=1I,(x) and of the phase u(z =0) =u,(x) at the en-
trance to the medium (we recall that the eikonal S is re-
lated to u by the equation u=Vv,S, that is, #=38S/dx for
the two-dimensional case).

The intensity of the electromagnetic wave is
I=0N/0z=I,(9)@. .

Substituting ¢, from (16), we find

I=I,(9) [1+u (¢) 2+, (@) 22/4] Y 1n)
in the dimensional variables we have

I=1,(@) | 1+’ @) 2+1(@) - | ] -
For a vacuum (o =0) we have

z=gtuc(9)z, I=I(p)[1+u, (9)z]" )

We shall begin our analysis of the solutions that we
have obtained with the condition that a point focus exists.
At the entrance to the medium let the phase be such that
in a vacuum the beam would be focused at a point with
the coordinates x* =0,z*=1/b,, that is,”

(18)

The eikonal in this case is S(z =0) =- b,x?/2, that is, at
the entrance to the medium the phase front of the beam
is parabolic.

uy=—box.

A. A. Vedenov and O. A. Markin 609



r

With the boundary phase (18) the equation of the char-
acteristics (16) becomes

z={(1=boz) p+/:2*No (). 19)

From this equation we see that the characteristics
¢(x,z) =const intersect at a single point, that is, a
focal point exists only when the power N, déepends lin-
early on ¢; in other words, the beam intensity at the
entrance to the medium must bé a constant. With ac-
curacy to boundary effects we have

L (z)=8(1—2%)
[0(x>0)=1,8(x<0)=0]. In this case [see (17)]

Ho<1)=(1—byz+22/4) ",

(20)

1(p>1)=0.

The boundary of the beam is determined by the condition
@ =1. For ¢ <1 the power N,(¢)=¢ and Eq. (19) can be
written as

@={(1—boz+2*/4)"'s. 21)
The rays ¢ =const intersect at the point (the focus)
=0, 3'=2]b,—(b’—1)"]. 22)

It is interesting that there is a maximum focal length
(2*),.,c =2; in the dimensional variables this is

(z')m..=2(—::—l., -Z—"T— |) -

Therefore, when a steady beam propagates an absorb-
ing medium there is a focus only if the boundary dis-
tribution of the intensity is of the form (20), when the
phase at the boundary is such that

|88 (z, 2=0)/02% | =bs>1. 23)

When this condition is satisfied there is a focus at the
point (22), which can differ significantly from the focal
point in a vacuum (x* =0,z*=1/b,).

If condition (23) is not satisfied (b,<1), there is no
focus. In this case the width of the beam is a2 minimum
(and the intensity is therefore a maximum) at the point
Zpmin =2b,. The behavior of the rays (the characteristics
@ =const) for a steady beam with the intensity distribu-
tion (20) and phase distribution (18) at the entrance to
the medium is shown in Fig. 1. Beams with an arbi-
trary intensity and phase profile at the entrance to the
medium can be analyzed using expressions (16) and (17)
as in the example that we have discussed.

Let us now consider the propagation of steady three-

4 P4 z

b
\
\
\
\ U
T 4 z 4 I

FIG. 1. Propagation of a steady two-dimensional beam with
constant intensity at the entrance to the medium (solid line):
a) by<1, b)by=1, c) by>1. The dashed lines show the path of
the rays in a vacuum.
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dimensional beams in a medium at rest with absorption.
Let the beam be symmetric at the entrance to the med-

ium:
I(z, y, 2=0)=I,(r),
ua(z, y, 2=0)=0,

(2, y, 2=0) = (),

where 7 = (x2 + y2)/2 and « are the cylindrical coordinates
in the plane perpendicular to the beam propagation di-
rection z and u= {u,, ua}. For such beams the system
(9) has the following form: the first two equations are
the same as (10.1) and (10.2) (with x replaced by ») and
the third is

1 9 9e, 1 0N

r ar or  2mror’

(24)
where u=u«, and
N=2n jlrdr

is the power of the electromagnetic wave.

