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The spectrum of the electronic states in a nonideal crystal is investigated within the framework of the 
hybrid s d  model with the aid of group expansions of the diagonal Green's function in terms of complexes 
of interacting impurity centers. It is shown that in the presence of large-radius impurity states the system 
has a characteristic impurity concentration at which a qualitative restructuring of the crystal spectrum 
takes place. The conditions for the onset of an impurity zone, in which the states are characterized by a 
quasimomentum, are obtained. Crossing restructuring of the spectrum with production of a quasigap is 
also considered and the possibility of a phase transition in this case is discussed. The structure of the 
spectrum in various energy regions is analyzed at various ratios of such system parameters as the impurity 
concentration, energy of the impurity levels, and energy of the interaction between these levels. The 
limiting permissible values of the wave vector in the impurity band are determined and the question of the 
minimum metallic conductivity in this band is considered. 

PACS numbers: 71.55.Dp, 71.10. + x, 72.15.Eb, 64.70.Kb 

1. lNTRODUCTlON, c>> co (but c << 1). This restructuring varied with the 
model: crossing splitting of the spectrum with onset 

A very important model for the description of the of a quasigap could occur,3s4 o r  an impurity band in 
spectra of elementary excitations in a crystal with which the states a r e  characterized by a quasimomentum 
impurities is one in which the potential of the perturba- could5 o r  did appear. 
tion introduced by the impurity is  assumed fixed and 
short-range, while the scatter of the energy levels is 
determined by the indirect interaction between the 
impurities. An investigation of the spectra of non- 
ideal crystals within the framework of this model was 
initiated by Lifshitz. From among the large number of 
these systems, considerable interest attaches to crys- 
tals with impurity states whose energies lie near the 
edge of the unperturbed spectrum, s o  that the radius 
of these states is ro<<vd, where v is the volume of the 
unit cell. 

An important property of a system with impurity 
states of large radius is  the presence in it of a small  
parameter c0-3v/4n& which assumes the role of the 
characteristic relative concentration of the impurity 
centers. This has made it possible to develop a rather 
simple procedure for describing the spectra of ele- 
mentary excitations in systems with non-Coulomb 
states, based on expansion of the diagonal Green's 
function in complexes of interacting impurity cen- 
t e r ~ . " ~  Since an important role is  played in such a 
description by the interaction between impurities sepa- 
rated by large distances, the developed method turns 
out to be  valid when the relative concentration of the 
impurities c is small  (c << 1). The energy levels cor- 
responding to different pairs of interacting impurities 
fill in this case quite densely an extensive region of the 
spectrum, and we can confine ourselves in the group 
expansion to these pairs only. As a result, both a t  
c<<co and at c>>co it is possible to obtain the density of 
states in a wide range of energies. 

In all  these cases, the simplest model of an impurity 
center was used, wherein the perturbation was char- 
acterized by a single parameter that determined both 
the energy of the impurity level and the interaction be- 
tween the impurities. In the present paper we consider 
a more general case, when the energy of the impurity 
state and the interaction between the impurities a r e  
characterized by different parameters. This makes it 
possible to clarify the general picture of the restruc- 
turing of the spectrum of a nonideal crystal at high 
(c>>co) impurity concentrations, and makes it possible 
to find a criterion for production of the impurity band, 
while the states a r e  described by a wave vector, and 
also of crossing restructuring with formation of a 
quasi-gap. T o  satisfy this criterion the interaction be- 
tween the impurities at average distances -vlhc-lh, 
must be  smaller than the difference between the energy 
of the impurity level and the renormalized edge of the 
band. 

We shall use the hybrid s-d model proposed by 
Anderson,' which describes, for example, the inter- 
action of impurity d o r  f states with s electrons of the 
continuous spectrum. Such a model is used to de- 
scribe the behavior of the impurities of transition and 
rare-earth elements both in metalss and in semi- 
conductor~. '~  We shall analyze the law within the 
framework of this model the character of the electron 
spectrum near the edge of an unfilled band (electron o r  
hole) a t  different ratios of the impurity-system pa- 
rameters. We discuss questions concerning the char- 
acter of the Anderson transitions in the given system 

The restructuring of the spectrum was considered for with minimum metallic electric conductivity in the 
different systems at relatively high concentrations, impurity band. 
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2. SYSTEM HAMILTOMAN AND GREEWS FUNCTION ta~(%+>= (E-ek-&)-', (5) 
Assume that near the edge of an unfilled electron where 

band there is also an unfilled impurity level whose Rt= - clyt12 D ( E )  (i+cBt+. . .I, 
wave function is localized mainly on the impurity si te 
(e.g., d or  f states), and the corresponding probabili- D ( E )  -E-eo- Irk.]" 

