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It is shown that the optical isotropy of cosmic space can be verified with great accuracy (one part in loz6) 
by polarization studies of reflection nebulae. This, in turn, makes possible a high-precision verification of 
the equivalence principle as applied to electromagnetic waves. 
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1. THE OPTICAL ISOTROPY OF COSMIC SPACE 

There exists a very sensitive astrophysical effect that 
can be used, among other things, to verify the equiva- 
lence principle. To do this one must set in correspon- 
dence the following two facts: 

a) There exist astrophysical objects (reflection nebu- 
lae) whose polarization patterns {that is, the way the 
polarization of the light reflected to  the Earth depends 
on the point from which it leaves the object) a re  quite 
simple. 

b) In theory the light arrives at the Earth with the 
same polarization it had on leaving the nebula. 

The importance of the effect is that the reflection 
nebulae a re  located at cosmic distances from the Earth 
(1  -300ps = 10'' cm). If intragalactic space possessed 
even an extremely small birefringence (such as, for 
example, from the Faraday effect o r  of the cryst$llo- 
graphic type), say with An = X/2 n-1 - (X - 5000 A = 5 
x cm), the Earth-bound observer would receive a 
highly distorted polarization pattern from such objects. 

The polarization pattern from a reflection nebula is 
determined by the laws for scattering of light, accord- 
ing to which the polarization (the electric field vector) 
should be perpendicular to the direction from the ob- 
server to the illuminating star.' In any case, this radial 
polarization pattern should be observed in a sufficiently 
close neighborhood of the illuminating star in a t  least 
the brightest nebulae, when the distortion of the polariz- 
ation pattern by the interstellar medium can be neg- 
lected. Such a pattern, actually obtained by Elvius and 
Hall,' is shown on the left side of the Fig. 1.'' The right 
side shows what the polarization pattern would have been 
if the space between the Earth and the nebula had been 
birefringent. The diagram illustrates only the simplest 
examples of such a possible effect, but it i s  clear from 
this example that since the observed polarization pat- 
tern (that is, the one on the left of the diagram) is not 
substantially distorted, one can obtain an upper limit 
for the difference in indices of refraction (and therefore 
for the optical anisotropy) of space along the incoming 
ray. This upper limit is A n s  ~ / 2 n l .  

Many polarization studies have been made of several 
reflection nebulae (essentially of the brightest ones), 
and they show that these nebulae do indeed exhibit this 
radial pattern of polarization, especially pronounced in 

the neighborhood of the illuminating stars. This i s  true, 
for example for the nebulae IC 349,'e3 NGC 197614'6 
M78, NGC 2261,9*L0 NGC 7023,"*8 the nebula in the 
vicinity of the s t a r  VYCMa,12*13 and the main (southern) 
part of the Trifid nebula (M20)14. (A detailed description 
of these and of all  the other reflection nebulae i s  given 
by ~ o z h ~ o v s k i r  and Kurchakov.15) Thus, at least for the 
nebulae named, the polarization pattern is observed 
without significant distortion. If we now take into ac- 
count the fact that the distances to these nebulae a re  
2300 ps1"17 (except for IC 349, for which the distance is 
=I30 ps), we obtain the following limit for the difference 
in the index of refraction: 

This estimate could be improved significantly if one 

FIG. 1. On the left: Schematic polarization pattern of the re- 
flection nebula IC 349 located near Merope in the pleiades2: 
The dot a t  the center is Merope, the illuminating star; the 
lines show the direction of the electric vector (i.e., the direc- 
tion of polarization); the lengths of the lines a r e  proportional 
to the degree of polarization. It is easily seen that the electric 
vectors tend to lie in concentric circles about the illuminating 
star. On the right: What the schematic pattern on the left 
would look like if cosmic space were birefrigent in several 
possible ways. (a) Birefrigence of the type of the Faraday 
effect with an optical path differenced =A/4.  (b) The same, 
with d=A/8 .  (c) Birefringence of the optical crystal type with 
d=A/2 .  The dotted lines represent the symmetry axes and 
show the directions of polarization of the normal waves. (d) 
The same, with d=A/4 .  The circles represent circular polari- 
zation. 
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were to use extragalactic reflective objects. Unfortu- 
nately, however, few of them are  at present known.'' 

We see thus that polarization studies of reflective 
nebulae permit an enormously accurate verification of 
optical isotropy of cosmic space. Unfortunately this 
accuracy (one part in lo2') is not sufficient to detect the 
vacuum birefringence resulting from the Galactic mag- 
netic field (-lo-= gauss1'), which is predicted by quan- 
tum electrodynamics. This effect would lead to a An of 
only lo*. On the other hand, the sensitivity of one part 
in lo2' turns out to be quite sufficient to verify the equi- 
valence principle by using the isotropy of cosmic space, 
a s  will be shown in Sec. 2. 

