
lepton asymmetry is of the same order): 

Our calculations contain too many uncertainties in order 
to be able to talk about agreement with experiment, 
which yields a value of A - - lo", however, our re- 
sult is not in contradiction with experiment. 

Thus, setting 1~=10-2,9=0.5, 6,=10-',C=10'~ we 
obtain A = 

The estimate is valid only i f  there exist hypothetical 
quarks with masses of the order of M,. The additional 
small parameter which appears for the presently known 
quarks seems to exclude a possibility of agreementwith 
experiment for the concrete model considered in 1 4. 

The result obtained in the present paper does not de- 
pend on the dimensionless parameter k= l/Mc G ' / ~ ,  
which determines the ratio of the duration of the "crit- 
ical" phase for the process under consideration, 
A t  - 1/~'/'11/12,, to the characteristic reaction time for 
the mutual transformation of particles 7-  l / o l ~ , :  

~oshimura'  has obtained a formula which differs from 
ours, according to which the baryon asymmetry A is of 
the order of k, i, e., is proportional to the duration of 
the critical phase, At. This result is in contradiction 
with the absence of CP-violation in a stationary state. 
As was shown here (5 3) small deviations from the equi- 
librium state, and thus from CP-symmetry, a re  pro- 
portional to l/k. An integration with respect to time 

leads to a cancellation of the k- dependence. In the paper 
of Dimopoulos and susskind4 it was assumed from the 
s tar t  that k -  1, and thus the dependence of the result on 
this parameter is not investigated. 

In § 5 we have advanced arguments for the need of the 
assuming that the Universe is initially neutral, for the 
"multifoliated model of the Universe" with statistical 
characteris tics which are  repeated every cycle. 
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Theory of depolarization of positive muons in 
antiferromagnetic chromium 

I. G. lvanter and S. V. Fornichev 
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Expressions are obtained for the time dependence of muon polarization in chromium at temperatures 
below the Nkl  point. It is shown that the muon method can yield information on the magnetic 
anisotropy. At low magnetic anisotropy, the depolarization rates in longitudinal and magnetic fields 
should be different in the region above the spin-flip temperature. 

PACS numbem 75.3O.Gw, 75.50.Ee, 14.60.Ef 

1. We show here, with chromium as an example, how 
the muon method can yield information on some subtle 
features of magnetic ordering. 

Experiments on the depolarization of pi mesons in the 
antiferromagnetic phases of chromium have recently 
been reported. lp2 The magnetic structure of chromium 
is well known. Below the N6el point T,, magnetic 
ordering of delocalized d electrons of the spin-density 

wave (SDW) type occurs with a period equal to 27 peri- 
ods of the crystal lattice, and with a wave vector di- 
rected along one of the edges of the cube. (We neglect 
hereafter the weak rhombicity of the crystal lattice and 
assume that chromium has a bcc structure. ) Chro- 
mium has two magnetic sublattices, one over the cor- 
ners of the cube, and the other over the centers. The 
directions of the magnetic moments a re  opposite at 
sites of different sublattices. At temperatures between 
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the NBel and spin-flip points (TsF < T < T,), the mag- 
netic moments are perpendicular to the SDW wave vec- 
tor, and in the absence of a sufficiently strong mag- 
netic field they are directed along the edges of the cube. 
In a sufficiently strong external magnetic moments, 
the magnetic moments are rotated and they become 
perpendicular to the SDW and to the magnetic field (the 
spin-flop transition). Below the spin-flip temperature, 
the magnetic moments a r e  directed along the SDW wave 
vector. 

A study of the rate of depolarization of the 1' mesons 
in chromium shows that in a wide temperature range 
that includes both phase-transition points T, and Ts, 
the muon experiences a rapid d i f f~s ion . '~~  The latter 
permits a study of the magnetic structure of chro- 
mium and, as will be shown here, makes it possible to 
determine the scale of the external magnetic fields at 
which rotation of the magnetic moments takes place. 