E-ek,-Rtr ' ties of jumps from the impurity si tes to neighboring t#+t 

ones decrease exponentially with distance. The be- Aole-'kR1+A,,A,o 
havior of electron in such a system, as is well known, Bk=z ~ - A o l ~ l o  ' 

1-0 
can be described within the framework of the Anderson 
Hamiltoniane 

1 

D(E) N E-etr-Rt. ' 

where a; and a, a re  the Fermi operators of the band 
electrons with wave vector k and energy E, in the un- 
perturbed crystal (we omit the spin indices throughout), 
6, is the unperturbed energy of the impurity state, a; 
and a, a re  the operators for the creation and annihila- 
tion of an electron on the impurity si tes p, and N is the 
number of si tes in the lattice. The parameter yk de- 
scribes the hybridization of the band and impurity- 
states and is determined by the integrals of the jumps 
from the impurity si te to neighboring sites. These 
integrals decrease rapidly with distance, and for the 
low impurity concentrations considered by us (c << 1) 
the direct jumps between the different impurity si tes 
can be neglected. In addition, since pot all the states 
a re  filled, we have left out of (1) the terms that de- 
scribe the Coulomb correlation between the electrons 
(the parameter U of the Anderson models). All the 
arguments that follow a r e  valid also for the case of a 
completely filled ground-state band and an impurity 
level. 

The state density of the system described by the 
Hamiltonian (1) is expressed in terms of equal-time 
advanced Green's functions" as follows: 

where 

p l ( E )  = 4 1m lim G ( E - i s ) ,  
n imp 

and 

where the factor 2 takes into account the spin degener- 
acy (the exponent E - i 6  will henceforth be omitted). 
Expression (4) contains the diagonal Green's functions 
((a,la>) and GI,,, which determine physically observ- 
able quantities and a re  therefore self-averaging. We  
shall consider henceforth just these functions. 

Setting up a chain of equations of motion and confining 
ourselves in the virial expansion to groups of all  
possible pairs of impurities (neglecting triads, etc.), 
we obtain an analogy with Ref. 3-7 the following expres- 
sion for the diagonal Gree~i's functions averaged over 
the impurity configurations: 

The index 1 in (6) and (7) runs through all  the lattice 
si tes except the zeroth one. In the derivation of (5)- 
(7) we took into account the fact that the diagonal 
Green's functions ((a,la;)) and Gimp a r e  self-averaging; 
this permits averaging over the random distribution 
of the impurities directly in the polarization operator 
R,, both in (5) and in the expressions for D ( E )  and A,,. 
We note also that the summation in products of the 
type A,,A,, in (6) and (7) is over non-coinciding wave 
vectors. 

The obtained representations of the Green's functions 
(5)-(7) a re  fully renormalized; they constitute self- 
consistent expressions, since they contain the polar- 
ization operator R in the quantities D(E) and A,,. In 
Rk and GI,, a r e  taken into account, in any case, all the 
terms that a r e  quadratic in the concentration. The 
quantities B, and B describe the effects of interaction 
of pairs of impurities located a t  arbitrary distances. 
If these a r e  disregarded, then the expressions turn out 
to be similar to those that occur in the single-site 
approximation of the coherent-potential method'' a t  
c<<l. The terms omitted from (6) and (7) describe 
groups made up of three and more impurities. 

Besides the fully renor malized representation, other 
representations of the diagonal Green's functions a r e  
also possible. For example, it is easy to obtain a non- 
renormalized representation, which takes for the 
function ((a,la;)) the form 

where the structure of I?, (as well a s  of the function 
G,,,) remains the same a s  in the fully renormalized 
representation, except that D ( E )  and A,, a r e  respective- 
ly replaced by 

The restrictions on the summation over k in the quan- 
tities of the type A$)A~$ a r e  then lifted. Expressions 
of the type (8) a r e  direct expansions of the correspond- 
ing Green's functions in powers of c. It is more con- 
venient to use this renormalized representation outside 
the region of states described by a wave vector, for 
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example in some vicinity of an impurity level. 