Without the equivalence principle, the tensor charac- 
t e r  of the gravitational field would lead in such a field 
(by analogy with propagation of light in crystals), to a 
birefringent effect connected withdifferences in the pro- 
pagation of waves with polarizations corresponding to 
the different principal direction of the gravitational 
field tensor. No such effect can occur, however, if the 
equivalence principle is to hold. According to this prin- 
ciple, the gravitational field cannot have any effect in- 
side a falling elevator, and in particular it cannot lead 
to birefringence; but since the existence o r  nonexistence 
of birefringence cannot depend on the choice of coordi- 
nate frame, it cannot occur in general. It requires, of 
course, more than Galilee's law to arrive at  this con- 
clusion; what is needed is Einstein's equivalence prin- 
ciple in its complete generality. 

The formal mathematical explanation of the lack of 
gravitational birefringence within the general theory of 
relativity (GTR) is s t r a i g h f f o r ~ a r d ~ ' * ~ ~ .  The point is 
that for any g,, the electrodynamic equations of GTR 
can be written a s  the electrodynamic equations for a 
moving medium (in the absence of gravity) in the form 

where sUm6 is the Tamm tenso*= which is expressed 
through the g,, by the equation 

In the simplest case, when go,= 0, Eq. (2) can be writ- 
ten in "&-p form," and from (3) one obtains 

Proportionality of the and $tensors, a s  shown by 
F e d e r ~ v : ~  is the necessary and sufficient condition for 
the absence of birefringence in any stationary medium. 
A similar, although somewhat more complicated, inter- 
pretation of Eqs. (2) and (3) can be made also when 
go,+ 0. 

Therefore an experimental proof of the absence of 
gravitational birefringence would constitute a clear 
verification of the equivalence principle. Because of 
the weakness of the gravitational interaction, of course, 
such a test is in practice impossible under the condi- 
tions that exist on Earth. It turns out, however (see 
Sec. 2), that this test can be performed on a cosmic 
scale, that is, by using Eq. (1). 

2. SOME QUANTITATIVE ESTIMATES 

Let us see how small the upper limit on An must be in 
order for  it to constitute a verification of the equiva- 
lence principle. It should be clear that in testing for any 
negative effect, an appropriate "standard of accuracy" 
can be obtained only by starting from some model in 
which the effect is violated. The need for such a "test 
model" is easily seen in the example of the well-known 
Braginski:-~anov experimentz5 and the earlier one of 
Dicke and co-workers.26 If one started out by excluding 
a priori the possibility that the equivalence principle is . 
violated, all of these experiments would be pointless. 
They begin to look useful when one allows, for exam- 
~ l e , ~ '  the hypothetical possibility that the equivalence 
principle may be violated to first  order in the gravita- 
tional potential and to first  order in the atomic mass 
defect (i.e., to first order in the kinetic energy of the 
nucleons which make up the nucleus). Then one might 
expect that the ratio m/mh of the gravitational to the 
inertial mass for different substances could differ, for 
different substances, by an amount 

where v is a characteristic velocity inside the nucleus. 

When we put v2/~2-10-3 and p -lo-' (the Sun's poten- 
tial at the Earth) into Eq. (5), we obtain ~(m,/m,,) 
-10''' within the framework of our test model. This is 
just the value obtained by Lightman and Lee2' a s  an ac- 
ceptable "standard of accuracy" in measuring 
~(m,/m,,), and it is precisely from this point of view 
that the above mentioned  experiment^^^*^' a re  of inter- 
est, since they lie within this standard. It should be 
mentioned, however, that it would make mope sense to 
choose p in (5) a s  the gravitational potential of the 
Galaxy in the neighborhood of the Sun,'' namely p C  -0.7 
x 10". This would raise the standard of accuracy to 
lo". This, 'of course, increases the value of the ex- 
p e r i m e n t ~ ~ ~ * ~ ~ :  one need not worry that the difference 
between Braginski: and Panov's value of and our 
estimate of 10- obtained from (5) results from the neg- 
lect of some chance small factor (such a s  1/4n2) which 
might arise when the calculation is performed using 
some concrete theoretical model. (The calculations 
used to illustrate the success of this scheme were in 
fact carried out by Lightman and ~ e e ' ~  within the frame- 
work of the theory developed by Belinfante and Swi- 
chart2' and by ~ a ~ e l l a . ~ ' )  