As in the two-dimensional case we shall introduce the
characteristics (12) by means of Eq. (13) [the surfaces
¢{r,z) now have the sense of tubes of flow]. Then the
solution to the system (10.1), (10.2), and (24) with the
boundary conditions I(z =0)=I,(r), u(z =0) =u,(r) can be
written as

N=Ny(¢)=2x [1,(r)rdr, (25)
() + - I
w=u(¢)+ o No(p)In s 26)
From (13) and (26) we find the equation for ¢(r,z):
rie U
_ 9 No(p) . M
=t :[ [ oty g] dg; o(r, 2=0) =r. @7)

Expressions (25)-(27) solve the problem of the propa-
gation of a steady axially symmetric beam of electro-
magnetic waves in a medium at rest with weak absorp-
tion. The problem was solved for arbiratry boundary
profiles of the intensity I(z =0)=/,(r) and of the phase
u(z =0) =uy(r).

As an example let us consider the propagation of a
beam with constant intensity I,(+)=1©(1 - 72) at z =0,
that is, N (r <1)=72N, and N (r >1) =N,, where N, is the
total power of the beam in dimensionless units. Let
us also assume that the phase at the boundary is such
that in a vacuum there would be a point focus: u,= -b7,
with b,= const [see (18) and footnote 1]. The propaga-
tion of this beam is illustrated in Fig. 2. In this case
we have

z

g r
FIG. 2. Thermal defocusing of an axially symmetric beam
with constant intensity at the entrance to the medium.
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I1=1,(9) ¢, /r=8 (1—r1°),
*=[bg+ (No/2n) In (r/9) 1¢%,
The minimum radius of the beam 7* is determined by
the condition « =0 (rays parallel to the z axis); from the
preceding equality we have r* =exp {2nb§/No}. This val-
ue of the radius is reached at the point

1 N,
== |1+
= j[ byt

o<1.

Ing ] _wdg.

In contrast to the two-dimensional case, the radius of
the axially symmetric beam does not go to zero any-
where, that is, for such a beam it is impossible to have
a focal point in the presence of absorption.

In studying steady beams in an immobile medium we
have neglected convection. Let us find the condition for
which this approximation is valid (see Ref. 7 for more
details). All the above results are valid if the ratio of
the discarded convective term in the heat-conduction
equation (7) to the first term is av, /x <1. From the
Navier-Stokes equation

v,

En
(v is the kinematic viscosity and p =P - (g- r)p is the
pressure minus the hydrostatic pressure) we get for
the convective velocity v, ~3ga®6T/v. According to (24)
6T=aN/mn . Therefore,

+((votvy) V) vy=— %— Vp+vAv+BgsT, (28)

av,/y=pga’8T/yv=pga*aN/ncspy’v.

For the atmosphere p3€ /0p =€ —1=5.65X107* the
density of air is p,=1.25X10"% g/cm?, the coefficient
of thermal expansion is 8=3.67X1072 deg™, the specif-
ic heat at constant volume is ¢, =7.143x10° erg/g- deg,
the thermal diffusivity is x =0.28 cm?/sec, the adiabatic
exponent is v=cp/cy=1.4, the absorption coefficient is
A, =0.8X10"% cm™, the speed of sound is v, =3.33
x10? em/sec, the kinematic viscosity is v =0.15 cm?/sec,
and the acceleration of gravity is g =0.98x10° cm/sec?,
so for a beam of radius 25 cm from a CO, laser (w
=1.773%x10" sec™, £=5.92x10° cm™) we have av, /x
=4x10°N[kW].