Next, in analogy with Refs. 3-7, we analyze the con- 
vergence of the different group expansions and ob- 
tain on the basis of this analysis the spectrum of the 
electronic states in different energy regions and a t  
different impurity concentrations. 

3. SPECTRUM OF ELECTRONIC STATES AT LOW 
IMPURITY CONCENTRATIONS 

At sufficiently low impurity concentrations, for which 
a criterion will be given below, the spectrum remains 
in the main the same as that for isolated impurity cen- 
ters. I t  is known that in the one-dimensional approx- 
imation the Green's function Gi, has a pole that de- 
termines the energy cL of the localized impurity state 
and corresponds to the root of the equation 

D'" (eL) -0. (10) 
Near the edge of the band, where the dispersion law 
takes the form tk = ka/2m, (E= 1), the resonant denom- 
inator D(o)(E) turns out to be 

v= 
D(O1(E) =E-eo- T(-E)", 

E 
(11) 

yam 1 yk-01'. 
- - -. 

Inasmuch as the large-radius impurity states con- 
sidered here must satisfy the condition 

I b l t E ~ ,  (12) 
we have left out of (11) terms of higher order of small- 
ness in the parameter E/E, (EL is of the order of the 
width of the s band). Taking (11) into account, the so- 
lution of (10) takes the form 

I t  lies on the physical sheet a t  6 < 0 o r  6 > t. The values 
Zo<O correspond to the local impurity level ( tL is real), 
while Zo> 0 correspond to a virtual level. a )  Assume 
initially that Zo< 0. The wave function of the impurity 
state with energy cL in a crystal with isolated impurity 
atom a t  the si te p = 0 can be represented in the form 

i ykeikRl TV'" exp (-RIIro) 
~ l - ~ ~ 0 ~ ~ *  ?-=' ( ( ~ ~ Y E ~ R ~  * (14) 

s o  that the probability of finding the electron in this 
state a t  the si te p = 0 is 

As seen from (14) and (15), a t  161 >> 1 the wave func- 
tions of the impurity state is localized mainly on the 
impurity site, and only a small fraction -(2161)-lh of 
the wave function is distributed in a volume with the 
radius yo of the impurity state. At the same time, a t  

161 << 1 practically the entire wave function is distribu- 
ted in this volume. 

The characteristic impurity concentration a t  which 
one can expect a substantial restructuring of the 
spectrum of the system is 

In accordance with the difference in the behavior of 
the wave function, the restructuring of the spectrum 
of a nonideal crystal a t  c>>co should be qualitatively 
different a t  161 << 1 and 161 >> 1. 

At small impurity concentrations, when c<<c the 1R' average distance between impurities r," (v/c) is 
much larger than the impurity-state radius yo, and no 
coherent restructuring of the spectrum takes place. 
Inside the band, the renormalized representation is 
convergent and the states retain their current char- 
acter with a dispersion law Zk determined from the so- 
lution of the equation 

It is seen from (17) and (11) that the edge of the band 
states shifts by an amount 

The dispersion law (17) is valid s o  long as the 
damping over the wavelength is small, and this condi- 
tion is satisfied a t  k >>kmin, where 

k,,.-cE,v-"l~~S. (19) 

In a transition region between the current and fluctua- 
tion states, having a width 

we can expect the presence of a mobility threshold.' 

As shown at  c << co, in the vicinity of the 
local impurity level and far  from the region of the band 
states, better convergence is obtained in the nonre- 
normalized representation (8), in which the expansions 
a r e  in terms of the parameter c r 3 ( ~ ) / v ,  where 

This group expansion diverges in a narrow vicinity of 
t, where r(E) 2 (v/c)* "r,,. This region, whose width 

can be identified with the concentration width of the 
impurity level. 

In the region yZ/El >> 1 E - cL 1 >> ha, outside the band 
states, the main contribution to the state density is 
made by fluctuation clusters of impurity pairs sepa- 
rated by distances v * < < r ( ~ )  <<ra,. As a result we have 

4n~~r'(~)[i+(ep~'l~6l)'~(l-(si~n~'~)(~))ex~[-(2ml~1)r(~) I )  ] 
p(E)= lDIW(E) I [i+r(E) (2mlEl)"l 

(23) 
As seen from (23), the state density in the considered 
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fluctuation region is proportional to the square of the 
concentration. At 161 >> 1 the main contribution to (23) 
is made by the first term in the square brackets, which 
is due to the quantity p,(E), while a t  161 << 1 the dom- 
inant term in (23) is the second, which results from 
p4(E), and this  case was considered in detail previous- 
ly2s7 In an impurity-level neighborhood defined by the 
condition 

the state density increases like2*8w7 
ID("(E)~" ln21~'*@)/ when cL is approached. 

