
permits a satisfactory description of the experimental 
results, the elastic constants calculated by using the 
model of the dynamics of the graphite model in the 
Born-Karman approximation agrees with experiment 
within the limits of errors, whereas the elastic con- 
stants obtained by the analytic-potential method16 do not 
agree with the experimental results. The use of the 
proposed procedure of inelastic scattering of Mbssbauer 
y radiation for the study of the properties of P G  has 
shown that this method is  effective2) when it comes to 
determining the shear modulus c, and by the same token 
the quality of the graphite. This method can be used 
equally well for the separation of the elastic and in- 
elastic components in scattering with high resolution 

eV), both in solids and in liquids o r  gases that 
do not contain Massbauer isotopes. 

')For 14.4-keV radiation, the ratios a(O)/p for the reflections 
(002), (OM), (006), and (008) are respectively 1.99, 0.32, 
0.1, and 0.06. 

2 ) ~ h e  method of scattering thermal neutrons is not effective for 
the measurement of elastic moduli 5 lo8 dyn/cm2, in view of 
the small energy resolution, - lo4 e ~ . ' ~  
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A quantized semimetal film in strong transverse magnetic fields H is considered. The thermodynamic 
characteristics of the system are calculated with allowance for the Coulomb interaction. Transitions to the 
excitonic phase are predicted for certain relationships between H and the band overlap E,, and the phase 
diagram of the system is calculated. Field-induced rearrangements in equilibrium quasi-twodimensional 
semiconductors are also studied. 

PAC3 numbers: 73.60.F~ 

Quasi-two-dimensional electron systems in strong separated e and h in strong fields.' 
transverse magnetic fields H are now an object of in- 
tensive theoretical and experimental study. The interest 
in them is stimulated by the complete discreteness of 
the electron spectrum, which gives rise to their highly 
unusual properties. The phase transitions in such sys- 
tems have been studied in a number of papers: the mag- 
netic-field-induced crystallization of electrons in in- 
version layers (see, e.g., Refs. 1-5), the formation of 
droplets of a nonequilibrium electron-hole (e - h)  liquid 
in quasi-two-dimensional semiconductors in strong 
fieldsV6 and the transition of an e- h plasma to an  exci- 

A special place amongst these "quasi-zero-dimen- 
sional" systems is  occupied by size-quantized semi- 
metal filmss in strong fields H: the properties of such 
systems have been studied experimentally in a whole 
series of papers (e.g., Refs. 10  and 11). For a syste- 
matic description of the kinetic properties of these sys- 
tems it is necessary f i r s t  of all to study the ground 
state and thermodynamics of the electron Fe rmi  liquid 
in the films. It i s  precisely these problems that are 
considered in the present paper. 

tonic phase in such semiconductors7 and in systems with We shall confine ourselves to a two-band model of the 
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semi-metal (in the given case, many-valley effects do 
not lead to qualitative changes of the results obtained 
below) and shall consider the case of strong magnetic 
fields 

rn<ao. (1) 

and low temperatures 

T K O H P  (2) 
Here we have put R =1, u =1,2 a re  the band indices, 
on,, =eH/m,c a re  the cyclotron frequencies, r, 
= ( c / e ~ ) ' ~  i s  the magnetic length, a, =l/m,Z2 a re  the 
effective Bohr radii of the electrons in the f i rs t  and 
second bands, mu a r e  their effective masses, and Z2 
= e2/x , where H is the permittivity of the medium sur-  
rounding the film. It turns out that when the conditions 
(1) and (2) a re  fulfilled several Landau levels (depend- 
ing on the relationship between the band overlap E, and 
H) are  completely filled, while the others a re  empty 
[to within small quantities "exp(- w,/T)]. As H is 
changed giant jumps of the electron density occur a s  a 
result of the change in the number of completely filled 
levels. At the upper filled level, in relatively narrow 
ranges of the parameters, an exciton condensate is 
formed. Because of the presence of the reservoir of 
particles the properties of the equilibrium system under 
consideration differ qualitatively from those of a non- 
equilibrium two-dimensional e - h system in strong 

in which the number of electrons and holes is 
fixed (e.g., by optical pumping). 