3. STEADY PROPAGATION OF ELECTROMAGNETIC
WAVES IN A MOVING MEDIUM

In this section we shall consider the propagation of a
laser pulse in a medium with absorption in the presence
of a wind perpendicular to the beam. Let us begin with
the case of two-dimensional beams. If the pulse dura-
tion ¢ is such that t>>a/v, (here a is the characteristic
transverse dimension of the beam and v, is the wind
speed: for a=10 cm and v,=10 m/sec we have ¢
>>10-2 sec) and the wind speed satisfies the condition
7y =av,/x > 1 (for a=10 cm and x =0.2 cm?/sec we have
v,>>0.02 cm/sec), in the heat-conduction equation (9.3)
we can drop the last term on the left-hand side and for
two-dimensional beams the system (9) acquires the fol-
lowing form; the first two equations are the same as
(10.1) and (10.2), while the third, dropping the tilde, is

(we assume that the wind velocity is directed along the
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x axis). In this approximation the heat is carried away
from the wave propagation region by the flow of gas mov-
ing in the perpendicular direction, rather than by ther-
mal conduction as in the preceding case. In using the
approximation (29) it is necessary to bear in mind the
fact that in addition to the condition 7 ,>1, which (very
weakly) limits the wind speed from below, there is
another condition limiting it from above: the wind
speed must not exceed the speed of sound. If this latter
condition does not hold, the pressure in the gas cannot
be equalized and the heat-conduction equation alone is
insufficient for describing the medium.

As in Sec. 2, using Eq. (13) we introduce the charac-
teristics (12) and the solution of (10.1) (the power N) is
of the form (15). The problem is to find the function
¢@(x,z). We find the equation for ¢(x, z) by substituting
(29) into (10.2) and using (13) for u:

oz %z 1
_— —) =——1 .
(Bcp) .( (9‘2”\)w 2v, o(@)

We use next the fact that usually v,>1. We seek the
solution of this equation in the form of a series

(30)

z=2,(z, ¢) T2.(2, @) /vetz.(2, @) /ve*+ ...
with the boundary conditions

(02/0z)o| :mo=10 (@), z(2=0, @)=¢.

Substituting this series into (30) and keeping only the
first two terms, we find that

z=q+u,(g)z— zlob(:Pv) @ (boz), (31)
where
bo=—uy/(9), @()=t+(1-%) In (1-8).

It can be shown that

z, C
= mln (be*vo),

C~1.
DXy
Expressions (15) and (31) thus solve the problem of
the propagation of a beam of electromagnetic waves in
a medium with a wind, for a pulse duration ¢>a/v, and
an arbitrary distribution of the intensity I(z =0) =I,(x)
and phase u(z =0) =u,(x) at the entrance to the medium,
using perturbation theory in the parameter ¢ =(b%v,)".
In the dimensional variables

1

VoCpp

. de a
t=RL | o i
Here the intensity is / =8N /ax=1I,(¢)p,. Substituting
¢, from (31), we obtain

-1

L' ()

(32)
20ob,®

I=I,(9) [’l-—b,,z- @ (boz) ]

Let us consider beams with a parabolic phase front
at the entrance to the medium [see (18), b,=const]. For
such beams

I(9)
2bo*v,

@ (boz). (33)

z=(1—b,z) p—

We begin our analysis of our solutions with the case
where at the boundary of the medium z =0 the intensity
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has the form of a step (20). For this boundary profile
the intensity (32) looks like I(¢p <1)=(1 - byz)™,
I(p>1)=0, where we have neglected edge effects. From
the equation for the characteristics (33), which in this
case is of the form

¢=(1—boz) = (z+® (boz) /2bs*v0)

we see that the focus, that is, the point at which the
rays ¢ =const intersect, has the coordinates x*=-1/
2b%v, and z*=1/b,. The location of the focus in the
beam propagation direction (along the z axis) is the
same as it would be in a vacuum for a given boundary
focusing [see (18)]. The wind caused the focus to shift
in the transverse direction toward the wind. The path
of the beam in this case is illustrated in Fig. 3.

Let us determine the conditions under which a point
focus is possible. From the equation for the charac-
teristics (33) we see that all the rays intersect at a
single point if the intensity at the boundary I,(x) is a
linear function of x, that is, neglecting edge effects.