L 

2. There are two known possible positions where a. 
muon can be located in  a bcc crystal lattice: octapores 
(centers of the faces or midpoints of the edges), and 
tetrapores (shown in Fig. 1). It w-as experimentally 
established in Ref. 4 that deuterium occupies in chro- 
mium only octapore positions; arguments are advanced 
in the same reference that the proton can likewise be 
only in an octapore. We, however, will calculate the 
muon depolarization in chromium for both pore types. 

Each cell has 12 tetrapores. The internal fields in the 
different tetrapores differ in magnitude and direction. 
If we disregard the variation of the magnetic moments 
along the SDW, then each unit cell contains three pairs 
of different magnetic-field vectors, and in each pair the 
fields are equal in magnitude and opposite in direction. 
In the octapores of each unit cell there a re  similarpairs 
of different magnetic-field vectors. 

To determine the internal magnetic fields in different 
pores, we choose a system of internal unit vectors 
i, j, k along the cube edges. One of the axes of the ex- 
ternal coordinate system will be directed along the ex- 
ternal magnetic field- the x axis. The choice of the 
two other axes is arbitrary, but if the initial polari- 
zation is transverse to the field, we shall direct the y 
axis along this polarization. The orientation of the unit 
cell of the crystal lattice is completely determined by 
the orientation of the unit vectors i, j, and k. The di- 
rection i can be specified by two angles: the polar angle 
0 = (x -i) and the azimuthal angle cp. The orientation of 
the cube is then determined by the rotation angle cv of 

FIG. 1. Tetrapores in chrom- 
ium. Identical letters desig- 
nate pores having equal mag- 
netic fields. 

the cube about the i axis. This angle will be reckoned 
from the direction perpendicular to the axes i and x .  
Thus, we obtain the connection between the internal and 
external coordinate frames: 

i-n, cos 9+n, sin 8 cos cp+n, sin 8 sin cp, 
j=-n, sin 8 cos a+n,(-sincp sin a-l-cos 8 cos cp ros a) 

+n. (cos Q sin a+ cos 8 sin q cos a),  (1) 
k=n. sin 0 sina-n,(sin cp oos a+cos 8 cos cp sin a)  

-n. (-cosq cos a+cos 8 sin cp sin a ) .  

W e  introduce the characteristic internal magnetic 
field H*. In the case of the tetrapore we have 

where p is the maximum magnetic moment, r=a&/4, 
and a is the period of the crystal lattice. In the case 
of the octapore 

We define the dimensionless magnetic field Hm in the 
following manner: the internal field at the muon is 

where q is the SDW wave vector. The expressions for 
the dimensionless internal field (m is the number of the 
pore) in tetra- and octapores at T >  T,,, in the case 
when the sublattice magnetic moments are oriented per- 
pendicular to the external magnetic field, a re  summa- 
rized in Tables I and 11, respectively, where the fol- 
lowing notation is  used: 

sin 8 sin a cos 0 
cos b = - sin p= 

(1- sir? 0 cosZ a) '" ' (1- sinz 8 cosz a)  Ib ' 
00s 8 sin 8 cos a 

cosy=- sin.r=- 
(2 

(I-sin' 0 sin2a)"' ' ($-sina 0 sin' a)" ' 

The dimensionless fields at T < Ts, in the tetra- and 
octapores a re  summarized in Tables 111 and IV. 

In the calculation of the fields in Tables I-IV account 
was taken of only the nearest neighbors. The dimen- 
sionless fields at T> T,, in the case when the moments 
of the sublattices are directed along the edges of the 
cube can be obtained from the expressions in Tables I 
and I1 by setting formally the angles 0 ,  P ,  and Y equal 
to zero or n/2. 

