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The complete set of nonlinear fluctuation-dissipation relations previously derived by the authors [Soviet 
Phys. JETP 45, 125 (19791 for an arbitrary closed thermodynamic system is extended to open systems 
and applied to the analysis of the universal relations between dissipation and fluctuation processes in a 
nonequilibrium stationary state of an open system. General expressions are found for the nonlinear 
transport coefficients in terms of the fluctuation characteristics of the system (diffusion coefficients). As an 
application of the general theory, the close relation between the statistics of charge transport through a p- 
n junction and the shape of the volt-ampere characteristic of the junction is demonstrated. The general 
structure of the Markov model constructed for fluctuations in nonequilibrium states constructed in accord 
with the exact fluctuation-dissipation relations is considered. Special models of the system, for which the 
fluctuation-dissipation theorem in its usual form is valid even in nonequilibrium states are also considered. 

PACS numbers: 05.40. + j, 05.70.Ln, 73.40.Lq 

1. INTRODUCTION 

In a paper of the authors ,' a working formula was ob- 
tained for the complete set  of universal fluctuation-dis- 
sipation relations (FDR). These relations, which a r e  the 
consequence of the reversibility of the microscopic mo- 
tion in time and of the extremal properties of the thermo- 
dynamic equilibrium states,  connect the statistical char- 
acteristics of the equilibrium thermal fluctuations with 
the characteristics of nonequilibrium (and nonlinear) 
processes in a system subject to a dynamic external 
perturbation. 

Greatest interest attaches to the thermodynamic con- 
sequences of the FDR, and to their application to the 
theory of irreversible phenomena. The standard formal 
method of construction of a phenomenological or  semi- 
phenomenological model of irreversible processes con- 
sists  of singling out some se t  of macrovariables and as- 
suming that this se t  i s  closed in the statistical sense, 
i.e., that i ts  evolution i s  Markovian. The FDR, in con- 
junction with the Markovian hypothesis, yields directly 
the connection between the (generally speaking, nonlin- 
ear)  transport coefficients and the statistical character- 
istics of the fluctuation "sources" in the stochastic equa- 
tions of the system (the Langevin form of thefluctuation- 
dissipation theory). In the general case, the fluctuation 
sources a r e  non-Gaussian and depend on the macrostate 
of the system. The Markovian FDR were studied in de- 
tail in a number of papers by Stratonovich (see, for ex- 
ample, Refs. 2-4), who showed that although the nonlin- 
ear  FDR carr ies  less  information that the linear ones 
(the ratio of the number of n-index FDR to the number of 
n-index parameters of the theory decreases with in- 
crease  in n),  cases  a r e  possible inwhichadditionalphys- 
ical assumptions on the character of the fluctuations, 
together with the nonlinear FDR, lead to an unambiguous 
reconstruction of the entire kinetic operator of the Mar- 
kov process from the nonlinear relaxation equations.' 
It was shown later in Ref. 1 that the Stratonovich rela- 
tions a r e  also applicable to nonstationary fluctuations 

whose kinetic operator depends on the time through the 
external forces. However, the derivation of al l  these 
relations was inseparably connected with the assumption 
that the system is finite and closed in the sense that the 
constant external forces do not upset the thermodynamic 
equilibrium but only change i t s  parameters, and that 
the motion of the macrovariables is finite. 

At the same time i t  is of interest  to study the FDR for 
open systems, in which the constant external forces x(t) 
= x  induce undamped fluxes of momentum, energy, en- 
tropy, charge, and other quantities and, at  the same 
time bring the system into a stationary nonequilibrium 
state (SNS). The macrovariables Q(t) conjugate to the 
forces x(t) then experience an unrestricted diffusion, s o  
that it i s  impossible to ascribe to them a stationary dis- 
tribution normalized to unity. I t  is therefore natural to 
take the currents Z ( t )  = d ~ ( t ) / d t  a s  the defining macro- 
variables. In equilibuium and in SNS these a r e  station- 
ary  random processes; that is, the currents can be con- 
sidered to be Markovian in the construction of a pheno- 
menological model that includes irreversibility explic- 
itly. 

The aim of the present work lay in the derivation of 
the FDR for currents in SNS from the general formulas 
obtained in Ref. 1. We emphasize that the basic results 
of Ref. 1-the symmetry formulas for the characteristic 
functional of the currents and for the probability func- 
tionals-are applicable in principle also for the descrip- 
tion of SNS. In this case, i t  is only necessary to assume 
that the transition to the thermodynamic limit is carried 
out (in complete system-macrovariables plus thermo- 
stat) and deal in corresponding fashion with the fluctua- 
tion moment (correlation) functions. Thus, the present 
work represents a direct  continuation of the work of Ref. 
1 ." 

The dynamic FDR for  currents a r e  considered in Sec. 
2 in more detail than before, and a s  applied to SNS. In 
Sec. 3 ,  the Markov relations a r e  derived and their sim- 
ple special realizations studied (in particular, systems 
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to which the fluctuation-dissipation theorem in its usual 
equilibrium form is applicable also in SNS). The gener- 
a l  theory is illustrated in Sec. 4 by the example of the 
use of nonlinear FDR for the construction of dynamical 
and statistical characteristics of charge transport in 
semiconductors. 