Below, in Sec. 1, we consider the properties of the 
system in the ideal-gas approximation. Even in this 
approximation it is  possible to give a qualitative de- 
scription of certain features of the system: the giant 
jumps in the density and magnetic susceptibility, and 
the exponential smallness of the entropy and specific 
heat. In Sec. 2 the Coulomb interaction is considered. 
Under the conditions (1) and (2) its contribution to  the 
thermodynamic functions is calculated exactly in the pa- 
rameter r,/a,<< l. The interaction leads to renorma- 
lization of the parameters appearing in the formulas ob- 
tained in Sec. 1. When the interaction i s  taken into ac- 
count the diamagnetic susceptibility is no longer con- 
stant between jumps but varies slowly like H - ' ~ .  In 
Sec. 3 second-order transitions to the excitonic phase 
a re  predicted. As H i s  varied the system undergoes a 
series of such transitions: an exciton condensate is 
formed at the upper filled Landau level when Hand the 
band overlap E, have certain relative values. The ex- 
citonic phase is analyzed not in the parquet approxima- 
tion, a s  in a three-dimensional e - h system in a strong 
magnetic field,'2 but in the ladder approximation, de- 
fined here in terms of a power parameter (and not, a s  
ordinarily, in terms of a logarithmic parameter). A 
transition i s  manifested, e.g., in jumps in the magnetic 
susceptibility: it increases by a factor of ao/r,>>l 
relative to  the normal case, and changes from diamag- 
netic to paramagnetic. In Sec. 4 we consider the re- 
arrangements due to  the Coulomb interaction in quasi- 
two-dimensional equilibrium semiconductors (E,< 0) 
in strong fields H. Above certain values of H it turns 
out to be favorable for the lowest Landau level to be 
filled by electrons in the conduction band and by holes 

in the valence band. Under the condition (2) these transi- 
tions depend only on H and do not depend on T. 

1. THERMODYNAMICS OF AN IDEAL QUASI- 
ZERO-DIMENSIONAL e-h GAS 

The Hamiltonian of a free two-dimensional e - h gas in 
a semimetal film in a magnetic field" is  

where $: and $, are  the creation and annihilation op- 
erators,  respectively, for electrons in the first  band 
and holes in the second band; 5 ,  = i[&,(p - eA/c) - p]  (the 
sign + is for a = l ,  andthe sign - for u=2); p is  the 
chemical potential of the electron gas; A = (- Hy, 0,O) is 
the vector potential in the Landau gauge. The disper- 
sion laws of the electrons a re  

E, (p) = ~ = / 2 m , ,  ~ , ( p )  -E,,--pa/2m, 

(the separation of the extrema of the bands in momentum 
space i s  unimportant and has been put equal to zero). 
The thermodynamic potential 52, for an e -.h gas with 
the Hamiltonian (3) has the form 

where No = L, ~,/2rrr; is  the number of particles in a 
completely filled Landau level; L, and L, a r e  the linear 
dimensions of the system; 

is the overlap of the bands in the magnetic field; w, 
- = w,, + w,, = e ~ / m c ,  where m is the reduced cyclotron 
mass; p *  i s  the effective Bohr magneton. Inessential 
constants have been omitted in (4). If p*Pe/2mc, then 
E, depends on H. In Secs. 1-3 we investigate the case 
E,(H) > 0 in the entire range of fields under considera- 
tion.~' 

The chemical potential IJ. in (4) is  determined by the 
condition that the numbers of electrons and holes a re  
equal: N: =N:. For equal cyclotron masses m, =m2 
we find p = ~ , / 2  (the case m, + m2 is discussed below). 
The number of particles 

It can be seen from (5) that for T - 0 with the condition 

the levels with k c  no a re  completely filled and those 
with k>no a re  vacant. The physical meaning of the con- 
dition (6) is clear: those levels which lie in the overlap 
between the bands a re  filled. As H is varied, jumps in 
the number of particles, from no& to (no + I)&, occur 
a t  the points now, =E,. For T # 0 the jump is spread 
over an interval 

Inoou-E,I IZTGl, (7) 

which, under the condition (2), is  extremely narrow, 
s o  that an exact determination of the number of particles 
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and the energy inside this interval is of no interest. 

The f ree  energy Fo =ao + p  (N:-  N:), s o  that, sub- 
stituting into (4) p =Ec/2, which is obtained from N :  
=hT:, we immediately determine Fo: 

In this formula (as in all  subsequent ones, if there is 
no stipulation to the contrary) terms that a r e  exponen- 
tially small  in the temperature a r e  omitted. It is not 
difficult to convince oneself that F,,, determined by 
formula (8), is continuous on the boundaries of the 
regions (6), s o  that it can also be applied inside the in- 
tervals (7). Since Fo does not depend on T the entropy 
and specific heat a re  equal to zero  (to be more pre- 
cise, they a r e  exponentially small). For  E, = kw,, how- 
ever, the entropy S =2&ln2, i.e., it does not vanish 
even when T - 0. But for E, - ku, =6, where 6 is arbi- 
trari ly small, we have 