I(z<a)=I,(z>b)=0, I,(a<z<b)=Az+B (34)

(see Fig. 4). For this boundary intensity, Eq. (33) has
the form

B

Q= ( $+® (boz)m

A -1
)[1—b,z~o(boz)m:,] , (35)
a<@<b. From this we see that the rays intersect at

the point
B .1 A

—_—— I —
205b5* ’ z b, 200by®

Let us consider the case where a beam with a plane
phase front u(z =0)=0 is incident on 2 medium with a
wind. Letting b,=0 in (35), we find

(e ) (1)

This beam will be focused by the wind at the point x*
=-B/A,z**=2v,/A. As seen from the expression for
z*2, the wind focuses only those beams whose intensity
increases along the wind: A =dIo/dx> 0. Beams whose
intensity decreases along the wind (A <0) are mono-
tonically defocused.

We can similarly consider the propagation, in a med-
ium with a wind, of a beam such as in (34), which di-
verges at the entrance to the medium (5,<0). When the

Az

a7 z

FIG. 3. Propagation of a steady two-dimensional beam

with constant intensity at z=0 in a medium in motion. The
direction of the x axis coincides with the wind direction. The
focus is shifted toward the wind by an amount Ax = 1/2v4bg.
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FIG. 4.

intensity of the beam increases in the direction of the
wind (A >0) the beam is focused by the wind. It can be
shown using (35) that in this case the focal point is at
x*==B/A,z*~|b | "exp{2v,b2/A}.

Therefore, stationary thermal focusing by a wind is
possible for two-dimensional beams with a linear pro-
file at the boundary (and A =dI,/dx>0) propagating in
an absorbing medium.

For beams with an arbitrary intensity profile at the
entrance to the medium it can be shown using (33) that
the point focus that would exist in a vacuum at the point
x*=0,z*=1/b, is replaced by a focal region shifted
windward. This region is where the rays intersect near
the point x* =—1/2v,62,z* =1/b, and has the dimensions
ax=1/2v,62, Az=1/2v,b] (Fig. 5).

Before concluding this section let us consider three-
dimensional beams. If at the entrance to the medium
the beam is symmetric [that is, I(x, y,z =0) =I,(),7
=(»® +)?)Y2] and focused at the point u(z =0) =- b,r, b,
=const, and the wind is directed as before along the x
axis, the solution to the system (9) [with Eq. (9.3) in
the form (29) and 6 =0] has the form

N=N,(¢)=2n | I,(r)rdr,

St g

where

N={dz [dyI(z,y,2),
while the function ¢ (7, a, z) is determined by the equa-
tion
cosa
'2b,2v,
O, (8)=t+In(1-¢).

= (bi2) g o 1, ()0, (502)+0 (s

bo'v,?

(36)

In this expression a is the angle between the x axis and
the transverse vector r. In Fig. 6 we show the cross
sections of the tubes of flow [the surfaces ¢(7, o,z
= const] cut by the planes z =const. The shapes of these
cross sections are in agreement with the numerical
calculations of Wallace and Lilly® (Fig. 4 of Ref. 8, the
case of constant irradiance).
b4

ar’

Az

4 I

FIG. 5. Thermal defocusing of a two-dimensional beam in a
medium in motion. The x axis is chosen to lie along the wind
direction and Ax=~ 1/2v0by%, Az~ 1/2vgb°.
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FIG. 6. Cross sections of tubes of flow cut by planes z = const
for a beam which is axially symmetric at z=0 and propagates
in a medium in motion. The direction of the x axis coincides
with the wind direction. The figures are for a) z=0, b) z

=21, ¢) z2=2, (z,>2>0).

In the calculations of this section we did not take into
account the convective motion of the medium due to
heating. We shall show that even for very powerful
beams the convective velocity can be neglected com-
pared to the typical velocities of the motion of the med-
ium (the wind speeds). In fact, from the Navier-Stokes
equation (28) we have

Ui/vo=pgadT/v,".

The quantity 6 T is given by the heat-conduction equation
(29)

0T ~aal/cepvy,

so that

v/vemaatlpg/cepve’.