2. RIGOROUS STATISTICAL DESCRIPTION OF 
NONEQUlLlBRlUM STATIONARY STATES OF 
THE SYSTEM 

Let the external forces ~ ( t )  in thermodynamic equilib- 
rium start  to act on a system and alter the Hamiltonian 
of the system: 

where Q, a re  the internal variables conjugate with the 
forces. If the forces a r e  constant after their being 
switched on, then the system returns to thermodynamic 
equilibrium during after characteristic time 7, but now 
with other parameters that depend on x (as in Ref. 1 ,  we 
shall assume the system contains a subsystem--a ther- 
mostat of such large size that its temperature can be 
assumed to be unchanged in all the nonequilibrium pro- 
cesses). If the time r0 (which has the meaning of the re- 
laxation time of some of the macrovariables Q(t) from 
the initial equilibrium state to the final state) is suffi- 
ciently large, then we can isolate an interval during 
which the system is in a quasistationary state close to 
an SNS and characterized by quasistationary transport 
processes. By increasing the dimensions of the system 
unrestrictedly and going to the thermodynamic limit, we 
oblain an SNS (the state of infinitely dragged out relaxa- 
tion process) in which the currents Z(t) =Q(t), and not 
the macrovariables Q(t) themselves a r e  stationary ran- 
dom processes. Their mean values give a macroscopic 
description of the SNS. 

Since the complete se t  of nonlinear FDR obtained in 
Ref. 1 is applicable to an arbitrarily large closed sys- 
tem, we can extend these FDR to open systems in the 
SNS with the help of a transition to the thermodynamic 
limit. This transition is actually effected only concept- 
ually, and reduces to the assumption that certain inte- 
grals 

and others similar to them have non-zero finite values. 
Thus, almost all the formulas of Ref. 1 can be applied to 
open systems. As a result, we obtain universal rela- 
tions that do not depend on the specific physical nature 
of the transport process between the dissipative and 
fluctuation characteris tics of the SNS. 

1. We denote by P[Z(r); x(r)] the probability functional 
of the currents in a specified realization x(t) of the ex- 
ternal forces. The following symmetry relation for i t  
follows from the results of Ref. 1:'' 

Here E, =f 1 depending on the temporal parity of the 
macrovariable Q,, l/T, T is the temperature of the 

thermostat contained in the considered system. For the 
characteristic functional of the currents 

the formula equivalent to (1) has the form 

The angular brackets with comma inside (Malakhov's 
cumulant brackets5) denote the cumulant functions, for  
example, (A, B) = (AB) - (A)(B). 

In an open system, certain macrovariables3' Q (t) expe- 
rience diffusion. We introduce the diffusion coefficients 
D,(x) at constant forces by means of the generating re- 
lation 

By properly choosing the trial function u(r) in (2), we 
obtain the FDR 

We note that in the multidimensional case the tensors 
D,(x) a re  completely symmetric (this follows from their 
definition) and that ~ , ( x ) = T ( x )  i s  the vector of the aver- 
age values of the currents. 

We consider the differential form of these relations. 
Transforming to tensor notation, we introduce 

which a re  tensors that a r e  symmetric relative to the 
upper and lower indices (the Greek indices enumerate 
the variables). The two-index relations have the form 

at E , E ~ = + ~  and 

a t  C , E ~  = -1. This leads to the Onsager-Casimir rela- 
tions 

We write down the analogous three-index formulas: a t  
E , E ~ E ~ = ~  

and at E ,E~E,  = -1, 

1 3 
D.,' = - D=BT. D,@~+D;~+D,"~ = - D ~ B V  

2T 2T 

We also give the four-index relations: a t  E , E ~ E & ~  = 1, 
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and at E, E ~ E , E ~  = -1, 

The basic unfavorable consequence of the obtained 
FDR i s  that the nonlinear transport coefficients 

a re  not connected by any universal symmetry formulas 
similar to (4), i.e., not containing the diffusion coeffi- 
cients. Consequently, the nonlinear crossing transport 
processes do not have to be reciprocal. This fact was 
first  established by ~ t r a t o n o v i c h , ~ ' ~  in the phenomeno- 
logical Markov model of fluctuations of Q(t), in which 
the formulas (3) a re  obtained if we identify D,(x) with the 
kinetic-operator coefficients that depend on x and Q and 
a re  averaged over the equilibrium distribution of Q. The 
absence of universal nonlinear reciprocity relations of 
course does not exclude the possibility of such relations 
for specific systems possessing dynamical symmetries. 

2. We consider those additional limitations imposed 
on the structure of the characteristic functional of the 
currents by the causality condition: independence of the 
correlators (I(t,), I(t2), ..., Z(tn)) of ~ ( t )  at t>max{ti). As 
a result of simple analysis (see Appendix I ) ,  we obtain 

where the tensor functional posseses the following 
properties: 

1) it depends only on u(7j and X(T) a t  t > T > 0; 

3) p j d 0 ~ l , 8 t O ; z ~ r ) l ~ ( ~ ) - f t ~ ~ ( ~ )  I .  
- m 

Here 7' is the mean value of the current vector a t  the 

time t .  