lim S- lim [Wo ln(l+ewzT)  -R&/T( i+P tZT)  ]=0.  
r-0 T+O 

We shall determine from (8) the magnetic suscepti- 
bility per  unit volume: 

where d is the thickness of the film. It is assumed that 
d Y,, a condition that enables us to disregard the upper 
transverse-quantization  level^.^ The susceptibility x0 
is diamagnetic, and, as the number of filled levels is 
varied, experience jumps, smeared out over the in- 
tervals (7), that a r e  larger the greater the number of 
filled levels. In determining x0 we neglected the depen- 
dence of E, on H, assuming the coefficient e/2mc - p*  
to  be small. But in the ultraquantum limit, when only 
the lowest Landau level (no =0) is filled, it is precisely 
this dependence which determines x,. In this case the 
susceptibility is diagmagnetic if e/2mc > p *, and para- 
magnetic otherwise. 

If the cyclotron masses m, #m,, then, under the con- 
dition (6), the chemical potential 

1 =[E,+no(~H1 - ~H2)]/2, 

i.e., a substantial dependence of p on H appears. The 
other formulas a re  not changed at all. 

2. COULOMB INTERACTION IN A NORMAL 
e-h SYSTEM 

In this section we consider a normal semimetal with 
neglect of the possible e - h pairing. The interaction 
Hamiltonian is 

1 6'(21S,~--1) a,", = - z Id+ a?'*.+ (r)tp,.+ (1') . *Up (r')*o(r) 
2  lr-r'l 

a,o'=I,Z 

(6& is the Kronecker symbol). 

To determine the thermodynamic potential we shall 
calculate the temperature Green functionsls G ,  of the 
electrons of the f i rs t  band and the holes of the second 
band. Fi rs t  we shall determine them in the Hartree- 
Fock approximation; a t  the end of the section we shall 
show that under the conditions (1) and (2) the correla- 
tion corrections to the thermodynamic functions a re  

small  in the parameter r,/ao. The solutions of the 
Hartree-Fock equations a r e  found in the same way a s  in 
the case of an e - h system with a fixed number of elec- 
trons and holes,= and have the form 

g,, ( o )  = ( to-koEi+e, ,+~)- ' ,  

g,, ( a )  = (io+Es-ko~2+e,z-p)-' ,  

where 

%n($') -% ( v / ~ E - P * ~ E )  

a r e  oscillator functions with center yo =p,ri and fre- 
quency w,, (Ref. 14); o = rrT(2I +I) ,  where I is  an inte- 
ger. The corrections E ,, to the Landau levels satisfy 
the equations 

where E , = Z ~ ( W / ~ ) ~ / ~ / ~ ,  agh, andf,, a r e  the Fermi  
occupation coefficients of the kth Landau level of band 
0: 

fh l  ( T )  = (exp [ (koE,-ek-p)  IT1 +1)-' ,  

f u ( T )  = (exp [ ( k ~ a z - ~ u - E g + p ) l T j + l ) - ~ .  
(12) 

It is possible to calculate the coefficients I,* =I,, in (11) 
analytically. For j a k we have 

I .  111- - ~ ' " J I - ' ~ J  dy dy' dp' ~~x~(Y-P)x~(Y'-P)x~(Y-P')x~(Y'-P') 

(13) 
where for k=O the sum inside the curly brackets must 
be put equal to zero  and for  j = k the factor outside the 
brackets must be taken to be equal to unity. 

Confining ourselves to the case of equal masses, when 
wH1 = wHz = w8/2, from the condition N e  =Nn we again 
find p = ~ , / 2 .  (As in the preceding section, for in, + m, 
the chemical potential will depend on the field in an es- 
sential way, and not only a s  a function of E,(H); but the 
other results a re  not changed.) The occupation numbers 
of the Landau levels in each band a re  then equal to 

fk , (T)  =f , , (T)  --f,={exp [ (koH-2ek-E,) /2T]+I)- ' .  (12') 

We denote the renormalized Landau levels by I, = ko,/2 
- E,, where E E k I  = E,. From (12') it is clear that 
under the condition (2) and the condition 

the levels with k > n  a re  vacant while those with k < n  a r e  
densely filled. The filling of the nth level occurs in a 
small  ("T) interval of fields 

~ 8 , , - E s / 2 ~ / T ~ l .  (15) 
x 

Here and below, n i s  the label of the highest of the filled 
levels. When the interaction is taken into account the 
conditions (14) and (15) replace the conditions (6) and 
(7). By virtue of the inequality (I), which, a s  will be- 
come clear below, ensures the applicability of the 
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theory, & ,s kEo << kw,, s o  that the change in the spacing 
between neighboring levels is not large. However, the 
absolute shift of levels with sufficiently large labels can 
exceed w,. Consequently, the number n of filled levels 
may not coincide with the no calculated in the ideal-gas 
approximation: a larger number of levels can now be 
located in the overlap between the bands. 