3. Equations for the polarization P(t) of an ensemble 
of muons in a medium with rapidly varying local fields 
were obtained in Ref. 3. In the situation considered by 
us, since the muon diffuses rapidly, the magnetic field 
is also rapidly changing and we can use the indicated 
equations : 

Here Ho the external magnetic field, assumed to bemuch 
weaker than the characteristic local field; 

TABLE I. 
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--jsinafkoosa 
-ks in$+ioosp 

k - i s i n y + j c o s y  

-kcosa  
-ices$ 
-jmsY 

j sin a 
k sin $ 
i sin y 



Number of octapore 
SDW 
direction I , / 

TABLE 11. TABLE IV. 

b) The external magnetic field Ho>> A0 is directed along 
the x axis, and the initial polarization along the y axis. 
The solution for this case was obtained in Ref. 5: 

SDW 
direction 

i 

i 

k 

7"-1 

(4) G v y  + Gza p , ( t ) +  i P . ( t ) =  e x p { [ i ~ ~  -- ( G . ~  +-)I t ] ,  
where the index m denotes the number of the pore, and (9 ) - 
t, is the characteristic time between the hops of the dif- 
fusing muon. The averaging in (4) is over the positions P, ( t )  =O. (10) 
of the diffusing muon, i. e., over the three tetra- (or c) The external magnetic field Ho >> 0 as well a s  the 
octa-) pores as well a s  along the SDW. initial muon polarization a r e  directed along the x axis. 

We note that Eqs. (3) were obtained under the a s s u m p  
tion H * f ,  << 1. In Eqs. (3) and below we refer  the muon 
gyromagnetic ratio y, directly to the field $ -v,H), 
i. e. , we put everywhere y, = 1. During i ts  lifetime the 
muon does not manage to go beyond the limits of one 
domain, s o  that in the calculation of the tensor G,, in 
Eq. (3) we must assume the direction of the SDW to be 
fixed, i. e., the averaging of the muon polarization over 
the three possible SDW directions a t  thegiven crystal 
orientation can be carried outonly after solving Eqs. 
(3). 

Number of octapore -- 

1 I 2 I 3 

We now write down the solutions of (3) for three cases. 

a) There is no external magnetic field (Ho = 0). Cal- 
culation of S,,(a, j3=x, y, z )  for chromium under the 
assumption that the magnetic moments a r e  directedalong 
the edges of the cube shows that G:,= G,, G,, and that 
two principal values of the tensor a r e  sero,  while the 
third is, in the case of a tetrapore, 

sin a 
- j ~ + k c o s a  

sin i3 
- k f  2 icoao 

sin y 
- i - + j c o s y  2 

and in the case of an octapore 

The solutions take therefore the form 

s ina  cosa 
- 1  T-k-  2 

-kw-i 2 * 2 
. sin y cosy  

- I - -  
j~ 

(C - 1) Gv: 
pv ( t )  = [ e x p ( - ' l o t ) -  I], G.: (6) 

MS a 
j s i n a - k P  2 

cos p 
ks in  fi - iT 

cosy 
i s i n ~ r - j -  2 

where 

It  is assumed in (5)- (8) that the initial polarization is 
directed along the x axis. 

TABLE III. 

Number of tetrapore 

According to Ref. 5, 

4. We consider now the muon depolarization in chro- 
mium single crystals. Calculations show that the ten- 
s o r s  G,, for the octa- and tetrapores a r e  proportional 
to each other: 

We shall therefore express hereafter all the results in 
terms of the quantities A0 introduced above, with dif- 
ferent values for the octa- and tetrapores. We leave 
out the expressions for  G,,, which were obtained with 
the aid of formulas (I), (2), and (4) and Tables I-IV, 
and present directly the final expressions for the polar- 
ization. 

We turn now to concrete cases. 