The most important f irst  property means that thefunc- 
tional rtPB is  constructed from quasi-equilibrium corre- 
lators that correspond to the cut-off trajectory of the 
external forces X(T)V(T-  B ) ,  where V(T) i s  the unit step 
function: 

From this formula and (5) we obtain the relations be- 
tween the real  and the quasi-equilibrium cumulant func- 
tions4): 

, f 1 L z ( ~ )  1 - p  j < z ( t ) ,  z (0)  )=(r)q(r-elz(0)dO, 
-m 

(Z( t , ) ,  . . . , Z(t"), z ( t ) ) q ~ l - ( z ( t t ) ,  . . . 7 Z(t"), z(t))z(~l"(r-ll 

+p J'(z( t , ) .  . . . . ztt,,), z ( t ) ,  Z(e)> .,.,.,.- . ,z(e)de ( t t 3 t ) .  ( 6 )  
-m 
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In the case of constant forces this yields, in particular, 
the nonlinear transport equations in the form - 

f=(x) =C raB(x)xp, rap (~)=pJ  ( za ( t ) ,  ze(o) )x,cr,dt. (7) 
B 0 

The linear reciprocity relations ruB(0)  = E&~I '~,  (0) fol- 
low from the property 2); however, ru8(x) does not pos- 
sess  such symmetry at x #  0. 

We separate the reversible and irreversible transport 
coefficients in the right side of (7): 

The (irreversible) transport coefficients r18 proper can 
be expressed, by using again the property 2) and formula 
(3), in terms of the even diffusion coefficients Dzn: 

(9) 
where the numbers C, a re  determined by the generating 
function (see also Ref. 2) 

As for the inverse coefficients rb, that a re  not connect- 
ed through the FDR with the fluctuation characteristics 
and with the dissipation, they can be found in real  sys- 
tems from the dynamic nondissipative model for the 
macrovariables and expressed in terms of the parame- 
ters  of the quasi-equilibrium state.'' Since the de- 
scribe the redistribution of the energy among the macro- 
scopic degrees of freedom, but not the energy dissipa- 
tion, the corresponding power N ' k )  = Zr&,  (x)x,x6 should 
be equal to zero. Then the power absorbed by the sys- 
tem from the external source in the SNS is given by the 
expression (9). If the SNS has come about in the evolu- 
tion of the system from an initial equilibrium state, then, 
in correspondence with the results of Ref. 1 ,  this power 
is non-negative: Nn(x) > 0. Consideration of the more 
general case (in which the system is in nonequilibrium 
state prior to the switching-on of the forces x(t) goes 
beyond the framework of this paper. 

3. We derive below the formula thatconnects theprob- 
ability distribution functions of the currents at equilib- 
rium, W,(I), and in the non- equilibrium stationary state, 
W,(I). For this purpose, we set  x(?) =x~](T) in (1) (strict- 
ly speaking, we should take X(T) =e'"x7](~),  and then 
take to the limit a s  p -O), multiply (1) by 8[1(0) -I], and 
integrate over the trajectories (we shallnot definestrict- 
ly this operation, which is symbolic in our case, since 
formula (1) can always be replaced by well-defined ex- 
pressions for the averages). As a result, we obtain 

W o ( z ) ( U p { - b  j X Z ( t ) d t } )  =w-*x(-ez),  
=r ( r ]  

0 (10) 
Wo(-el) =Wo(Z), 

where (...):,(, , denotes the conditional mean value (under 
the condition that at the time t = 0 we have Z(0) =I and 
prior to this moment the system had been in equilib- 
rium). This formula expresses the distribution of the 
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currents in SNS in terms of the equilibrium distribution 
and the cumulant power function N(t) a x(t)Z(t) following a 
stepwise (instantaneous) switching-on of the external 
forces. Although the energy absorbed by the system 

1 

~ ( t ) -  j N ( T ) ~ T  

0 

has a diffusion behavior, the mean value of the exponen- 
tial in (10) is finite, since the contributions from (N(T)) 
(which increase with t) to the upper cumulant power func- 
tions cancel mutually. The explicit finite expression for 
this exponential can be obtained by transforming it  with 
the help of the FDR and going over to the characteristic 
function 

o,(u) - euIW.(I) dl. 

The result has the form 

where 

( A ( ~ ) , B B ) = < A , A  ,..., A , B ) .  
T 

The resultant expressions for the cumulant currents in 
the SNS can also be obtained a s  a particular case of (6). 

It is evident from what has been said that the nonequi- 
librium statistical characteristics, which describe the 
response to the stepwise external action, play a special 
role in the theory. We have called these quasi-equilib- 
rium in the foregoing. They form a se t  that is closed 
relative to the FDR and all the remaining characteristics 
a re  expressed in their terms by means of the FDR. 

In order to give the formula (10) a more "physical" in- 
terpretation, we note that i t  can be rewritten in the form 

where AE(Z,x) has the sense of the average work which 
is performed by the external forces against the fluctua- 
tion currents and is produced by the deviation of Z=Z(O) 
from F(x). If TO is the characteristic time of damping of 
the fluctuation currents in the SNS, then 

m(f, ~ ) = T ~ N ( I ,  z ) .  

where N(Z,x) is determined by the power dissipated in 
the SNS. In order to verify this, we assume that (ap- 
proximately) the second, and higher conditional cumulan t 
functions of the current in (10) do not depend on the ini- 
tial condition6' I(0) =I. We then have (see Appendix, Sec. 
2) 

Here the argument of the exponential contains the energy 
transferred from the force source to the thermostat in 
the process of damping of the macroscopic fluctuations. 
If the damping law is approximately exponential, i.e., i f  
Z(t) = - X [ I  - I(x)], X =X(x) then we obtain from (12) 

w,(I) - W ,  ( I )  exp {pxs~ - ' e l ) .  (13) 

In the general case, AE(Z,x) contains also contributions 

from the higher cumulants in (lo), which a r e  connected 
with (Z(t)) by virtue of the nonlinearity." 