We shall determine the thermodynamic potential SZ ' 

from the well known formula (A is a constant multiply- 
ing E,) 

i.e., in the Hartree-Fock approximation, 

x G.(ol ,  p i ;  y ' ;  y; A)exp(ior)exp (io'r') . 1 (16) 

Substituting into this the Hartree-Fock Green functions 
(10) and p = ~ # / 2 ,  we find the free energy F .  Carrying 
out the calculations in (16), we obtain, taking (11) and 
(1 3) into account (having replaced E, - AE,), 

It is not possible to perform the integration in (17) in 
general form. But under the condition (2), outside the 
narrow intervals (15), the calculation presents no dif- 
ficulty. From (11) and (12') we have 

Since, outside (15), for all values of k eitherf, or  1 
-fk is  exponentially small, we have 

Therefore, - ' k  

F-F~=-W. x J [ exp ( ~ Y H - Z E - E .  ) +11-'  
h-a 0 

2T 

where the f, are  the true occupation numbers (12') and 
the f a r e  the occupation numbers in the absence of the 
interaction (5). In the region of applicability of the 
formula (18), 

Hence, we finally obtain 

Here Fo is  the free energy of the ideal gas with allow- 

ance for the fact that the number n of filled levels should 
be determined not by formula (6) but, when the Coulomb 
interact,ion is taken into account, by formula (14). 

It follows from (19) that the corrections to the total 
magnetic moment M =- (aF/aH) of the system that 
ar ise  from the interaction a r e  small in the parameter 
(1). But the dependence of M on H becomes nonlinear, 
and this leads to a qualitative change in the behavior of 
the diamagnetic susceptibility. In the intervals between 

sthe jumps the susceptibility is  not constant but depends 
on the field H (here, ao=ao, +a,  =l/mg2): 

Although the correction terms in (20) a re  small (all the 
coefficients 1,,<1, s o  that the sum in (20) is less than 
nP), the correction AX - H - ' ~  is perfectly observable 
against the background of the susceptibility x,, which 
iS constant in the regions (14). The dependences of the 
number of particles and the energy, a s  can be seen 
from (12) and (19), undergo only scale changes (Fig. 1 )  
when the interaction is taken into account: 

It remains to show that the correlation corrections to 
(19) a r e  small. The simple polarization operator is 
calculated in the same way a s  in Ref. 6, and has the 
form 

where Qr,,(P2) is a polynomial whose form is unimpor- 
tant here. Coulomb divergences of the ring diagrams 
a re  absent, since II(p) -b2 as p - 0. The correlation 
corrections, which it i s  sufficient to calculate in second 
order of perturbation theory, a re  found to be small in 
r , /a ,  under the condition (1). The question of the cor- 

FIG. 1.  Dependence of the particle density and energy on the 
magnetic field. The jumps in the particle density (N(0) is the 
number of particles when H =  0 )  are  depicted in the upper part 
of the Figure, and the dependence of the free energy on H in 
the lower part. Both parts of the Figure pertain to an ideal 
gas. When the interaction is taken into account they are  sub- 
jected to a simple transformation: the points l / n  along the 
abscissa a re  replaced by (1+ 2&, , /~ , ) /n ,  and the points 
- [ 1 /2+  1/(2n+ 2 ) ]  along the ordinate in the lower part of the 
Figure should be shifted downward by 

(2EJE.J hj . 
L a - 0  
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relations a t  c = O  (& =2rlT, where 1 is  an integer) and 
j = k, when the expression (21) is not defined, requires 
a special analysis. It i s  easy to see that 

which is exponentially small outside the region (15). 
Factors of this type also ar ise  in diagrams of higher 
orders. Consequently, in the considered range of pa- 
rameters, correlations a re  certainly unimportant. 

Consequently, the Coulomb interaction has been taken 
into account exactly in the parameter (1) for any values 
of H outside the intervals (15). But analytic formulas 
for  the latter a r e  simply not needed, since (see Fig. 1) 
the energy is matched inside these intervals, and the 
number of particles changes rapidly from nS/, to  
(n + 1 )No. 

3. TRANSITION TO THE EXClTONlC PHASE 

We shall show that, for certain relationships between 
H and E,, a quasi-zero-dimensional e - h plasma goes 
over into an excitonic phase. 