Now let us obtain the standard of accuracy for An in a 
similar way. Let us assume that the GTR equations for 
the electromagnetic field hold only to first  order in p 
(i.e., that the bending of rays i s  a s  given by GTR). Let 
us assume further that to the next order in (p the equa- 
tions for the electromagnetic field, violating the equi- 
valence principle a re  sensitive not only to Vp, but also 
to p itself, in particular, let there be a gravitational 
birefringence, arising from the anisotropy of the gravi- 
tational potential, which is of second order in p. We 
shall call the gravitational potential JI,,, implying that 
$= 1/2$~,. Let us also assume that for a point source 
the anisotropic components of the potential, o r  I), 
- 1/36,, a r e  of the same order a s  is +m. Then one 
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might expect that an estimate for An would be 

which yields An - 10'" even for  the Sun's potential at the 
Earth (cp = lo'*), a value much greater than that of (1). 
For  distances of the order of the Earth's orbit diameter 
(-3 x cm) this would give an optical path difference 
of about 3 x lom3 cm, which is much bigger than the 
wavelengths of the visible region. Thus the observed 
optical isotropy of cosmic space immediately allows one 
to reject the (relatively rough) model we have presented 
for violation of the equivalence principle. 

It turns out that the estimate of (1) is sufficiently good 
to reject a more delicate test  model for violating the 
equivalence principle. Let us assume that the gravita- 
tional potential of a stationary point source i s  spatially 
isotropic (i.e., that +,,= 0, + ,, = 6,,+,,) and therefore in 
itself leads to no gravitational birefringence (precisely 
the kind of model used by Lightman and Lee in analyzing 
the ~ r a ~ i n s k i i - ~ a n o v  experiment and others), so that 
spacial anisotropy can arise only a s  a result of relative 
motion of the massive bodies which create the potential 
$,,. Then the estimate of Eq. (6) is replaced by 

where v i s  a characteristic velocity of regular relative 
motion of the massive bodies, such a s  the velocity of 
rotational motion of the field source o r  the relative ve- 
locity of translational motion of i ts  parts. 

In this more subtle model, the Sun's gravitational 
field i s  found to be insufficient to lead to an observable 
path difference along the ray. The gravitational field of 
the Galaxy is, however, sufficient when one includes i t s  
rate of rotation. Putting p = pC - 0.7 x lom6 and v = vc - 250 km/sec (the rotational velocity of the Galaxy at 
the Sun") into (7), we arrive at 

This i s  the desired standard of accuracy for measuring 
An which i s  required for verifying the equivalence prin- 
ciple. By comparing (8) and (1) we seethat the observed 
optical isotropy of cosmic space allows a reliable veri- 
fication of the equivalence principle for electromagnetic 
waves. 

Of course the estimate of (7), a s  well a s  that of (5), 
can be obtained also by calculations within the frame- 
work of specific noneinsteinian theories. We illustrate 
this in Sec. 3. 

3. CALCULATION OF GRAVITATIONAL 
BIREFRINGENCE WITHIN THE FRAMEWORK OF 
A "TRIAL" THEORY 

We choose the "tria1"equations to be the GTR equa- 
tions in which we change the electromagnetic GTR 
equations in second order in the quantity 

For  example, Eqs. (2) and (3) can be linearized with 
respect to the I),,. Then (2) does not change i ts  form, 
and (3) is replaced by 

Here and in the sequel, indices a re  raised and lowered 
with the aid of $". Greek indices run over the values 
0, 1, 2, 3, and Latin ones over 1, 2, 3. We use the 
summation convention. 

When &,=0, linearizing s;k7i with respect to the $,, 
implies also that $,, and &$, a r e  linearized with re- 
spect to the +,,, for their components a re  contained in 
the form of linear combinations in The E and 
tensors will, on the other hand, satisfy not (4) but an 
equation of the form 

Thus if &,= 0 and the $, tensor is spatially aniso- 
tropic, one may expect that the proportionality of 2 to fi 
is broken in second order in the q,,, and therefore that 
gravitational birefringence is also of the same order. 
Of course, the same can be expected [within the frame- 
work of Eqs. (2) and (lo)] also if $,,# 0. The Tamm 
material tensor (10) corresponds to  an optical-crystal 
type of birefringence. 

Since, unlike Eqs. (2) and (3), the set of Eqs. (2) and 
(10) i s  not generally covariant, i t s  solution depends 
significantly on the coordinate representation of metric 
tensor g,, which appears in Eq. (9). In order, there- 
fore, to  complete the t r ia l  model we formulated above, 
we would have to add to  the gravitational equations some 
coordinate conditions. Since, however, our goal here 
is merely to illustrate a possible mechanism for gravi- 
tational birefringence, we shall not t ry  to complete the 
model, but shall restrict  our choice to  such representa- 
tions of the g,, a s  will lead [in (2), (lo)] to minimum 
birefringence. 