If the condition P/E,>> I&,] is satisfied, then the 
energy levels due to the pairs of impurities fill the 
spectral region adjacent to the edge of the band, and 
virtual states a r e  produced inside the band. In this 
case, using the renormalized representation, it be- 
comes possible to describe the state density in the 
entire vicinity of the edge of the band, including the 
transition region between the band and fluctuation 
states .6*7 

b) We consider now a case when we have in (11) 
E,> 0. The characteristic concentrations is described 
here as  before by expression (16) with the E, defined 
in (13), even when this solution is on an unphysical 
sheet. 

If the characteristic parameter of the considered 
model is  b>> 1, then in the region of the energies 
E =  CL (cL = Eo a t  6>> 1) the state density p(E) has a 
maximum with a Lorentz shape 

Ap ( E l  -P* (El 
2 cr 

5- 

(25) 
n ( E - E ~ ) ~ + I "  ' 

corresponding to a quasilocal level. The half -width 
of this maximum I' =E,/~&<<E, is connected with the 
decay of the quasilocal state into continuous-spectrum 
states. When c >  cO/6lh the value of Ap(E,) exceeds the 
state density of the unperturbed crystal. At these con- 
centrations, coherent restructuring of the spectrum 
sets in and consists at c<<c, in the fact that in some 
vicinity of k, (cro = E,, k, = (~Rc,/v)*) with width 
Ik - k,I <koc/4co there a r e  three solutions of the dis- 
persion equation (17); these solutions a r e  shown in 
Fig. 1. Two of them have a normal dispersion, and the 
third has an anomalous dispersion ( a ~ , / a k  < 0). None- 
theless, at c << c, the renormalized representation, even 
in the most unfavorable case near E,, where IE - E,I 
s r, remains convergent in terms of the parameter c/ 
c,<< 1 and accordingly the damping of all the states is 
small over the wavelength. Therefore the states in the 
vicinity of the impurity level remain current states. 

In the energy region E + A < A, the states a r e  of fluc- 
tuation origin, and a t  'Eo<<J/El the main contribution 
to the state density near the edge of the band is made 
by groups of two impurities, s o  that it is possible to 
describe in continuous fashion, as p r e v i o ~ s l y ~ ' ~  the 
transition region of region A, between the band and 
fluctuation states. In the region I E + A ~  <<y4/g the 
main contribution to the density of both the band and 

FIG. 1. Mspersion law of the hand states at q, /6'12 < c << co , 
zo>O, 6>>1. 

fluctuation states is made by the quantity pl(E), which 
is described here with the aid of a concentration- 
independent universal function f(E) defined previously 
in Refs. 6 and 7. 

If 6 << 1, then the energy E, falls inside a nearthresh- 
old region of width y 4 / ~ :  a t  the band edge. The equa- 
tion D(o)(E) = O  has in this case no solution.on the phys- 
ical sheet and there is no maximum in the state density. 
This is  precisely the case considered in detail in the 
preceding papers,6w7 and the expressions for the state 
density obtained there a t  c << C, remain valid also in 
the present problem if the quantity c in these expres- 

A sions is replaced by ( 2 / n ) 1 h ( ~ 0 6 / ~ , ~  . 

4. RESTRUCTING OF THE ELECTRON SPECTRUM 
OF CRYSTALS AT HIGH CONCENTRATION OF THE 
IMPURITY CENTERS 

We proceed now to consider the spectrum of the 
system at  relatively high impurity concentrations 
c>>c, (but c<<l), i.e., r.,<<r,, when a large number of 
impurities is  contained on the average in the volume 
with impurity-state radius r,. The interaction between 
the impurities leads to a qualitative restructuring of 
the spectrum, and the character of this restructuring, 
as already noted, depends substantially on the pa- 
rameter (61. 

a )  We consider f i rs t  the case when 161 >> 1 and 
Eo<O, i.e., an impurity level exists outside the un- 
perturbed band and has a wave function concentrated 
mainly on the impurity site. At c>>c, the region about 
cL in which the nonrenormalized representation di- 
verges becomes wider and its order of magnitude is 
not (22) but cy2/l&,l. At the same time, for the re- 
normalized representation (5), (?), the expansion 
parameter is c ( Y ~ / E , J E - c ~ ) ) ~ .  AS a result, this rep- 
resentation diverges in a narrower region of width 

IE-E,, 1 G A ~ - C ' ~ ~ ~ / E , .  (26) 
At c>> c, we shall therefore use the renormalized repre- 
sentation to investigate the spectrum. The concentra- 
tion broadening of the impurity level is determined in 
this case by expression (26). 