3. FLUCTUATION-DISSIPATION RELATIONS IN 
THE MARKOV THEORY OF FLUCTUATIONS I N  
OPEN SYSTEMS 

1. The Markov assumption i s  sufficient for the con- 
struction of a closed theory (i.e., a theory which allows 
us  to calculate all the statistical characteristics of the 
processes). This assumption is equivalent to the gener- 
alized Onsager hypothesis, since in the Markov theory 
one and the same kinetic operator describes both the 
local properties of the fluctuations and the global i r re-  
versible behavior. 

If the system considered is an open one, then a s  the 
Markov se t  should be chosen to be the finite macrovari- 
ables and the currents corresponding to the diffusion 
macrovariable, i.e., variables which experience station- 
ary fluctuations under fixed external conditions. For  
simplicity, we consider only the case in which only the 
diffusion variables a re  important (the mixed case adds 
nothing new to this). We shall also assume, a s  has al- 
ready been done implicitly above, that the diffusion is 
homogeneous [only the increases AQ(t) a re  important 
here and not the absolute values of Q(t)]. The various 
generalizations a r e  made in elementary fashion. 

The derivation of the symmetry formula for the kin- 
etic operator of the currents from the FDR (I)  is given 
in the Appendix, Sec. 3. Just a s  in Ref. 1 ,  we can show 
that this operator depends on the external forces in in- 
stantaneous fashion. In standard (tensor) notation, the 
kinetic operator and i ts  conjugate have the form 

The operator equation 

W ( I = W o ( I )  L ( I ,  e ) + z  (14) d l  

follows from (1). This operator equation is equivalent to 
the following Markov FDR between the kinetic coeffi- 
cients: 

L W ~  ( I )  = ~ Z I W ,  ( I ) .  (15) 

Here Wo is the equilibrium distribution of the currents 
a t  x = 0. These relations enable us to eliminate "half" 
the parameters of the kinetic operator- to express the 
coefficients K, in terms of their symmetrized combina- 
tions: 

K ~ ' ( x ,  I ) c l / , [ K n  (z, I )  +sUK,(ez,  - e l )  1 (n>O), 
Ko (2,  I )  =-'/2pxl. 
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Substituting these formulas in the expression for the ki- 
netic operator, we find 

where the number S,, (in the multidimensional case i t  is 
necessary to distinguish between the vector indices n 
={n,, n2, ...} and the scalar indices n =n, +n2 + ..., which 
is not difficult to do) a re  determined in the following 
way: 

The coefficients KA are  free (formally, if we disregard 
their physical meaning) parameters of the Markov model 
and a re  not connected with one another by the FDR. 

We consider separately the special case in which the 
fluctuation sources in the Langevin stochastic equations 
for the currents can be regarded a s  locally Gaussian. 
In this case, K,(x, I) = 0 at  n 2 3 and the kinetic equation 
transforms into the Fokker-Planck equation. Formulas 
(15)-(17) reduce to the form 

4 a 
Bxlf --- . Kl' ( x ,  Z) W a  ( I )  =O; 

W O ( U  az  

The functions K; represent by definition the reversible 
components of the relaxation (phenomenological) equa- 
tions fo r  the currents. Therefore, the two terms in the 
expression (19') for the kinetic operator can be regarded 
a s  the dynamic and thermodynamic (describing the inter- 
action of themacrovariableswith the thermostat) terms. 
In the same fashion, the operator (17) splits into parts. 
The dependence of KL on x a t  n s, 2 indicates that the ex- 
ternal forces, generally speaking, influence the state of 
the thermostat. However, the FDR (15) admit of such a 
possibility when this influence is absent and K,(x, I) 
=K,(O, I) = K,(I), n 2 2. In this simplest case, formula 
(19) follows from (17) a s  well a s  the equality 

The condition (19) is satisfied in natural and simple 
fashion if 

Here 

2. As is well known, the fluctuation-dissipation theo- 
rem (FDT) is not satisfied in the SNS and i t  is impossi- 
ble to determine the correlation functions of the fluctua- 
tions in general form from the linear response to the 
weak perturbation of the SNS. We consider this process 

in the Markov model. We set  x(t) = x  + 6x(t). The kinet- 
ic operator L L(t) depends on time through the force. 
If the perturbation acts over a finite interval, then 

where eZp is the chronologically ordered exponential. 
We then find for the linear response in the case (20') 

I - - I ( t = O ) ,  1 V X ( I )  = W o ( I )  V ( x ,  I ) .  

In equilibrium, only the f i rs t  term remains, yielding 
the usual FDT. In the SNS, the second term is express- 
ed, generally speaking, in terms of the higher cumulant 
functions. But in the special case in which 

a 
A+ ( I )  -In V ( x ,  I )  =const+b ( x )  I, az (22) 

we get from (21) a modernized FDT 

with an effective temperature that depends on the ex- 
ternal forces. The equation for the stationary distribu- 
tion function L W,(I) = 0 reduces then to the form 

L , W , ( I )  + ( p - b ( x ) )  ( Z x - N ( x ) )  W . ( I )  =O, N ( x ) = l ( z ) z .  (24) 

It can then be concluded that (for the proof see the A p  
pendix, Sec. 4) 

i.e., the power dissipated in the SNS is expressed in 
terms of the equilibrium diffusion coefficients and the 
effective temperature T(x) [ p  - b(x)]-'. It follows from 
(23) that 

Consequently, the temperature T ( x )  of the macrovari- 
ables in the nonequilibrium system with properties (22), 
(23) can be determined, in analogy with the equilibrium 
system, from the relation between the diffusion coeffi- 
cient and the linear differential response. 