We shall consider the second-order vertex diagrams 
constructed from Green functions of the normal semi- 
metal (Fig. 2). Obviously, only the e - h diagrams in 
which the Coulomb interaction is attractive a re  of 
physical interest. The same frequency factors (irre- 
spective of the band from which the Green functions are  
taken) correspond to the diagrams of Figs. 2a-c : 

where w a re  the odd frequencies and c the even fre- 
quencies. Integration over the coordinates and mo- 
menta gives factors -E, in all  diagrams. Consequently, 
the diagrams a - c for I# k a r e  small in the parameter 
E,/w,,"~~/a,. For  &#Oand l = k t h e y  vanish, while for 
E = O  and 1 = k their contribution is 

-(EoIT)f~(l- fr) ,  

i.e., small in the considered range of parameters. 
Corresponding to the diagram of Fig. 2d is the frequency 
factor 

FIG. 2. Second-order vertex diagrams. The solid lines denote 
Green functions of electrons or holes and the dashed lines de- 
note the Coulomb interaction; the diagrams a)-c) are small, 
like rH/a,, outside the region (15) (irrespective of the direc- 
tion of the arrows, for a) and b); the diagram d) does not have 
a small factor: ladder diagrams of this type should be taken 
into account in all orders of perturbation theory. 

For  k = l  =n, where n is the highest filled level, and for  
2 8, - E, E,, this diagram has no small factors. Lad- 
der  diagrams of this type, describing the pairing of an 
electron of the f i rs t  band and a hole of the second band, 
must be summed in all orders of perturbation theory. 
We note that these diagrams a re  defined here in terms 
of a power parameter, and not in terms of a logarithmic 
parameter a s  in the theory of superconductivity (see 
Ref. 13) o r  the theory of an excitonic insulator in the 
three-dimensional case.'* 

To study the rearranged state with allowance for 
e - h pairing one introduces, a s  usual, anomalous Green 
functions. In this section all expressions will be more 
symmetric if, in the $-operators of the second band, 
we change from the hole representation to  the electron 
representation, which is achieved by the replacements 
q2 - q2 and & - q2 (unimportant constants a re  omitted). 
The matrix Green function 

(where the nondiagonal terms correspond to e - h pair- 
ing) satisfies an equation analogous to the Gor'kov- 
~ l i ~ s h b e r g  equation in the theory of su~erconduct ivi t~:  

TbZ 
G , . r ( o , p . ; ~ , ~ ' ) = 6 m ~ G o ( o , ~ . ;  Y , Y ' )  -- Z d y i d y z d p x ' d q  

2n -. 

(22) 

Here Go a r e  the Green functions (10) of the normal 
semimetal (in the electron representation, g,, is given 
by the expression g,,(w) = ( iw + $, + p - E,)-' instead of 
(lo)]. It i s  convenient, as previously, to expand the 
Green function (22) in the Landau functions x,,~: 

- 

Goo, (u. PX; y, y') = X13= (y)xLPX (yr)g,*.,(o). 
* n o  

Substituting this expression into Eq. (22), we find 

Here A satisfies the self-consistency equations 

For  equal masses, a s  before, p = E,/2. Then for A, 
a = hIk we obtain the following equations: 

As will become clear below, A, %I,&,, s o  that for j 
# a  all  the terms in the right-hand side of (23) a r e  - A,/.& s E,I,,~/W,, 2 rH/ao. Only the term with j =n does 
not have this small factor.=) (Of course, this also fol- 
lowed from the analysis of the vertex diagrams, s o  that, 
from the outset, in G,I we could have included the 
anomalous terms corresponding to e - h pairing at the 
nth level only.) For  k =n we obtain from (23) 
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while for  k#n it follows from (23) that A,=AJ,,,. From 
the condition for  A to  vanish we obtain an equation for  
the transition temperature T,: 

A solution exists only when 

The transition temperature reaches its maxima, equal 
to E,/4, when $, = ~ , / 2  (i.e., 5, =0). In the ultraquan- 
tum limit (g, > >E,/2), when only the lowest Landau level 
12 = O  is filled, go = - E ,  =-  E,, s o  that 21 [,I =2E0 +E,>Eo, 
i.e., the condition (24) cannot be fulfilled. Consequently, 
rearrangement to  the excitonic phase does not occur for 
n =O. 