In the region of convergence of the renormalized rep- 
resentation, the states can be either localized or  of 
the current type. The self-energies of the current 
(band) states, which a r e  characterized by a wave 
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vector, a r e  determined by the solution of the disper- 
sion equation (17) and take the form 

. . 
The damping of these states, due to  scattering by 

the impurities that a r e  considered here, is 

States with energy ~ ( k )  form an impurity band in 
which the states a re  described by a wave vector; this 
band is detached from the ground band and its width 
A, greatly exceeds the concentration broadening of 
the impurity level &. If the impurity concentration 
satisfies the condition c,<< c << c, = col 61'': then the 
energy c,(k) takes the form 

The dispersion law of the band states is shown for this 
case in Fig. 2. 

The width of the impurity band turns out to be 

A o = c y Z i l e L l ~ I ~ ~ I .  (30) 
and the effective mass of the impurity states with 
k<<c$v'* is 

The limiting values of the wave vector in this band a r e  
determined from the condition that the damping over the 
wavelength be small 

and a re  of the order of 

As k- k,, the energy of the band states approaches 
the region of the concentration width of the impurity 
level. Below the impurity band, the states a r e  of 
fluctuation origin. The width A: of the transition region 
is determined here by the quantity c,(k,h): 

A,'=eZ(km,.) -ez(0) -Ao(colc)'. (3 4) 
The quantities kmin and k,, defined in (33) limit the 

region of energies corresponding to the current impur- 

FIG. 2. States in the ground and impurity bands at co i< c 
~ c , 1 6 1 ' / ~ ,  cO<O,  161>>1. 

ity states. The energies corresponding to these values 
of the wave vector coincide in order of magnitude with 
the thresholds of the mobilities in this band. It can be  
assumed that there exists (just as in the simplest 
Anderson modells with diagonal disorder) a critical 
concentration c, a t  which the current states in the 
impurity band f i rs t  appear. The value of c,  differs 
from c, by a certain numerical factor "1, the deter- 
mination of which calls for different analysis methods. 
We note that, in contrast to  the ordinary Anderson 
transition, in this model with nondiagonal disorder the 
mobility thresholds kmh and k,, a r e  on the same side 
of the maximum of the state density in the impurity 
band. 

As noted in the preceding section, the density of the 
fluctuation states in the region y2/E1>> 1 E - cL I>> A2 is 
determined mainly by impurity pairs and is described 
by expression (23). They can therefore be used a t  
y2/El>>A0 near the lower edge of the impurity band, 
and at y2/El>> 1 & L I  near the lower edge of the ground 
band characterized by the dispersion law &,(k). 

With increasing impurity-center concentration, when 
c>>co161*, the width A, of the impurity band [as follows 
from (27)], as well a s  the gap between the bands &,(k) 
and c2(k), becomes equal to c1/2y and greatly exceeds 
the energy lcLl of the impurity level. The effective 
mass of the states becomes equalized as k- 0 for the 
upper and lower bands: ml = m, = 2m. The minimum 
values of the wave vector for both branches do not 
depend on the concentration of the impurity centers 
and a re  of the order of 

kmi,,-yz/E,'v'h, (3 5) 
while the widths cl,,(kmin ) - E ~ , ~ ( O )  of the transition 
regions coincide with the near-threshold region y4/g. 
At the same time, the concentration width of the 
impurity level and the maximum value of the wave 
vector for the lower branch a r e  determined a s  before 
by expressions (26) and (33). The character of the 
spectrum a t  different impurity concentrations and in 
different energy regions is shown schematically in 
Fig. 3. 

b) If Eo>O and 6>> 1, i.e., a well defined quasilocal 
level with energy c,= co exists, then the crossing re- 
structuring of the spectrum, as already noted above, 

FIG. 3. Restructuring of the spectrum and character of elec- 
tronic states in different energy regions as  functions of the con- 
centrations of the impurity centers. The case &, < 0,  1 6 1 >> 1 .  
The singly hatched region is  that of the band states, and the 
doubly hatched region is  that of the concentration broadening of 
the impurity level. 
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begins when c>c0/bm. At high impurity concentrations, 
when c>>c,, a region of width A, (26), in which the 
renormalized representation becomes divergent, ap- 
pears near the energy EL. Outside this region the 
states in the vicinity of cL can be either in a band o r  
localized. 