For the atmosphere (see the parameters above) and a
CO, laser beam we have v,/v,s 107N kW] for v,2 1
m/sec.

4. THE SHORT PULSE APPROXIMATION

If the duration f of the laser pulse is such that f<a2/x
and at the same time t<a/v, (but, of course, t>a/v;, as
required by our description of the medium), only the
second term remains on the left-hand side of the heat-
conduction equation (9.3). For two-dimensional beams
in this approximation the system of equations (9) is as
follows: the first two equations are the same as (10.1)
and (10.2), while the third is

e/ Ot =—1. (37

As in the two preceding sections, we shall use the meth-
od of characteristics to solve the system of equations
(10.1), (10.2), and (37). The solution of the first equa-
tion with the boundary conditions

N(z,2=0, t) =N, (z) = j I,(z)dz

has the form (15); the characteristics ¢(x,z,t) are
introduced as the solutions of Eq. (13) [the boundary
condition for this equation is ¢(x,z =0,¢)=x]. Substitut-
ing (37) into (10.2) and using (13) and (15), we find the
equation for ¢(x, z, ):

tz
2= qrtue(@) 2+ e I, (9) @, (bs2) +0 (ZIT) ) (38)

20,
The quantity &, (£) is defined in (36) and b, = - u(¢).
We have used the boundary condition u(x, z =0, ) =uy(x).
Calculating the ratio of the terms quadratic in the time
to those linear in the time in (38), we find for this ratio
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£ 1
26, 1—byz (z)

‘Yx

To estimate the accuracy of our method we compared
its predictions for three-dimensional beams [expres-
sions (44) and (45)] to the numerical solution of Egs.

(9) found by computer [Eq. (9.3) was solved using the
approximation (37)]. The results are in excellent agree-
ment, even when y=1 (see Fig. 7).

Therefore, the problem of the propagation of a two-
dimensional beam of electromagnetic waves in a med-
ium with absorption when the pulse duration is ¢
<{a®/x, a/v,} has been solved for an arbitrary distribu-
tion of the intensity I,(x) and phase u,(x) at the entrance
to the medium (z =0) using perturbation theory in the pa-
rameter v [expressions (15) and (38)].

For beams with a parabolic phase front at the entrance
to the medium [see (18)], u,=-b,x and b,=const. The
intensity of these beams is I =aN/ax =N{(¢)ps =I,(¢)¢pL.
Substituting ¢, from (38), we find

t
2b,*

I=1(@) [ 1=biz + = 1" (@) 04 (be2) ]4. (39)

The function ¢(x, z, t) is given by Eq. (38).

Equations (38) and (39) are easily generalized to the
case where the intensity profile at the boundary z =0 is
time-dependent: I(x,z =0, t) =f, (t)f,(x) (@ modulated
signal at the boundary). For such beams it is sufficient
to replace the time f in (38) and (39) by

s‘f. (t)dt.

1t is also of interest to consider the case where a
beam with a plane phase front is incident on the medium.
Letting b, 0 in the equation for the characteristics
(38), we find

z=p—"/itz’I (¢). (40)

In this case the intensity is
I=I,(9) ¢’ =I(9) [1+'/dz°L," (@) 1"

As the first example let us consider the propagation
of a beam with intensity of the form (20) at the boundary.
For this profile, expressions (38) and (39) coincide,
apart from edge effects, with the corresponding expres-
sions (17’) for a vacuum, that is, for such a beam the
medium does not have any effect (neglecting edge ef-
fects).

*
Tmin z74,

1 i 1 Il
I 1/2 7 g 24 1
TAH /267

FIG. 7. Minimum radius of a parabolic axially symmetric
beam (a) and the distance at which the radius of an axially
symmetric beam attains the minimum (b). The solid lines
show expressions (46) and (45) and the points show the result
of the numerical computer calculation.
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As the next example let us consider a beam with the
boundary phase (18) u(z =0) =u, =b,x, b,=const and the
boundary intensity profile I(z =0, x, ) =1(x)

=(1 - x2)0(1 - »?). In this case the equation for the
characteristics (38) has the form

z={1—boz— (t/bs?) ©,(bez) 1.