For n # 0 we find the transition temperature (see Fig. 
3) 

The phase diagram of the system in the coordinates 
(T, H) i s  given schematically in Fig. 4. As the field is  
varied, without going outside the limits of the con- 
dition (1 ), a series of phase transitions to  an excitonic 
condensate occur whenever the condition (24) is fulfilled 
for the corresponding n and the temperature is low 
enough (T < ~ , / 4 ) .  In fields H for  which the condition 
(24) is  not fulfilled, all the levels a r e  either densely 
filled o r  vacant. In this case, e - h attraction is com- 
pensated in the filled levels by e - e and h-  h repulsion. 
As a level n approaches the boundary of the overlap the 
energy i s  lowered whenever the number of particles de- 
creases in such a way that a transition to the excitonic 
phase becomes possible. Since E,<< w,, the width of the 
regions of existence of the excitonic phase is consid- 
erably smaller than the spacings between these regions, 
It can be shown, however, that the coefficients of all the 
corrections in r,/a, a r e  numerically small, s o  that the 
results obtained can also be valid in fields Y, 5 a,. Then 
E,-  w,, so that the region of existence of the e - h con- 
densate can extend, for the appropriate values of ?l, 

over the whole interval between neighboring levels. 

We shall consider how the characteristics of the e - h 
system a re  changed when exciton pairing i s  taken into 
account. The number of particles 

To within (r,/ao)a the expression in square brackets is  
equal to unity for k <  rr and zero for k >  n. Consequently, 
levels with k < rc are  completely filled, and those with 
k>rr are  vacant, but with power accuracy rather than 
with exponential accuracy a s  with neglect of e - h pair- 
ing. We find the number of particles in the nth level 
from (26) and (23') with the condition (24): 

FIG. 3. Dependence of the excitonic-transition temperature 
T, on the magnetic field near a level n z  0. In reduced coor- 
dinates the figure is the same for all n * 0 .  Above the wavy 
lines lies the region (15), in which the predictions of the theory 
have only a qualitative character. 

The filling of the level n occurs, a s  can be seen from 
this formula, not in an interval of energies "T (as in 
Fig. 1, where e - h pairing is neglected), but in the in- 
terval (24), equal to 2E, -H ' /~ .  

We shall find the free-energy change in the transition 
to the excitonic phase (F is the free energy (19) of the 
normal e - h system): 

F,--F--2E,Po 2 jp c kg.:(u, h)g2/(u'. h) L 
,.A-0 0 .,"' 

In the transformations we have used the self-consis- 
tency equation (23) and taken into account that the terms 
with k #  n give a contribution that is  small in r,/a,. The 
last expression is completely analogous to the corres- 
ponding formula in the theory of supercond~ct ivi ty .~ 
But, because of the discreteness of the spectrum (for- 
mally, because of the absence of integration over the 
momentum in Eq. (23)], the final expression that is ob- 
tained after substitution of ~ / A E ,  from (23') has an en- 
tirely different form: 

This expression has been obtained formally for all tem- 
peratures T << T,, but i t  must be remembered that, like 
all the formulas obtained here, it is applicable only 
outside the regions (15). For clarity we give the ex- 
pansion of the formula (27) near T,: 

FIG. 4. Phase diagram of the system. The regions of exist- 
ence of the excitonic phase are shaded; the labels of the levels 
at which e-k condensation occurs are indicated schematically 
along the abscissa; for clarity, the Figure is not to scale. 
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Here A~(O) =Eif/4 - 5: is  the value of the "gap" a t  abso- 
lute zero.4) The discontinuity of the specific heat a t  
T =T, is quickly obtained from (28). Outside the region 
(15) this discontinuity is small. In fact, for  T , s  5, the 
quantity 15, - ~ , / 2 1  <<I and A,(O)<<E,/~, s o  that the 
specific-heat discontinuity 

Nevertheless, this discontinuity may be perfectly ob- 
servable against the background of the usual phonon 
specific heat ("TS). Finally, we give the expression for 
the energy of the system in the excitonic phase a t  T 
<< tn: 

F.=e-F=-i/b/t"B,, (1 -2 1 &,I/&) '. 
From this we determine the jump in the magnetic sus- 
ceptibility a t  the phase-transition points at low T: 

1 e' 1 (A)'/¶ an n' 
Ax=---- --. 

2n mc' d n rn I., 

Comparing (29) with formula (20) and discarding numer- 
ical factors of order unity (taking into account that Inn 
2 1 /2), we find 

Consequently, the susceptibility increases sharply a t  the 
transition to  the excitonic phase and changes sign: it 
changes from diamagnetic to  paramagnetic. The be- 
havior of the magnetic susceptibility in the region of ex- 
istence of the excitonic condensate a t  the level n is de- 
picted in Fig. 5. 

In conclusion we note that the formulas obtained in 
this section a r e  inapplicable, generally speaking, in the 
immediate vicinity of T ,  The behavior of a quasi-zero- 
dimensional system in the fluctuation region requires 
a separate treatment. 