Let us  se t  

in (2), and then let us  look for  the eikonal t(x) and the 
amplitudes f,,(x) in the usual geometrical-optical man- 
ner  (see, for example, Chapter 6 of C ~ u r a n t ~ ~ ) .  Then 
we find that the F,, wave breaks up (as in crystal op- 
tics) into two linearly polarized waves F:,(x) F:',(x), 
each with i ts  own eikonal t l(x) and fU(x) and with its 
own slowly varying amplitudes f',,(x) and f':,(x). It is 
also easy to  calculate the difference An between the 
indices of refraction corresponding to these two waves, 
namely 

where we have dropped terms of higher order in the I),,, 
and the indices 1, 2, 3 correspond to a choice of Carte- 
sian coordinates in which the 2 axis is parallel to the 
wave vector. 

When one rewrites (11) in an arbitrary system of co- 
ordinates and averages over all  directions of the wave 
vector, one obtains the positive definite expression 

where 

587 Sov. Phys. JETP 49(4), April 1979 0. N. ~ a y d a  and Ya. A. ~rnorodinsk; 587 



and where 

that is, x,, is the anisotropic part of the tensor potential. 

When the g,, in Eqs. (12)-(14) a re  taken to be those 
given by the Schwarzschild metric, i.e., when 

then the desired parameter of gravitational birefrin- 
gence becomes 

which is in good agreement with the estimate of (6) ,  ob- 
tained earlier for a similar situation. 

Of course An vanishes if one replaces (15) by the con- 
formally Euclidean Schwarzschild representation 

Jf, on the other hand, the gravitational field is created 
by a rotating source, then a s  is well anisotrop- 
ic increments appear in (17) of the form 

where y is the Newtonian gravitational constant and M i  
is the j-th component of the angular momentum vector 
M of the source; we a r e  assuming a large distance from 
the source and that the field is weak (r,/r<< 1), and we 
have dropped terms of second order in y. If now the g,, 
a r e  replaced by these g,,+ bg,, in Eqs. (12)-(14), Eq. 
(16) becomes 

It is easily verified that although this formula was ob- 
tained for the gravitational field of a distant source, it 
will nevertheless give (within the framework of our 
"trial model") the correct order of magnitude also for 
light propagating close to the source of the gravitational 
field. On the other hand, it is easily seen that Eq. (19) 
is in agreement with the estimate of (7). We have thus 
illustrated the mechanism by which this estimate ap- 
pears in a concrete noneinsteinian model. 

It can be shown that the estimate of (7) appears also 
in the theories of Belinfante and Swichart and of Capella, 
for the electromagnetic field equations of those theories 
a r e  identical with (2) and (10). For  s'implicity, however, 
we have restricted our considerations to the above 
model. 

The results of Secs. 1-3 show that the optical isotropy 
of cosmic space is  a negative effect which may be taken 
a s  a highly sensitive instrument for studying the basic 
laws of nature. In particular, it successfully extends 
the methods for establishing the equivalence principle, 
based on the experiments of Eotvos, Dicke, and 

The authors express the hope that this work will stim- 
ulate the search for further gravitational experiments. 

The authors a re  grateful to B. P. Artamonov for dis- 
cussions of this work. 

APPENDIX 

We have discussed using reflection nebulae to estimate 
optical anisotropy. It would be helpful to  compare the 
resolving power of this method with some others. We 
present a very simple variant of such a comparison. 

Suppose that a source of electromagnetic waves with 
frequency w is approaching o r  receding from an observ- 
e r  with velocity v. If the medium through which the 
source is moving is birefringent, the radiation will be 
broken up into the ordinary and extraordinary waves, 
and the observer will receive them with a beat frequency 
given by 52= w(v/c)~n, where An is the difference be- 
tween the two indices of refraction (the beats result 
from the relative motion of the source and observer). 
Thus if (v/c) (the velocity of orbital motion at  the 
surface of the Sun), to record a value of An - 10" corre- 
sponding to the hypothetical violation of the equivalence 
principle one would need an oscillator whose frequency 
was stable to ~ f / f  -n/w This is four orders of 
magnitude higher than the present experimental limit 

a s  the authors were kindly told by B. V. 
~ r a ~ i n s k g .  Reflection nebulae, on the other hand can be 
used to record birefringence seven orders of magnitude 
weaker (An -lo-''), a s  described in Sec. 1. 