A. We consider f i rs t  the temperature region TsF< T 
< TN, in which a magnetic structure of the type of 

transverse spin-density wave is realized. 

a) No external magnetic field. Although according to 
formulas (6) and (7) polarizations can occur in prin- 
ciple in directions perpendicular to the initial polar- 
ization, in the case of chromium the sum of the muon 
polarizations over the domains corresponding to the thr 
three SDW directions vanishes. For the polarization 
along the initial direction we obtain after summation the 
simple expression 

P, ( t )  =1/a+2/5 exp (-A") . (13) 

b) An external magnetic field Ho >>A' is transverse 
to the initial polarization, and the magnetic moments 
a r e  directed along the edges of the cube. On the basis 
of formula (9) we obtain after substituting the concrete 
expressions for  G,, 

where the index I corresponds to the three possible di- 
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rections, i, j, and k, of the magnetic moment along the 
edges of the cube. Here 

AL'='/,A~l+cos' 0), 
11,'='/~A~(l+sin~ 0 cosz a ) ,  
.1,k='/Z?10(2+~in2 0 sin2 a ) .  

We note that 

c) The external magnetic field Ho >>A0 is directed 
along the initial polarization, and the magnetic moments 
a re  directed along the edges of the cube. According to 
(11) we get 

where 

Ai'-A0 sin' 8, 
A1,'=A" (l -sinz 0 cos 'a). 

Al,'=;lo (l-sin' 0 sin2 a ) .  

We note that 

i. e., the mean values of the damping in the longitudinal 
and transverse fields a r e  equal if the magnetic moments 
in the individual domains a re  directed along the cube 
edges. 

d) The external magnetic field Ho >> A0 is s o  strong 
that the magnetic moments have become perpendicular 
to the external magnetic field. Formulas (14) and (16) 
a r e  then valid, with 

A,'='/2.~o(i+3/, sin' 0 sinZ2a), (18) 

A,'=A'(~-~/, sin2 0 sin? 2a) (19) 

(the indices i, j, and k corresponds here and below to the 
SDW direction), 

where 

3cosZ 0 sinz 0 sin' a 3cosz 0 sin" cosz a 
9 = 1 8 cosz a , = 1 - s i n Z 8 s i 2 a  ' 

B. We consider now the temperature region T < TsF, 
in which the magnetic structure of the chromium takes 
the form of a longitudinal SDW. 

a) No external magnetic field. It is easily deduced 
from a comparison of Tables I and I1 with Tables ITZ 
and N that since the magnetic moments of the atoms 
a re  likewise directed along the cube edges, averaging 
over the different domains will yield precisely the same 
expression as (13). 

b) External magnetic field Ho >>Ao. For the same 
reason as in the preceding paragraph, both cases of 
transverse and longitudinal field a re  described by for- 

mulas (141, (15) and (161, (17). 

5. All the known experiments were performed on 
chromium polycrys tals. It is therefore important to 
determine how the expressions obtained in the preceding 
section a re  altered in the case of single crystals. To 
facilitate the calculations we choose the i axis to be 
henceforth that cube edge along which the magnetic mo- 
ments of the atoms a re  directed if  they a r e  directed 
along cube edges. If, however, the magnetic moments 
of the atoms a r e  not parallel to cube edges but a re  per- 
pendicular to the external magnetic field, the i axis will 
be chosen to be the direction of the spin-density wave. 
We could not do s o  in the preceding section, since we 
were interested in the angular dependence of the polari- 
zation on the orientation of the crystal relative to the 
laboratory frame (x, y, 2). In a polycrystal, on the other 
hand, i t  is necessary to average over all the crystallites 
and over the domains in them. It suffices therefore to 
follow the orientation of one particular domain. 