4. MAGNETIC-FIELD-INDUCED REARRANGEMENTS 
IN  QUASI-TWO-DIMENSIONAL SEMICONDUCTORS 

In this section we consider an equilibrium quasi-two- 
dimensional semiconductor (E, < 0; see  footnote2)). As 
in the three-dimensional case,le if the interaction is suf- 
ficiently strong the creation of electrons in the conduc- 
tion band and holes in the valence band may be favored. 
In the situation under consideration the interaction en- 
ergy per particle - E , ~ H ' / ~ ,  SO that the field is an ex- 
ternal parameter: by increasing it we can induce the 
phase transition. 

All the formulas obtained in Sec. 2 that do not use the 
explicit form of p also remain true for  E,< 0. The num- 
ber of quasi-particles in the Landau levels is deter- 
mined by formula (12). From the electrical-neutrality 
conditions we find that the Landau levels a r e  populated 
a t  low values of T if the inequalities (for k + 0) 

8,-p<O, &Tk+p-E,<O 

a r e  simultaneously fulfilled. It follows from the first  
that p > 0, and from the second (for E,< 0) that p < 0, 
i.e., the levels with k #  0 cannot be filled. For  k = O  the 
levels begin to be filled when - E ,  - p 0 and p - E, 
- E 0, whence follows the condition 

FIG. 5. Behavior of the magnetic susceptibility in the region 
of the excitonic transition (near the level n):  the susceptibility 
is measured in units of (&rd)e2/mc2. 

i.e., the binding energy per  e - h pair should exceed 
the gap. The chemical potential in this case is  midway 
between the bands: p = - I E,\ /2. As before, we do not 
consider the region of width T about the point (30). 
When 

dense occupation of the lowest Landau level by elec- 
trons in the f i rs t  band and holes in the second band is 
favored. With increase of the field the density of elec- 
trons and holes increases (together with &) linearly 
with H. The energy of the new phase is calculated in 
the same way a s  in Sec. 2. Under the condition (31) we 
find 

where we have substituted &,= E,. The formula 
(32) i s  highly visualizable: 2E0 - E, is the energy gain 
on creation of an electron-hole pair. The f ree  energy 
(32) does not depend on T. Only the width of the interval 
(31) in which the transition to complete occupation oc- 
curs is determined by the temperature. 

The transition considered i s  manifested, a s  in the case 
of the semimetal, in the behavior of the magnetic sus- 
ceptibility. At the transition it changes by a jump [ex- 
tended in the interval (31)] relative t o  the susceptibility 
of the electrons in the filled bands. The sign of the 
jump is determined by the sign of the difference e/2mc 
- p* .  The transition is also manifested in the absorption 
spectra, which, in the ideal case, a r e  line spectra. Be- 
fore the rearrangement the spectra a r e  determined by 
transitions of electrons from filled Landau levels of the 
lower band to empty levels of the upper band. After the 
rearrangement new ser ies  of transitions appear: elec- 
trons in the upper band and holes in the lower band 
undergo transitions from the filled zeroth Landau level 
to  the other (empty) levels. 

CONCLUSION 

We now discuss the limitations of the model used. Es -  
sentially, we have considered the purely two-dimen- 
sional case. The effects of the size-quantized trans- 
verse motion were not taken into account. But, a s  in 
Ref. 6, for a film thickness d 5 r, allowance for  the 
transverse motion leads to unimportant corrections. 
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Above, we discussed the rearrangements at Landau lev- 
e ls  with a definite spin direction and a fixed quantum 
number of the transverse motion. Of course, a s  H is  
varied, levels with other quantum numbers can also be 
filled. It is  not difficult to take these into account in 
the framework of the proposed formalism. When this 
is done the results a re  not changed qualitatively. 

We present some numerical estimates. The calcu- 
lated effects can be observed (with values of a,-100 A, 
which a re  usual for semimet~ l s )  in fields H z  lo5 G in 
films with thickness d s 100 A a t  temperatures T s 10 K. 
By increasing the dielectric permittivity of the support 
these requirements can be weakened. The singularities 
of the magnetic susceptibility, including the jumps 
(with a change of sign in sufficiently strong fields) in 
transitions to the excitonic phase, can be observed ex- 
perimentally. Numerically, the value of x can be very 
considerable: its ratio (in the normal phase) to the sus- 
ceptibility of the three-dimensional semimetal is  n2/  
dp,  ( p ,  is  the Fermi  momentum of the three-dimen- 
sional semimetal). Although very large n are  not 
achieved in fields satisfying the condition (I), this ratio 
can be rather large. Optical observations of the changes 
in the absorption and scattering spectra a t  the rear- 
rangements a r e  also possible. 