The energies of the band states a r e  determined a s  
before by expressions (27), have a normal dispersion 
(ac1,,(k)/ak>0), and their dependence on the wave vec- 
tor for the case ~ , < < c < < c , 6 ~ ~  is shown in Fig. 4. In 
place of the anomalous-dispersion region which is 
obtained when c0/6lh < c << c,, at c >> c, a forbidden band 
(quasigap) of width A, =cy2fio>>A,, appears at c c, 
between the energy Z, and the new limiting energy c, 
='E,+A,. In this band the states a r e  not described by a 
quasimomentum. Inside the forbidden region the 
states a r e  localized and the state density is  determined 
by the fluctuation clusters of the pairs of impurities 
(if A0<<y2/E,). The minimum value of the wave vector 
for the upper band and the maximum value for the lower 
band a r e  determined by expressions (33). Thus, the 
picture of the restructuring of the spectrum of the 
quasilocal level a t  C , < < C < < C , ~ ~ ~  is in a certain sense 
dual with respect to the onset of the impurity band 
near the local level. 

The principal difference between the cases of small  
(c << c,) and large (c>> c,) concentrations of the im- 
purity centers is  here that when the concentration 
reaches a certain critical value c,, -c, a phase transi- 
tion takes place in the electronic subsystem. This 
transition, which has the character of the inverse 
Anderson transition, consists in the fact that near the 
energy EL a region of localized states (quasigap) is 
produced jumpwise. 

When the concentration of the impurities becomes s o  
large that c>> cobh, the width of the forbidden band 
A , = c " ~  exceeds the energy of the quasilocal level EL, 

and in this case there is  no substantial difference 
between the character of the coherent restructuring for 
the local and quasilocal states. 

c )  In the case when the parameter 161 = IE,~E;/Y~<< 1, 
i.e., the wave functions of the impurity states a r e  
distributed mainly in a volume of radius r,, no co- 
herent restructuring of the spectrum takes place a t  

FIG. 4. Dispersions1 law when a quasigap is produced near a 
quasilocal level. Eo > 0 ,  6 >> 1, co << c << ~06"~. 

c>>c, (but c<<co/1613). The reason is  that a t  these 
concentrations all  the characteristic energies of the 
impurity subsystem turn out to be less than the width 
of the threshold region "y4/E:, where the term pro- 
portional to the square root of E in D(o)(E) (11) pre- 
dominates over the linear term and the indicated re- 
structuring of the spectrum is impossible. The con- 
centration broadening of the impurity state (the 
region of divergence of the group expansion) is the 
same a s  for the cases consider'ed is of 
the order of 

Ar'-c'1zE,<y'/E,3 (36) 
regardless of the sign of E,, and greatly exceeds the 
impurity-level energy EL ( ~ ~ = ' E ~ 1 6 1  at Z,< 0,161 << 1). 
The lower edge of the band states is  determined by the 
concentration broadening of A:, and the minimum value 
of the wave vector turns out to be of the order of 
k mi, " C*U' J. The state density outside the region 
A: (36) can be obtained with the aid of the expressions 
given in Ref. 6 and 7. 

On the other hand, if the concentration of the impur- 
ities becomes s o  large that c>> c, = c , / l ~ / ~ ' =  Y'/E f,  then 
a coherent restructuring of the spectrum takes place at 
161 << 1, and an additional band appears (at a certain 
critical concentration c,, "c,), in which the states a r e  
described by the wave vector. The character of the 
spectrum turns out to be the same as considered in 
item a) of the present section a t  c>>c0)6(", i.e., the 
dispersion law is determine4 by expression (28), the 
widths of the quasigap and of the lower band a r e  equal 
to clhy, the concentration width of the impurity level 
is A: "c'/3y2/~l << clhy, the minimum value of the wave 
vector for both branches of the spectrum is 
k,, " ( y 2 / ~ ~ ~ ' " 3  =C?U'*, and the maximum for the 
lower branch is k,,-~*v"~. This restructuring 
of the spectrum is due to the fact that a t  c>>c, the 
concentration width of the impurity level A: and other 
parameters of the coherent restructuring of the 
spectrum become larger than the width of the near- 
threshold region y4/E:, and the term linear in E pre- 
dominates in the expression for D(o)(E). 