As an example, we consider a one-dimensional Markov 
process. From (20') and (22), we find 

Definite conditions follow then from this and from (24) 
on the kinetic operator Lo. In particular, if Lo is the 
Fokker- Planck operator, then i t  is completely deter- 
mined by the function A(I). For the case & = 1, we find, 
with account taken of the FDR. 

A ( I ) = A  ( - 1 ) - g h ( I ) ,  T ( x )  =T ,  f ( x )  -gx, g=const. 
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In the case E =- 1 (I is an even variable in time) 

a a h 
L=-A(I )  az { ( i - h x ) z - g Z + ~ g - h ( ~ )  az ( I + ? I ) ) ,  

T gz (27) 
A(I)-h(I)(g+hZ),  T ( z ) = -  I ( z )  = - h=comt. 

l-hx ' I-hz ' 

Here [x(I)]" has the meaning of a current relaxation 
time that depends on I. These two cases exhaust the set 
of one-dimensional Markov models (with a Gaussian 
noise source), for which the non-equilibrium FDT (23) 
holds. 

We now discuss briefly the results of this section. The 
condition (22) a t  which the FDT (29) holds was introduc- 
ed formally and can be shown to be artificial; therefore 
i t  is necessary to define the considered class of sys- 
tems in more detail. Of course, complete clarity can be 
achieved only in a specific physical application. In this 
context, we should like to remark that actual usefulness 
of nonlinear FDR turns out to be considerably greater 
than could be assumed beforehand when they a r e  sup- 
plemented by information (exact or model-derived) on 
the specifics of the fluctuations in the actual system. 

For simplicity, we consider the case b(x) =O, T(x) 
=T. We introduce the new variable P, by the relations 
aI,./a~, =A,,(I), which is always possible if (22) is sat- 
isfied. Then the non-equilibrium distribution W,(P) and 
the kinetic operator for the variables P have the form 

A general interpretation of P is suggested by the exam- 
ple of Brownian motion, where Q is the coordinate of a 
particle diffusing under the action of a constant force, I 
is its velocity, and P i s  i ts  momentum. The P(I) depen- 
dence is nonlinear, for example, in the case in which I 
and P are  the velocity and momentum of an electron in a 
crystal lattice. Equation (27') is analogous to the formu- 
la for  the variables Q in a closed equilibrium system1: 

Therefore P and I can be regarded as  thermodynamic 
conjugate variables for a fictitious equilibrium system 
with the perturbed Hamiltonian H = H, - pi. 

Thus, nonequilibrium systems for which the conditions 
(27') a r e  satisfied, a re  systems close to equilibrium, in 
particular in the sense that the FDT (23) follows from 
(27'). On the other hand, such nonlinear systems a r e  in 
many respects similar to linear ones, since they allow 
us to reconstruct unambiguously the equilibrium fluctua- 
tion coefficients of diffusion, in accord with (24') (and, 
as  can be shown, the entire operator L) from the non- 
equilibrium dissipation characteristics. A more de- 
tailed review of this circle of problems goes beyond the 
theme of this paper. 

4. EXAMPLE. NONLINEAR FDR FOR STATIONARY 
CHARGE TRANSPORT 

1. Being primarily interested in illustrations of the 
general FDR, we consider the case of a single time- 

even variable Q(t), which represents, for example, the 
electric charge (or mass, energy). 

In the limit (in correspondence with (2) and (3), we 
have the universal generating FDR 

Obviously, exp {tD(u; x ) }  a s  a function of u is a charac- 
teristic function of an infinitely divisible distribution 
(see, for example, Ref. 7). Consequently, D(u; x) can 
be represented in the form8' 

dm-I-au 
D (u; z )  =uf  ( z )  +D ( 2 )  j 

a, P (a ,  2 )  &, (29) 
-- 

where p(a; x )  is a nonnegative function normalized to 
unity; f =D, and D =D, are ,  a s  before, the average val- 
ue of the current and the coefficient of diffusion, respec- 
tively (the spectral density of the current fluctuations a t  
zero frequency). The dimensionalities of the variables 
a in (29) and Q a r e  the same. Equation (29) enables us 
to consider the random process Q(t)--the value of the 
transported charge-as the superposition of independent 
Poisson processes, in each of which the charge i s  trans- 
ported in discrete portions of value a with the mean 
value of each portion per unit time proportional to 
[D(x)/a]p(a,x)da. The following FDR result from (28) 
and (29): 

p(-a; z )  =e-""Tp(a; z ) ,  f ( 2 )  - 
- = 

with only the first  two of these relations independent, 
while the third is a consequence of the first  two. Equa- 
tion (30) is a special case of the general expression for 
the average current in terms of the fluctuation charac- 
teristics of the transport process. Naturally, the de- 
scription of this process in terms of only some of the 
diffusion coefficients D,(x) is  far from completeand says 
nothing about the properties of the process that a re  local 
in time and space, for example, the correlation function 
of the current fluctuations and their spectrum at  high 
frequencies. Nevertheless, knowledge of the global 
characteristics of the transport is  also very important, 
while the FDR for them a r e  useful in the construction of 
the stochastic model of the system. We consider now 
some special cases. 