The authors a re  deeply grateful to L. P. Gor'kov for 
a very useful discussion on the applicability of the dia- 
gram technique in the quasi-zero-dimensional situation. 
We also thank V. S. Babichenko, S. D. Beneslavskii, 
and I. B. Levinson for valuable discussions of questions 
touched upon in the paper. 

')since the spin degeneracy is lifted, throughout the paper we 
consider electrons and holes with a single, well defined di- 
rection of the angular momenta, e.g., along the field H. 

2 ) ~ e  do not consider here the trivial semiconductor = semi- 
metal rearrangements associated with the possible change 
of sign of E, (H) on variation of H. 

3 ) ~ h e  series in the right-hand side of (23) is,  of course, con- 
vergent: for fixed k and j - a, the factor I jk - j-ll2 , so  that 
for j >>k a general term of the series is  - ( E ~ / w ~ ) I ; ~ / ~  j -kl 

-(E,,/w,)j '2. A s  a result of the summation a numerically I 

small coefficient of rH/ao is  obtained. ?. 

4 ) ~ t  is  worth mentioning that in the given system the transition 
temperature T,(,) is not proportional to A, (0). The depend- 
ence of T,(,) on AJ0) is easily obtained from (24) by sub- 
stituting 25, /En = (1 - ~A:(O)/E:)'/~. 

'YU. E. Lozovik and V. I. Yudson, Pis'ma Zh. Eksp. Teor. 
Fiz. 22, 26 (1975) [JETP Lett. 22, 11 (1975)). 

'H. Fukuyama, Sol. State Commun. 19, 551 (1976). 
3 ~ .  Tsukada, J. Phys. Soc. Japan 42, 391 (1977). 
4 ~ .  V. Chaplik, Zh. Eksp. Teor. Fiz. 72, 1946 (1977) [Sov. 

Phys. JETP 45, 1023 (1977)l. 
5 ~ .  V. Lerner and Yu. E. Lozovik, Sol. State Commun. 25, 

205 (1978). 
61. V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 74, 

274 (1978) [Sov. Phys. JETP 47, 140 (1978)l; Sol. State 
Commun. 23, 453 (1977). 

'I. V.  Lerner and Yu. E. Lozovik, Pis 'ma Zh. Eksp. Teor. 
Fiz. 27, 497 (1978) [JETP Lett. 27, 467 (1978)l. 

'Y. Kuramoto and C. Horie, Sol. State Commun. 25, 713 (1978). 
9 ~ .  M. Lifshitz and A. M. Kosevich, Izv. !kad. Nauk SSSR, ser.  

fiz., 19, 395 (1955); V. B. Sandomirskii, Zh. Eksp. Teor. 
Fiz. 52, 158 (1967) [Sov. Phys. JETP 25, 101 (1967)l. 

'OV. N. ~ u t s k i r  and E. P. Fesenko, Fiz. Tverd. Tela 10, 3661 
(1968); 12, 2392 (1970) [Sov. Phys. Solid State 10, 2902 
(1968); 12 ,  1909 (1970)l; Pis'ma Zh. Eksp. Teor. Fiz. 9 ,  120 
(1969) [JETP Lett. 9,  68 (1969)). 

"N. E. Nikitin, V. N. ~utski:, T. N. Pinsker, and M. I. Elin- 
son, Pis'ma Zh. Eksp. Teor. Fiz. 24, 430 (1976) [JETP 
Lett. 24, 394 (1976)l. 

1 2 ~ .  A. Abrikosov, J. Low. Temp. Phys. 2, 175 (1970); S. A .  
~razovsk i r ,  Zh. Eksp. Teor. Fiz. 62, 820 (1972) [Sov. Phys. 
JETP 35, 433 (1972)l. 

1 3 ~ .  A. Abrikosov, L. P. Gor'kov, and I. E. ~ z ~ a l o s h i n s k i i ,  
Metody kvantovor teorii polya v statisticheskor fizike (Quan- 
tum Field Theoretical Methods in Statistical Physics), Fiz- 
matgiz, M., 1962 (English translation published by Perga- 
mon Press ,  Oxford, 1965). 

1 4 ~ .  D. Landau and E. M. Lifshitz, Kvantovaya mekhanika 
(Quantum Mechanics), Nauka, M., 1974 (English translation 
of earlier edition: Pergamon Press ,  Oxford, 1965). 

1 5 ~ .  V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6, 2791 
(1964) [Sov. Phys. Solid State 6 .  2219 (1965)l. 

'%. N. Kozlov and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 48, 
1184 (1965) [Sov. Phys. JETP 21, 790 (1965)l. 

Translated by P. J. Shepherd. 

583 SOV. Phys. JETP 49(3), March 1979 1. V. Lerner and Yu. E. Lozovik 583 