5. CONCLUSION 

The here-considered crystal-spectrum restructuring 
a t  relatively large concentrations of the large-radius 
impurity centers (c,<<c<< 1) is connected primarily with 
the fact that a volume with impurity-state radius 
r," (u/c0)1'3 contains on the average a large number of 
such centers, and partial averaging of the fluctuations 
takes place. In addition, for coherent restructuring 
of the spectrum it is  necessary that the characteristic 
dimensions of the region of this restructuring exceed 
the dimensions of the region of the concentration broad- 
ening. This condition is equivalent to the require- 
ment that the energy of the indirect interaction of the 
impurities at average distances E,,-chy2/E1 be 
shorter than the distance from the impurity level to 
the renormalized edge of the band: 

I E a v l  4: ler  (k=O)-e,I. (37) 
This condition is always satisfied for c>>c, if the 

hybridization energy is  not too high, s o  that 161 >> 1. On 
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the other hand, if 161 << 1, then the condition (37) is 
satisfied at c>> c, =co/1613. As a result, the criterion 
for coherent restructuring of the spectrum can be 
represented in the form 

c)co max{i, 18 1-9. (38) 

At y - El this criterion cannot be satisfied at any 
value c << 1, and this is why no coherent restructuring 
of the spectrum was observed in the previously con- 
sidered cases?" We note that in the case when the 
singularity of the edge of the band is not of the 
van Hove type, coherent restructuring can take place 
a t  c-c, even if the parameter 161 is small. 

Let us dwell briefly on the electric conductivity via 
the impurity current states. Under certain conditions 
the Fermi level zF of the considered system can be 
located inside the impurity band: 

and as a result the states on the Fermi surface a r e  of 
the current type and lead to metallic conductivity a t  
low temperatures. This situation can occur, for 
example, in a semiconductor with a sufficiently 
large dielectric constant x doped with a transition 
element. The unfilled impurity level should then lie near 
the conduction band (or the filled one near the edge of the 
valence band), s o  that its energy reckoned from the 
edge of the band exceeds the effective Rydberg value 
cR = me4/2x2. The number of fluctuation states with 
energy lower than ~ ( 0 )  is, as seen from (23), of the 
order of Nc :/c (if c,, << c << min(cih, c,)). By additionally 
doping the semiconductor with ordinary donors (ac- 
ceptors) of concentration -G/c << c we can fill all these 
localized states and ensure satisfaction of the condition 
(39). I t  is easy to show in this case that if 
c>> c,(l 61 tR/lcL 1 )", then the scatter of the levels due 
to the random Coulomb potential of the donors turns out 
to be less than the width A, of the impurity band and 
the diagonal disorder does not upset the coherence in 
the impurity band. 

Inside the impurity band we have in accord with (32) 

where the mean free path is defined by the expression 

Therefore, if the condition (39) is satisfied, it is pos- 
sible to show in the usual mannert4 that the kinetic 
equation is valid, and the static conductivity via the 
impurity band turns out to  be 

where kp is the Fermi momentum. Equation (42) takes 
account of the fact that the scattering of the electrons 
in the impurity band is isotropic, s o  that the transport 
mean free path I , ,  coincides with (41). 

It follows from (32) and (41) that the lkF" 1 when the 
Fermi momentum becomes of the order of kmh or  k,,, 
and this condition determines the limits of applicability 
of expression (42). On the upper edge of the impurity 
band the limiting value of this metallic conductivity can 
then be assumed to be of the order of 

i.e., of the same order as the minimum value of the 
metallic conductivity ame = 0.06e2/r, estimated by 
~ 0 t t . l '  On the lower edge of the impurity band, how- 
ever, the corresponding limiting value can reach 

and the minimal metallic conductivity via the impurity 
band is thus much less than the Mott estimate. When 
c>>c1, the value of U, no longer depends on the con- 
centration of the impurity centers. 

In conclusion we thank !. M. Lifshitz, M. A. Krivoglaz, 
6. I. Rashba, and A. L. Efros for useful discussion 
of the results. 
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