The minimum width of the beam is determined by the
condition 8x/8z =0; this condition is satisfied at the
point z =z* =(1 +¢/b2)~'b;*, where the width of the beam
is

z(z*) =z"=(t/b,*) In (1+b.¥/t).

The behavior of the rays for a beam with a parabolic
boundary profile is illustrated in Fig. 2.

Let us look at yet another example. Let us consider
the propagation of a parabolic beam with a minimum on
the axis I,(x) =x?©(1 - x?) and a plane phase front at the
entrance to the medium (x,=0). The equation for the
characteristics (40) takes the form ¢ =(1 - £22/2) %,
from which we see that the rays (the curves ¢ =const)
intersect at the point x*=0,z* =(2/t)/2, In the di-
mensional units

2'=a(2esp)* (al, | de/dT |1)-",

that is, thisbeam isfocused into a point. This is the
familiar phenomenon of the thermal self-focusing of a
beam with an intensity that decreases toward the center
(see Ref. 9, for example).

We shall not consider examples of beams with more
complicated boundary intensities and phases. Each of
these can be studied using the equation for the charac-
teristics (38) and the expressions for the intensity (39).
Let us now look at three-dimensional beams.

If at the entrance to the medium the beam is sym-
metric, that is, the intensity and phase are of the form

I(r, z2=0, t)=I,(r), u.(r,z=0, t)=u,(r), u.(r, 2=0, t)=0

here 7 = (x% +y2)/2 and o are the cylindrical coordinates
in the plane perpendicular to the beam propagation di-
rection z], the solution of the system (9) [where the
third equation is in the approximation (37)] is such that
the power N of the beam [introduced in (24)] is

N(r,z,t)=N,(¢) =2n j L(r)rdr. 41)

The characteristics ¢(7, z, t) are given by the equation
r=q+u, (@) z— (t/4b.) I (@) @2 (bez) +0 (£/b.*), 42)

where
0.(8)=(1-8)"'-¢—1,

The ratio of the terms in (42) which are quadratic in the
time to those linear in the time is

by=—u,’(¢).

= (t/2b,%) (1—1702) -2

Expressions (41) and (42) solve the problem of the
propagation of an axially symmetric pulse of duration
t<{a?/x, a/vyl in 2 medium with absorption in perturba-
tion theory in the parameter y for an arbitrary distribu-
tion of the intensity I () and phase u,(v) at the entrance
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to the medium (it should be kept in mind that u=v,S,
where S is the eikonal).

Since it differs from the two-dimensional case only
by details, as an example let us consider only the case
of parabolic beams. At the entrance to the medium let-

L(r)=(1—-r)8(1—r"); us=—br, b,=const. 43)
The equation for the characteristics (42) becomes
re=[1—boz (20,2) ®:(b2) lg, @<t (44)

The minimum radius of the beam is given by the condi-
tion (87/0z),= 0. From (44) we find that here

1—b.,z'=[2%:(1+§"-0;)“]"' (45)
and the radius of the beam is
r(z) =r'=2 [#(14-—2;_“)]/-%# (46)

From expressions (41), (44), and (24) we find the in-
tensity

1 oN a
1='2-;-l—9;—=10(¢)'a—fl,
that is,
I=—1—(1—-r—z-); f=1—boz+-L(l),(b‘,z), jér.
AN 207

The propagation of this beam is illustrated in Fig. 2.