2. Let I(t) be the electric current flowing through a 
nonlinear one-port network to which a voltage x(t) is ap- 
plied. We assume that the charge is transportedaccord- 
ing to the Poisson law by particles of a single type and 
definite charge q. Then 

We then find from (29), (30) (setting z = x / ~ )  
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Here ni and n2 a re  the mean values of the charges trav- 
eling in the forward and reverse directions. 

If n2(x) =n does not depend on x ,  a s  is the case for a 
semiconducting diode, we obtain an exponential volt- 
ampere characteristic (VAC): 

This is the simplest case of connection between the sta- 
tis tics of charge transport and nonlinear dissipation. 

3. We now consider the somewhat more complicated 
stochastic model of current through a semiconducting 
diode ( p  - n junction). We assume that non-Poisson sta- 
tistics of electron (and hole) transport, i.e., that the sep- 
arate transitions correlate with one another. More ac- 
curately, we assume that the successive time intervals 
t, between direct transitions a r e  independent, but a re  
distributed not exponentially a s  in the Poisson case, but 
with a probability density 

The average number of transitions per unit time i s  equal 
to n, E vl/(y + 1). We consider the distribution of the 
charge Ql(t) that passes in the forward direction. We 
introduce the function 

It can be shown that this function i s  found from the se t  
of equations - 

which constitute two forms of the equation for the pole 
of the function 

I; ....- ..), ,,.. ,. 

Since in our case, 

u, (s) =(.\I/ (v+s) ) 7+(, 

we get from (34) 

For the reverse current Q2(t), with the same statistics 
(33) but with the parameters v2 in place of v, and -q in 
place of q, we obtain 

Az (u) =nl(y+i) (e-qul~T+L1-l). 

It then follows from the FDR (28) (if we introduce thede- 
pendence of n1 and n2 on x) that 

D(u; X) =n, (x) (y+l) ( e~ '17+L' - l )  +n, (z) (y+i)  (e-~uJ(l+l'-l  1, 
( ) - - q ~ J l l + l l n  z -e t(z),  (35) 

na (2) T(z) -qn,(z) (eqdr"+"-I), D(x) -q2-(e~x'r'1+*'+l). 
r+l 

If n2 does not depend on x ,  then we obtain a VAC which 
differs from (32) by the correction factor l/(y + 1) in the 
argument of the exponential. This factor is actually pre- 
sent and varies in the range from a to Its origin can 
thus be connected with the correlations of the elemen- 
tary acts of charge transport. 

We now consider the relation between the average cur- 
rent and the spectral density of the current fluctua- 
tions (on the zeroth part) of D. As x- 0, we have 

i.e., the equilibrium fluctuation-dissipation relation. At 

i.e., in the range of shot noise, we have 

Consequently, l/(y + 1) plays simultaneously the role of 
the depression coefficient of the shot noise. 

What is the nature of the considered correlation ef- 
fect? We note that the correlation is negative (at y > 0): 
i t  decreases the current noise and increases the elec- 
trical resistance (however, i t  does not, of course, dis- 
turb the equilibrium FDR). One should obviously con- 
nect such a negative correlation with the Pauli principle 
and with the Fermi statistics of the charges. Then the 
parameter y > 0 is smaller the larger the number of free 
levels onto which the particle moves. With decrease in 
the number of free levels, the Poisson-statistics model 
become unsuitable (see, for example, Ref. 9 ,  where this 
case corresponds to a high injection level). Positive 
correlation (y < 0), which is characteristic for Bose par- 
ticles, would have led to opposite effects-increase of 
the noise intensity and decrease of the resistance. 

APPENDIX 

1. Any functional of two trajectories u(T), x(?) can be 
uniquely represented in the form - - 

B[u(T); x ( t ) I =  a(t)u(t)dt+.j  b(t)z(t)dt 

where the matrix-functionals l?:,e depend only on u(T), 
and X(T) at 8 < T < t, i.e., on the end segments of the 
trajectories. Now let (A.l) be the characteristic func- 
tional of the currents. By virtue of i ts  definition, we 
have the equality 

B[O; X(T) ]SO, 

from which, in view of the arbitrariness of x(T), i t  fol- 
lows that 

b(t) =o, rl;@ [o; Z(T) 1-0. (A. 2) 

The causality condition formulated above means that 

From this and from (A.2) we conclude that 

r l : O [ ~ ( ~ )  ; X(T) l u ( e ) + r ~ , [ u ( r ) ;  z (r )  lx(0)-0. 

Furthermore, a(t) is the mean value of the currents a t  
equilibrium; therefore, 

d 
a(t) = dt (Q(t) )O-O. 