' ) ~ l v i u s  and ~ a 1 1 ~  drew the lines (the results of photoelectric 
polarization measurements) right on a photograph of the 
nebula IC 349. Similar diagrams o r  tables will be found in 
all of Refs. 2-14, 18. 
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Electromagnetic and scalar fields around an infinite 
filament and around other bare singularities of the Kasner 
type 

L. D. Landau Institute of Theoretical Physics. USSR Academy of Sciences 
(Submitted 26 October 1978) 
Zh. Eksp. Tar .  Fi. 76, 1162-1 171 (April 1979) 

It is shown that the intensity of the electric field of an infinite charged filament increases to infinity with 
increasing distance from it, as a result of self-gravitation, and forms an inhomogeneous singularity. An 
object of this kind with H,#O and Hz* cannot exist in general relativity theory. The scalar field of a 
filament is considered and it is shown that in contrast to the electromagnetic field such a field is capable 
of upsetting the oscillatory approach to bare singularities and replacing it by a power-law approach for 
which a formula is given. The effect of such fields on other bare singularities of the Kasner type is also 
investigated. 

PACS numbers: 12.20. - m, 12.90. + b 

1. INTRODUCTION 

This  paper is devoted to a study of the influence of 
electromagnetic and scalar f ields  on b a r e  s ingular i t ies  
of the Kasner  type and pr imar i ly  on the s imples t  among 
them, described by a Kasner  spa t ia l  m e t r i c  [ ~ q .  (10) at 
c = 01. This  m e t r i c  descr ibes  the gravitational field 
around an infinitely long and thin f i lament  with m a s s '  
( see  a l so  Ref. 2). A situation is investigated wherein 
this filament is a source  of an electromagnet ic  o r  a 
s c a l a r  field. Thus ,  in  the next section we consider  the 
c lass ica l  electrostatic problem of finding the electric 
field intensity around an infinite charged filament. I t s  
solution within the f ramework  of genera l  relativity 
theory differs  substantially f r o m  the r e s u l t  obtained in 
the Newtonian approximation. With increasing dis tance 
to  the source,  the field intensity f i r s t  decreases ,  but 
later the gravitational interact ion of t h e  electric field 
with the  filament and with itself c a u s e s  the  field to in- 
crease and to tend to infinity at a finite dis tance f r o m  
the source.  T h i s  dis tance is the l imi t  f o r  the given 
model, and a position at a g r e a t e r  dis tance f r o m  the 
filament is impossible. This  phenomenon cannot be  
avoided without resor t ing  to a source  with a negative 
and infinite "nonrenormalized" l inear  m a s s  density, a 
situation having hardly any physical meaning. 

In Sec. 3 we consider  the effect exer ted  on the spat ial  

Kasner  mat r ix  by an electric or magnetic field that 
depends on one variable .  It  tu rns  out that  no object that  
might be  descr ibed  as a n  infinitely long and thin charged 
filament with finite positive l inear  m a s s  density, s u r -  
rounded by a magnetic field with nonzero components 
H, and H , ,  can ex is t  within the framework of general  
relativity. 

In Sec. 5 we consider  the scalar field around a l inear  
source .  F o r  a zero-mass  field, a m e t r i c  is obtained at 
a r b i t r a r y  dis tance f r o m  thye filament, s i m i l a r  to that  
obtained by V. A. Belinskii and I. M. Khalatnikov f o r  
s ingular i t ies  attainable on spacel ike hypersur faces  i n  
the p resence  of a scalar z e r o - m a s s  field. For a scalar 
field with m a s s ,  asymptot ic  express ions  can  b e  obtained 
f o r  the m e t r i c  n e a r  the  s ingular i ty ,  where  it coincides 
with the  solution f o r  the z e r o - m a s s  field, and f a r  f r o m  
the  axis ,  where  the field at tenuates  exponentially and 
does  not influence the met r ic .  It is proved that  a phen- 
omenon analogous t o  the  increase  of the electric field 
intensity on account of self-gravitation does not exist 
f o r  a scalar field. It is shown in the s a m e  section that  
i n  the p resence  of a scalar field n e a r  a b a r e  singularity 
the m e t r i c  cannot have a n  osci l la tory c h a r s c t e r  s i m i l a r  
t o  the osci l la tory reg ime of V. A. Belinskii,  E .  M. 
Lifshitz, and I. M. Khalatnikov (BLKh). This  oscilla- 
to ry  f o r m  c a n  b e  possessed  by the m e t r i c  n e a r  b a r e  
s ingular i t ies  of genera l  type i n  the absence of nongrav- 
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