In Fig. 7 we have compared the predictions of our ap-
proximate theory [expressions (45) and (46)] to the exact
solution of the system of equations (9) found by com-
puter [the third equation is in the approximation (37)]
with the boundary conditions (43). This comparison
shows that the theory gives a good description of the be-
havior of the beam for even y=1,

The results of this section are valid as long as con-
vection can be neglected, that is, fy,/a<<1 [see (7)].
From the Navier-Stokes equation (28) we have v,
=tfgdT; according to (37) the temperature change is
8T=~tal/cpp, i.e.,

tv,Ja=Pgt*ad/na’cep

(here A is the energy in the pulse). For the atmos-
phere (see above) and a beam of radius 5 cm from a
CO, laser we have tv,/a=10~°A[J].

bMore accurately, f;=—by¥%; in the dimensional variables the
beam is focused at the point x*=0, 2*=R,, so that uy=—x/R,

and
., o2 1 1 =%

ag | !

daT
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Effect of depolarizing collisions on the photon echo in a

magnetic field
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A connection between the different relaxation characteristics, which describe the change of the optical-
coherence matrix under the influence of elastic depolarizing collisions, is established for the first time
ever. The calculation is performed for a Van der Waals interaction on a transition with level angular
momenta j, = j, = 1. It is found that the relative difference between the relaxation characteristics ranges
from 5 to 20% for the considered values of the interaction parameters. The possibility is demonstrated of
experimentally measuring the characteristics that describe the relaxation of the optical-coherence matrix
on the transitions j—j (j»1) and j=2j + 1(j > 1/2) by the photon-echo method in a gas situated in a
longitudinal magnetic field. It is found for the 1—1 and 1/2e23/2 transitions that the magnetic field

intensity can be chosen such that the polarization echo vector component perpendicular to the
polarization plane of the exciting pulses is due entirely only to depolarizing collisions.

PACS numbers: 42.65.Gb, 42.50. +q

Recent years have seen progress in nonlinear laser
spectroscopy, which permits the study of quantum-
transition structures obscured by the Doppler broaden-
ing of spectral lines. An extensive bibliography on this
topic is contained in the monograph of Letokhov and
Chebotaev.! In a gas medium, the resonance levels of
moving atoms (molecules) are usually degenerate, A
consistent calculation of the elastic collisions shows
therefore that the relaxation of that density-matrix
component which describes optical coherence (transi-
tions between the considered levels) is determined not
by a single quantity but by an aggregate 7 "'), where
| jo= iyl s <j,+j, andj, and j, are the angular mo-
menta of the levels of the transition. The aggregate of
the quantities 7 *) getermines in essence the proper-
ties of the resonant electromagnetic radiation that
passes through a gas medium. In particular, the gain
of a weak probing wave on a transition with level angu-
lar momenta j,=1 and j,=2, in a medium saturated by
a strong field, depends essentially on the ratio of the
relaxation characteristics of the dipole polarization
T and of the quadrupole polarization 7@ of the med-
ium. So far, however, there are no concrete theoreti-
cal or experimental results concerning the ratios of the
different 7 ),

In the first part of this paper we calculate all the re-
laxation characteristics 7 ) for the transition j, = Iy
=1 in the case of a Van der Waals interaction of the
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colliding atoms. The connection between the relaxation
characteristics having different values of » are es-
tablished here for the first time. The results allow us
to check the correctness the assumption, used in many
papers, that all the 7 *) are approximately equal.

In the second part of the paper it is shown on the basis
of a theoretical calculation that the differences 7 *
- 7D (n+#1) can be determined by direct experiment
using photon echo in a gas medium placed in a longi-
tudinal magnetic field.

The photon echo method has been coming into ever in-
creasing use for the study of gas media.?"'¢ It is em-
ployed to determine successfully the relaxation charac-
teristics of resonant transitions, as well as to identify
atomic and molecular transitions. In particular, Wang®
has obtained theoretically the influence of the difference
7@ _ gDy £1) on the polarization of photon echo on
the transitions j—=j(j>1)and j=j+1(j>1). On the re-
maining transitions, the echo amplitude depended only
on the quantity 7%, and its polarization was not af-
fected by the depolarizing collisions.

Application of a longitudinal magnetic field on a gas
medium in which a photon echo is produced extends sub-
stantially the capabilities of the photon echo. Thus,
for example, a specific rotation of the photon-echo
polarization vector is observed, different from the
Faraday rotation. This effect was predicted by Aleks-
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