549 Sov. Phys. JETP 49(3), March 1979 G. N. Bochkov and Yu. E. Kuzovlev 



~ h u s  ~ q .  (A.l) takes the form 
- 1  

B [ u ( T ) ;  Z ( T ) I =  j d t j  d o u ( t )  ( r l . [ u ( r ) ;  x ( T ) I u ( ~ )  
-- -- 

+ r : , e ~ u ( ~ )  ; ~ ( T I  l x ( 0 ) ) .  
(A.3) 

Applying the FDR (2) to (A.3) we obtain, after elemen- 
tary transformations, 

~:B[U(~);~(T)I=$~~.'~[~(T);~(T)~~B~~,O[U(~);Z(T)], 

whence follows the representation (5). 

2. We now consider the derivation of Eq. (12). Inte- 
grating (10) with respect to I, we obtain, a s  a conse- 
auence of the normalization condition, 

can be derived from (1) in analogy with (A.6). Here, 
however, in contrast to (A.6), a s  is seen, we have used 
the assumption of Markov currents, and W(I; ~ ( t  - 7)) 
denotes (for the process with time reversal) the non- 
equilibrium current distribution I(t  =0) =I after the ac- 
tion of the forces%(t- T). From (A.7) and the formula 
(10) (generalized to variable forces), we obtain 

Evidently, the right-hand side of this equation does not 
depend on X(T) a t  T >  t. Consequently, the left-hand side 
does not depend on the reversed trajectory of the forces 
~ ( t -  T) a t  T < 0 and the transition probability density V, 
is determined only the value of X(T) a t  t > T > 0. This 
means that the kinetic current operator has an instanta- 
neous dependence on the forces. 

- 
~ = j x I ( t ) d t .  Therefore, the consequences of the time symmetry for  

o the transition probability can be considered with the help 
Dividing (10) by this relation, we obtain of the relation (A.6). For the transition to the kinetic 

operator, we need to take the infinitesimal form of (A.6) 
We.(-e l )  = W ,  (1)exp - (<Ec"l ) r -<E(nJ>)  . { ,I-, 2 ( - p ) 9 1  n! 1 (A-5) at t - 0, X(T) =x: 

Assuming that the higher cumulants ( E ~ ) Y  , na 2, which e-s~'otW,(Io)  exp { tL  (2;  I , ;  8/31,) ] 6 (1 , -I , )  
= W o ( l , )  C X ~  ( t L ( ~ x ;  -e lo;  - E  a /aZ , ) )6 ( I , - I , ) .  

characterize the fluctuations of the work, a re  determin- 
wo(zo) { L ( x ;  z I ;  a/azt)-pzzo16 ( z t - zo)  

(A.8) 
ed largely by the thermostat and depend weakly on the 
initial condition, we can write approximately = W ~ ( Z , ) L ( E X ;  -81,; - E  a /a z , )6 ( z , - I , ) .  

W . . ( - e l ) - W , ( l )  exp ( - - p ( < E ) ' - ( E ) ) ) ,  Multiplying (A.8) by an arbitrary function f (I,) and in- 
tegrating over I,, we obtain, at I ,  = I ,  

which is identical with (12). 
L ( E x ;  -&I; - E  aiaz)w,(z)f(z) =wo(z) { L + ( x ;  I ;  a i a z ) - p ~ z l f ( z ) .  

We note that the formulas similar to (10) follow auto- 
matically from not only for currents, but also for This equation is equivalent to the operator equation (14). 

any set  of variables $ (for example, $ can represent the 4. We shall show that formula (24') is a consequence 
set  of microscopic variables of some subsystem): of the assumption [(22), (23)] of the existence in the giv- 

W , ( s W = W O ( q )  ( e x p { - $ ~ ) ) > , ~ , ,  
en system of the analog of an equilibrium FDR. We in- 
troduce the generating function for the diffusion coef- 

where E is equal to (A.4). It is not difficult to general- ficients: 
ize this formula and (10) to the case of arbitrarily vary- - u" 
ing forces. D ( u ;  X)=Z-D,(x).  n! 

73-1 

3. We consider the symmetry formulas (14) for the 
kinetic operator of the currents. We set  X(T) = O  in (1) In the Markov theory it can be expressed as 

a t  T 2. t and integrate (1) over all trajectories I(T) with 1 
fixed currents I(0) =Io, I(t) =I1. Denoting by V,(Z1 ~ z ~ ; x ( T ) )  D ( U ;  x )=  ,-.- lirn-~n{ t  J ~ Z ~ X ~ [ ~ ( L + U I ) ] W , ( Z ) ] .  (A.9) 

the probability density of the transition from I. to I,, we 
obtain It is seen then that D(u;x) is identical with the largest 

eigenvalue of the operator L +uI. 
V,(Z,lZo; z ( T ) )  Wo(Zo)  ( e x p { - p j z ( T ) Z ( T ) d T ] )  ""' 

o We now consider the formula (24), rewriting i t  in the 

= v , ( - E z ~ ~ - E ~ , ;  e z ( t - T ) )  w o ( Z 1 ) ,  (A.6) form 

where the angle brackets have the meaning of the con- exp { t [L ,+p(x )  (Zx-N(x)  ) l ) W . ( I )  = W , ( I )  

ventional mean value under the condition that I(0) and 1 (A.10) 
j3(z)N(x)=l im--In { J d ~ e x ~ [ t ( ~ . + ~ ( z ) r ~ ) ] }  ~ ~ ( 1 ) .  