The time dependences of the polarization in a poly- 
crystal become non-exponential, although in the zeroth 
approximation they can be described by exponentials' 
with the average damping decrements cited in the pre- 
ceding section. Averaging over the orientations, we 
obtain the following expressions for the time dependences 
of the polarizations for polycrystals: 

a) There is no external field, T < T,: 

b) External field H~ >>Ao, sublattice magnetic moments 
directed along the edges of the cube, T < T,. In this 
case, we obtain for  an arbitrary field, using (17) 

where F1(a, y, Z )  is a confluent hypergeometric function 
and the angle brackets denote averaging over the orien- 
tations. For a transverse field we get according to 
(15) 

P,(t) + iP.(t)=(expL- (1i,'(8, a) + iHO) t ] )  

= exp (iHot) (4) 'la @ ( g) exp (- $) , 
2.1 t 

where 

is the probability integral. 

c) External field Ho >> A', magnetic moment perpen- 
dicular to the external field, TsF < T < T,. In a longi- 
tudinal field, using (19), we get 

In a transverse field we have according to (18) 

P,(t)+iP,(t)=(exp[-(AIL(@, a)+iH,)t]) 
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where 4(x) is the probability integral. We note that in 
case c) the mean depolarization rates a r e  not equal in 
the longitudinal and transverse directions: 

6. It turns out thus that the muon method can, in 
principle, yield information on the degree of magnetic 
anisotropy of the chromium. If application of a mag- 
netic field of given strength causes rotation of the mag- 
netic moments, then the muon polarization damping in 
the polycrystal will depend on the direction of the ex- 
ternal magnetic field relative to the initial muon mo- 
mentum-longitudinal or  transverse. At large values of 
the anisotropy, the average depolarization rate in a poly- 
crystal should not depend strongly on the orientation of 
the external magnetic field relative to the initial po- 
larization. This result can be explain in general form 
by the following arguments. 

According to (9) and (ll), the longitudinal and trans- 
verse depolarization rates a r e  given by 

where A' = ~ r  G,,. For the mean values we have 
A0 (G,) (A*>- -+-, tA,,)=AO-<G,>. 
2 2 

If (A,) = (A,,), then (G,) = A0/3, meaning that in a poly- 

crystal all  the directions of the internal magnetic fields 
a re  on a par. If ( ~ , 3 ( ~ ' / 3 ,  i. e . ,  the internal magnetic 
fields at the muon (and hence also the magnetic mo- 
ments) a re  directed predominantly in a plane perpen- 
dicular to the external magnetic field, then (A,,) < (AJ. 
On the other hand if (G,,) >A0/3, i. e., the internal mag- 
netic fields a re  directed predominantly along the ex- 
ternal field, then we should have (A,,) < (A,). 

The authors thank B. A. Nikol'skii for helpful dis- 
cussions. 
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Investigation of second-harmonic generation in diffused 
LiNbO, waveguides 
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The conditions for efficient second-harmonic generation in diffused LiNbO, waveguides are considered. 
The overlap integrals of the interacting modes are computed as functions of the waveguide parameters. It 
is shown that the highest second-harmonic generation efficiency is attained in the case when the El (1.06 
p) and H2 (0.53 p) modes interact. Second-harmonic generation is investigated experimentally in the 
10-~-10'-~ (A = 1.06~) pumppower range, and a comparison with the calculations is camed out. The 
highest nonlinear-conversion efficiency is 16% for a peak pump power of 1 kW. 

PACS numbus: 84.40.Sr, 84.40.W~ 

Integral optics opens up general possibilities for 
raising the effectiveness of nonlinear interactions. The 
use of optical waveguides allows us to obtain in a film 
of thickness of the order of the wavelength of high 
light intensities from relatively low-power sources, 
e.g., gas lasers.  In contrast to  the three-dimensional 
case, when the contraction of the luminous flux to small 
dimensions gives rise to its considerable diffraction 
divergence, in a waveguide the small cross  section of 

the flux (and, consequently, its high density) is  pre- 
served along its entire length. Another merit of thin- 
film waveguides is the possibility of obtaining in them 
phase matching of the interacting waves a s  a result of 
the dispersion of the modes. This allows the use of 
isotropic media possessing large nonlinear coefficients. 
As to anisotropic waveguides, they do not need tem- 
perature adjustment for  obtaining ninety-degree phase 
matching. The latter i s  achieved by a proper choice of 
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