Z(t) a r e  given. I-.. t 

If the external forces satisfy only the condition x ( ~ )  = O  Comparing (A.10) with ( ~ . 9 )  (for the case in which the 

at T < 0, then the formula forces in (A.9) a re  equal to zero and the operator Lo re- 
places L), in the limit t-- a, we arr ive  at (24') 

( exp { - p  x  ( r )  Z(T) d ~  )) "v1 (1, I 10; ( 7 )  1 wo (lo) 
I - 1 $ ( x ) N ( z ) = D ( $  (XI; 0 ) - x  ;D.,(O) (p  (*)x)  ", 

"-1 
x ( e x p { - , i  z ( r ) ~ ( ~ ) d ~ ) " ' "  

where the D,(O) a r e  equilibrium diffusion coefficients 
= ~ , ( - ~ l , l - ~ l , ;  ~ x ( t - t ) )  W  ( - e l r ;  ~ x ( t - T )  ) (A-7) andD1(0)=(I)o=O. 
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')of course, SNS of the indicated type-excited by constant 
external forces-do not exhaust all  the diversity of SNS, and 
the Markov FDR derived below have a more limited circle of 
applications than the initial relations. We shall not touch 
upon cases in which the constant forces do not destroy the 
equilibrium but the SNS can arise under the action of periodic 
forces (resonantly interacting with the system). Moreover, 
an SNS can occur even in the absence of dynamic perturba- 
tions a s  a result of nonequilibrium boundary conditions (ther- 
mal perturbations). True, in this case one can sometimes 
replace the nonequilibrium conditions by certain effective 
forces and use dynamical FDR. 

"AS in Ref. 1 ,  we use a scalar notation for vectors and tens- 
ors ;  only in case of necessity do we transform to the full 
description. 

3 ) ~ h e  term "macrovariable" can apply also to an individual 
particle (or an ensemble of noninteracting particles). 

4)These relations yield a generalization of the Kubo formula 
to the nonlinear case. 

5 ) ~ t  is clear that the coefficients r' take into account the non- 
dissipative contribution of the thermostat to the motion of the 
macrovariables, for example, the renormalization of their 
eigenfrequencies as  a result of the interaction with the ther- 
mostat. The same can also be said about the Markov kinetic 
coefficients Kit introduced below. 

6)This is  certainly true for a linear system. 
')we note that formulas (11)-(13) confirm certain results of the 

phenomenological approach, in which the condition of the 
maximum of informational entropy for a given value of dis- . . 

sipation (or, in our terminology, at given mean values of the 
currents) i s  used to construct the distribution functions in 
the SNS. 

8 ) ~ s  before, we use the real variable u instead of iu , since we 
a r e  interested only in the formal structure of the relations. 
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Two-dimensional electronic phenomena in germanium 
bicrystals at helium temperatures 

B. M. Vul and c. I. Zavaritskaya 
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(Submitted 30 August 1978) 
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The two-dimensional conductivity, Hall effect, and Shubnikov-de Haas oscillations on the intergrowth 
surfaces of germanium bicrystals with inclination angles 6" 1 8  30' were investigated at helium 
temperatures in magnetic fields up to 150 kOe. A transition from metallic to thermally activated 
conductivity was observed at an angle 8=(8-9)". The minimal metallic conductivity is found to be 
urnin-e2/2wfi, in agreement with the simplest theoretical estimates. Shubnikov-de Haas oscillations are 
0bSe~ed in the metallic conductivity region at 0220'. They are shown to be due to the contribution of 
the light holes. It is established that the conductivity decreases sharply with decreasing angle 8, owing to 
onset of onedimensional conduction conditions. The anisotropy of the conductivity is investigated. A 
model is proposed to explain the observed phenomena. 

PACS numbers: 72.20.Ht, 72.15.Gd 

Interest in the  so-called one-dimensional and two- 
dimensional s y s t e m s  h a s  increased  of late in connec- 
tion with s e a r c h e s  f o r  high-temperature superconduc- 
tivity and superfluidity. Electronic  phenomena in 
sys tems  that  are close to two-dimensional w e r e  inves- 
tigated in inversion l a y e r s  of silicon in metal-insula- 
tor-semiconductor s t ruc tures .  In these  s t r u c t u r e s  it is 
easy to control  the carrier density by an ex te rna l  field, 
but it is difficult to obtain identical oxide layers ,  and 
th i s  introduces a n  uncertainty i n  the interpretat ion of 
the obtained data  that charac te r ize  a two-dimensional 
system.' A m o r e  rel iable  model  of a two-dimensional 
system, in our  opinion, cons i s t s  of highly conducting 
l a y e r s  adjacent  to the cleavage planes of germanium 

crys ta l s .  They are formed at a junction of s ingle  
c rys ta l s  and a r e  charac te r ized  by a sufficiently well 
o rdered  s t ruc ture ,  as confirmed by the s m a l l  scatter 
of the  carrier dens i t i es  and mobilities in these layers ,  
as obtained in var ious  labora tor ies  of the  ~ o r l d . ~ * ~  

1. PREPARATION OF BICRYSTALS 

T h e  germanium b ic rys ta l s  w e r e  grown by the Czo- 
chra l sk i  method on a double seed  c r y s t a l  by a method 
s i m i l a r  to  that  descr ibed in Ref. 2. The double seed  
w a s  prepared  by cutting a single-crystal  ingot into two 
at a specified inclination angle 8/2 to the [loo] axis ,  

551 Sov. Phys. JETP 49(3), March 1979 0038-56461791030551-07$02.40 O 1979 American Instituteof Physics 


